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Weak Muller Conditions
Make Delay Games Hard
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Martin Zimmermann
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mzi@cs.aau.dk

We show that solving delay games with winning conditions given by deterministic and
non-deterministic weak Muller automata is 2EXPTIME-complete respectively 3EXPTIME-
complete. Furthermore, doubly- and triply-exponential lookahead is necessary and sufficient
to win such games. These results are the first that show that the succinctness of the automata
types used to specify the winning conditions has an influence on the complexity of these
problems.

1 Introduction

Is solving delay games with Muller conditions, i.e., determining its winner, harder than solving delay
games with parity conditions? Is more lookahead required to win a delay game with a Muller condition
than to win a delay game with a parity condition? Deterministic Muller automata are exponentially
more succinct than deterministic parity automata [1]1 and solving classical, delay-free Muller games
is PSpace-complete [14] while solving parity games is quasi-polynomial [3]. So, the answer to both
questions should be yes, but surprisingly, and frustratingly, both questions are open. Here, we take
a step towards resolving them by showing that the answer is indeed yes if we consider weak Muller
conditions.
The games we consider here are Gale-Stewart games [9], arguably the simplest form of two-player

games. In such a game, two players, called I and O, alternatingly pick letters, thereby constructing
an infinite word α. The winner of such a play is determined by the winning condition of the game, a
language of infinite words. Player O wins if α is in the winning condition, otherwise Player I wins.
Delay games were introduced by Hosch and Landweber [12] only three years after the seminal Büchi-

Landweber Theorem [2] showing how to determine the winner of Gale-Stewart games with ω-regular
winning conditions. Hosch and Landweber generalized the setting of Gale-Stewart games by allowing
Player O to delay her moves to obtain a lookahead on Player I’s moves. This advantage allows her to
win games she cannot win without lookahead. These games capture the asynchronous interaction of
two agents [6], the deterministic uniformization problem for relations over infinite words [4, 10], and are
related to streaming transducers with delay [8].
In this work, we are interested in games with ω-regular winning conditions. These are typically repre-

sented by (deterministic or non-deterministic) ω-automata with various kinds of acceptance conditions,

1Strictly speaking this is only true when the size of automata is measured in the number of states, which is a very crude
measure for Muller automata. See the discussion about the representation of Muller conditions later in the introduction
and also the works of Boker [1] and Hunter and Dawar [14, 13].
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Table 1: The complexity of solving delay games. Results for reachability, safety, and parity (in gray) are
from [16, 17]; results for weak Muller are proven here.

deterministic non-deterministic

Reachability PSpace-complete PSpace-complete
Safety ExpTime-complete 2ExpTime-complete
Parity ExpTime-complete 2ExpTime-complete
weak Muller 2ExpTime-complete 3ExpTime-complete

Table 2: The lookahead required to win delay games. All bounds are asymptotically tight. Results for
reachability, safety, and parity (in gray) are from [16, 17]; results for weak Muller are proven
here.

deterministic non-deterministic

Reachability exponential doubly-exponential
Safety exponential doubly-exponential
Parity exponential doubly-exponential
weak Muller doubly-exponential triply-exponential

e.g., safety, parity or Muller. The choice between determinism and non-determinism and succinctness of
the acceptance condition can have an influence on the complexity of solving the game.
Hosch and Landweber showed that it is decidable whether Player O wins a given delay game with

bounded lookahead [12]. Forty years later, Holtmann, Kaiser, and Thomas [10] revisited delay games and
proved that if Player O wins a delay game then she wins it already with doubly-exponential lookahead (in
the size of a given deterministic parity automaton recognizing the winning condition). Thus, unbounded
lookahead does not offer any advantage over doubly-exponential lookahead in games with ω-regular
winning conditions. Furthermore, they showed that the winner of a delay game, again with its winning
condition given by a deterministic parity automaton, can be determined in doubly-exponential time.
Both upper bounds were improved and matching lower bounds were proven by Klein and Zimmermann:

Solving delay games is ExpTime-complete and exponential lookahead is both necessary to win some
games and sufficient to win all games that can be won [16]. Both lower bounds already hold for winning
conditions specified by deterministic safety automata while the upper bounds hold for deterministic
parity automata. They also considered reachability automata, for which there is no difference between
the results for deterministic and non-deterministic automata.
For non-deterministic parity automata, solving delay games is 2ExpTime-complete and doubly-expo-

nential lookahead is both necessary and sufficient [17]. As before, both lower bounds already hold for
non-deterministic safety automata while the upper bounds hold for non-deterministic parity automata.
See Table 1 and Table 2 for an overview over the known results (in gray).
However, the parity condition is not very succinct, e.g., deterministic Rabin, Streett, and Muller

automata can all be exponentially more succinct than deterministic parity automata while they all
recognize exactly the ω-regular languages.

Here, we need to discuss briefly how to measure the size of an ω-automaton, say with set Q of states.
For all acceptance conditions induced by a subset F ⊆ Q (e.g., reachability, safety, Büchi, and co-Büchi)
or by a coloring Ω: Q → N (e.g., parity) the size of the automaton is captured by its number of states,
as the acceptance condition can be encoded with a polynomial overhead. However, for more succinct
automata, the situation is different. Rabin and Streett conditions are given by a finite family (Ri, Gi)i∈I
of pairs of subsets Ri, Gi ⊆ Q. Here, |I| is called the index of the automaton and has to be taken into
account when measuring its size.
Muller acceptance on the other hand is based on a set F ⊆ 2Q, which can be encoded in various
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representations. The simplest one is just listing all subsets in F , the so-called explicit representation
whose size is |F|. In this work we are mainly focused on representing F by a Boolean formula with
variables in Q so that the models of the formula are exactly the sets in F . In this case, we measure
the size of the acceptance condition by the size of the formula. Other representations include the use
of circuits, trees, DAGs, and colorings. The relative succinctness of these representations and their
influence on the complexity of solving arena-based (i.e., delay-free) games has been studied by Hunter
and Dawar [14] and Horn [11].
In the setting of arena-based games, parity games can be solved in quasi-polynomial time [3] while

solving Rabin games is NP-complete [7], solving Streett games is co-NP-complete (they are dual to
Rabin games), and solving Muller games can be P-complete, co-NP-complete, or PSpace-complete,
depending on the representation of F [14, 11].
Thus, it is natural to ask whether winning conditions given by more succinct automata also make delay

games harder to solve and increase the bounds on the necessary lookahead for Player O. However, no
such results are known. Note that it is straightforward to obtain doubly-exponential (triply-exponential)
upper bounds on the complexity and on the lookahead, as every deterministic (non-deterministic) Rabin,
Street, or Muller automaton can be turned into an equivalent exponentially larger deterministic (non-
deterministic) parity automaton. This result is independent of the size and encoding of the acceptance
condition of the automaton that is transformed.
Here, we are interested in Muller conditions, as they are the most succinct ones. As a first step

towards answering our motivating questions, we show that for weak Muller conditions, there is indeed an
exponential increase, both in the solution complexity and in the necessary lookahead. Thus, we provide
matching lower bounds to the upper bounds obtained by transforming (weak) Muller automata into
parity automata.
Recall that a Muller condition F ⊆ 2Q represents all those runs ρ ∈ Qω whose infinity set, the set

of states visited infinitely often by ρ, is in F . In contrast, a weak Muller condition F ⊆ 2Q represents
all those runs ρ whose occurrence set, the set of states visited by ρ, is in F . Note that weak Muller
automata are strictly less expressive than (standard) Muller automata.
In this paper we settle the complexity of solving delay games with deterministic and non-deterministic

weak Muller winning conditions and provide tight bounds on the necessary lookahead to win such games.
More precisely, we show that solving delay games with deterministic weak Muller winning conditions is
2ExpTime-complete and solving delay games with non-deterministic weak Muller winning conditions is
3ExpTime-complete. Similarly, we show that doubly-exponential lookahead is necessary and sufficient to
win delay games with deterministic weak Muller conditions and triply-exponential lookahead is necessary
and sufficient to win delay games with non-deterministic weak Muller conditions. All these results hold
for F being represented by a Boolean formula. The lower bounds rely on the fact that in a weak Muller
automaton, every visit to a state is relevant for acceptance. We show that this property allows to
construct a small deterministic (non-deterministic) automaton that requires the players in a game to
implement a cyclic counter with exponentially (doubly-exponentially) many values. This automaton is
then used to construct games in which Player O needs doubly-exponential (triply-exponential) lookahead
and to construct games that simulate AExpSpace (A2ExpSpace) Turing machines. Finally, we also
give an exponential lower bound on the necessary lookahead in delay games with deterministic explicit
weak Muller conditions.
We conclude this paper by discussing the obstacles one faces when trying to take the next step, i.e.,

to raise the lower bounds for (standard) Muller conditions. There, we also return to the discussion of
the different representations of Muller conditions, i.e., we discuss whether our lower bounds, which hold
for the representation by Boolean formulas, can be lifted to less succinct representations, thereby giving
stronger results.

2 Preliminaries

We introduce our notation. We denote the non-negative integers by N, and the set {0, 1} by B. The size
of a set X is denoted by |X|.
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Words, languages. An alphabet Σ is a non-empty finite set of letters or symbols. A word over Σ is a
sequence of letters of Σ. The set of finite resp. infinite words over Σ is denoted by Σ∗ resp. Σω. The set
of non-empty finite words over Σ is denoted by Σ+. The empty word is denoted by ε. Given a finite or
infinite word α, we denote by α(i) the i-th letter of α, starting with 0, i.e., α = α(0)α(1)α(2) · · · . The
length of α is denoted by |α|. A subset L ⊆ Σ∗ resp. L ⊆ Σω is a language resp. an ω-language over Σ.
We drop the prefix ω when it is clear from the context.
Given two infinite words α ∈ (Σ0)

ω and β ∈ (Σ1)
ω, we define

(
α
β

)
=

(
α(0)
β(0)

)(
α(1)
β(1)

)(
α(2)
β(2)

)
· · · ∈ (Σ0×Σ1)

ω.

Automata. An ω-automaton is a tuple A = (Q,Σ, qI ,∆,Acc) where Q is a finite set of states, Σ is an
alphabet, qI ∈ Q is an initial state, ∆ ⊆ Q × Σ × Q is a transition relation, and Acc ⊆ ∆ω is a set of
accepting runs.
An infinite run ρ of A is a sequence

ρ = (q0, a0, q1)(q1, a1, q2)(q2, a2, q3) · · · ∈ ∆ω.

As usual, we say that ρ is initial if q0 = qI and we say that ρ processes a0a1a2 · · · ∈ Σω. Given a run ρ,
let Inf(ρ) be the set of states visited infinitely often by ρ, and let Occ(ρ) be the set of states visited by ρ.
The language recognized by A is the set L(A) ⊆ Σω that contains all ω-words that have an initial run

in Acc processing it.
An ω-automaton A = (Q,Σ, qI ,∆,Acc) is deterministic (and complete) if ∆ is given as a total function

δ : Q × Σ → Q. If we speak of the run of A on α ∈ Σω, then we mean the unique initial run of A
processing α.

Acceptance conditions. We recall safety, reachability, parity, and (weak) Muller acceptance conditions.
An ω-automaton A = (Q,Σ, qI ,∆,Acc) is a safety automaton, if there is a set F ⊆ Q of accepting

states such that

Acc = {(q0, a0, q1)(q1, a1, q2)(q2, a2, q3) · · · ∈ ∆ω | qi ∈ F for every i}.

Moreover, an ω-automaton A = (Q,Σ, qI ,∆,Acc) is a reachability automaton, if there is a set F ⊆ Q
of accepting states such that

Acc = {(q0, a0, q1)(q1, a1, q2)(q2, a2, q3) · · · ∈ ∆ω | qi ∈ F for some i}.

Furthermore, an ω-automaton A = (Q,Σ, qI ,∆,Acc) is a parity automaton, if there is some color-
ing Ω: Q→ N such that

Acc = {ρ ∈ ∆ω | max{Ω(q) | q ∈ Inf(ρ)} is even}.

In the remainder, we use the acronyms DPA resp. NPA to refer to deterministic parity automata resp.
non-deterministic parity automata.
Finally, an ω-automaton A = (Q,Σ, qI ,∆,Acc) is a Muller automaton resp. a weak Muller automaton,

if there is a family F ⊆ 2Q of sets of states such that

Acc = {ρ ∈ ∆ω | Inf(ρ) ∈ F}

resp.
Acc = {ρ ∈ ∆ω | Occ(ρ) ∈ F}.

In the remainder, we use the acronyms wDMA resp. wNMA to refer to deterministic weak Muller automata
resp. non-deterministic weak Muller automata.
The sets Acc are infinite objects, but they have finite representations. E.g., for safety conditions Acc

is fully specified by a subset F ⊆ Q of safe states; for (weak) Muller conditions Acc is fully specified
by a set F ⊆ 2Q of sets of states. While these representations are usually small in the size of the
automaton, this is not guaranteed for Muller acceptance conditions. Working with Muller automata,
the representations of the acceptance condition influence the complexity of decision problems [14, 13].
Hence, we recall different ways of representing Muller conditions which are more succinct than simply
listing the elements of F .
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Representations of acceptance conditions. Hunter and Dawar studied the impact of the representation
of Muller conditions on the complexity of solving delay-free Muller games [14, 13]. In this paper, we
follow their terminology and definitions for these representations.
The most straightforward representation of an acceptance condition of a Muller automaton is an explicit

condition, i.e., an explicit list of the elements of F . For short, we refer to a wDMA resp. wNMA where
the acceptance condition is represented as an explicit condition as explicit-wDMA resp. explicit-wNMA.

But there are more succinct representations of Muller automata acceptance conditions, such as Muller
conditions over colors, win-set conditions, Emerson-Lei conditions, and circuit conditions (see [14, 13]
for definitions and for a comparison in the setting of delay-free games).
In this work, we consider Emerson-Lei conditions which are Boolean formulas φ with variables from Q.

The set Fφ specified by φ is the set of sets F ⊆ Q such that the truth assignment that maps each element
of F to true and each element of Q \ F to false satisfies φ. The size of a formula φ is denoted |φ| and is
defined as usual as its length. For short, we refer to a wDMA resp. wNMA where the acceptance condition
is represented as an Emerson-Lei condition as an Emerson-Lei-wDMA resp. an Emerson-Lei-wNMA.

Let us conclude by mentioning that Emerson-Lei conditions are more succinct than Muller conditions
over colors, which are more succinct than win-set conditions, which are more succinct than explicit
conditions. Circuit conditions are at least as succinct as Emerson-Lei conditions, but it is open if circuit
conditions are more succinct than Emerson-Lei conditions (meaning it is open whether circuits can always
be translated into small formulas). These (and further) results can be found in [14, 13].

Size of automata. As discussed in the previous paragraph, the representation of the acceptance condi-
tion of a (weak) Muller automaton can be more or less succinct. This should be reflected when defining
the size of a (weak) Muller automaton. Hence, we define the size of a (weak) Muller automaton with
Emerson-Lei condition φ as |Q| + |φ|; the size of a (weak) Muller automaton with explicit condition F
as |Q|+ |F|.
For other ω-automata acceptance conditions such as, e.g., reachability, safety or parity, we define

the size of the automaton as its number of states, as the acceptance condition can be encoded with a
polynomial overhead.

Delay games. A delay function is a mapping f : N → N≥1, which is said to be constant if f(i) = 1
for all i > 0. A delay game Γf (L) consists of a delay function f and a winning condition L ⊆ (ΣI ×
ΣO)

ω for some alphabets ΣI and ΣO. Such a game is played in rounds i = 0, 1, 2, . . . as follows: in

round i, first Player I picks a word ui ∈ Σ
f(i)
I , then Player O picks a letter vi ∈ ΣO. Player O wins a

play (u0, v0)(u1, v1)(u2, v2) · · · if the outcome
(
u0u1u2···
v0v1v2···

)
is in L; otherwise, Player I wins. Note that if

f is a constant delay function, then Player O has a constant lookahead of f(0) letters on her opponents
moves. Hence, the moniker constant refers to the lookahead induced by f , not to f itself.

A strategy for Player I in Γf (L) is a mapping τI : Σ
∗
O → Σ∗

I satisfying |τI(w)| = f(|w|) while a strategy
for Player O is a mapping τO : Σ+

I → ΣO. A play (u0, v0)(u1, v1)(u2, v2) · · · is consistent with τI if
ui = τI(v0 · · · vi−1) for all i, and it is consistent with τO if vi = τO(u0 · · ·ui) for all i. A strategy for
Player P ∈ {I,O} is winning, if every play that is consistent with the strategy is won by Player P . We
say that Player P ∈ {I,O} wins a game Γf (L) if Player P has a winning strategy in Γf (L).

Problem statement. In this work, we investigate delay games with weak Muller automata winning
conditions. We are interested in two aspects.
Firstly, what is the computational complexity of deciding whether Player O wins such a game? Sec-

ondly, how much lookahead does Player O need to win such a game if possible?
Note that delay games with wDMA resp. wNMA winning conditions are determined, because delay

games with Borel winning conditions are determined [15]. Hence, we also speak of deciding whether
Player O wins such a game as solving such a game.
We end this section with some introductory examples.

Example 2.1. In Fig. 1, we present a deterministic automaton gadget whose structure is suitable to
store a 4-bit sequence. What we mean by that is, that for a word starting with a0a1a2a3 ∈ B4 the
corresponding run (p0, a0, p1)(p1, a1, p2)(p2, a2, p3)(p3, a3, p4) · · · of the automaton yields that the state
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b0=0 b1=0 b2=0 b3=0

b0=1 b1=1 b2=1 b3=1

0

0 0 0

1 1 1 1

0 0 0 0

1

1 1 1

Figure 1: A gadget to store a 4-bit sequence.

pi+1 is equal to bi=ai for 0 ≤ i ≤ 3. This idea is easily scaled to an n-bit sequence for arbitrary n ∈ N≥1.
Note that the gadget is of linear size in n.

Now, we present a delay game which makes use of such a gadget.

Example 2.2. Let L ⊆ (B2)ω be the ω-language that contains all words of the form (α, β) such that
β(i) = α(4 + i) for 0 ≤ i ≤ 3. In words, the second four-bit segment of the input component is equal to
the first four-bit segment of the output component.
We describe a wDMA A that recognizes L. Basically, such an automaton is composed of two successive

gadgets similar as in Fig. 1 and a sink state reached after the second gadget. In the first gadget, the
output component of a letter determines the target state, and in the second gadget, the input component
of a letter determines the target state. We assume that the states of the first gadget are called G1(b0=0),
G1(b0=1), etc., and in the second gadget G2(b0=0), G2(b0=1), etc.
We give the acceptance condition of A as a formula φ:

(G1(b0=0) ↔ G2(b0=0))
∧ (G1(b1=0) ↔ G2(b1=0))
∧ (G1(b2=0) ↔ G2(b2=0))
∧ (G1(b3=0) ↔ G2(b3=0))

Clearly, L(A) = L.
Now, let us consider a delay game with L as winning condition. Player O can win such a game if she

is aware of the (4+ k)-th letter that Player I plays before she has to give her k-th letter (for 1 ≤ k ≤ 4).
The constant delay function f with f(0) = 5 gives enough lookahead to ensure this.
We show that Player O wins Γf (L). Due to the choice of f(0), in each round i, Player I has produced a

prefix α(0) · · ·α(i+4) that Player O can base her move in that round on. Hence, she picks β(i) = α(i+4)
in round i. This strategy is winning for her, as every consistent outcome is in L.

As for Example 2.1, this example is easily scaled to an n-bit sequence for arbitrary n ∈ N≥1. Note
that a formula φn specifying the acceptance condition is of size O(n) while an explicit representation of
Fφn is of size O(2n) as all possible n-bit sequences must be explicitly represented.

In the above example, we presented a delay game where a small lookahead is sufficient for Player O to
win. We now give an example of a family of ω-automata where, when used as a winning condition for a
delay game, Player O needs exponential lookahead (in the size of the automaton) to win.

Example 2.3. Pick some n ∈ N≥1, and let Σn = {0, . . . , n− 1}. A sequence α ∈ (Σn)
∗ ∪ (Σn)

ω is said to
contain a so-called bad j-pair if there are two positions p < p′ such that α(p) = α(p′) = j and α(q) < j
for all p < q < p′.2

Now consider the language Pn ⊆ (Σn × Σn)
ω that contains a word

(
α
β

)
if, and only if, α(1)α(2) · · ·

contains a bad j-pair where j = β(0). In words, if the first output letter is j, then there is a bad j-pair
in the input letter stream starting from the second letter.
We have that Pn = L(Pn) where Pn is the automaton specified in Fig. 2 when it is, for example,

interpreted as a reachability automaton where qf has to be reached. Note that Pn is deterministic and
of size O(n).

2Note that we could equivalently require α(q) ≤ j for all p < q < p′. The latter allows occurrences of j between positions
p and p′. However, one can then pick two such occurrences without any j’s in between, which satisfy the stricter
definition with <.
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qIPn qf

G0

Gn−1

...

(∗
0

)

( ∗
n−1

)

(
0
∗
)

(
n−1
∗
)

(∗
∗
)

Gj (
j
∗
)( ̸=j

∗
) (

<j
∗
)

(
>j
∗
)

Figure 2: The automaton Pn (top) contains gadgets G0, . . . ,Gn−1 (bottom). Transitions not depicted
lead to a sink state, which is not drawn. Here, ∗ denotes an arbitrary letter from the respective
alphabet.

Klein and Zimmermann [16] have proven that in order to be guaranteed the existence of a bad j-pair
for 0 ≤ j ≤ n− 1 a sequence over Σn of length at least 2n is necessary.

Proposition 2.4. Let n ∈ N≥1, and let Σn = {0, . . . , n− 1}.

• Every word w ∈ (Σn)
∗ with |w| ≥ 2n contains a bad j-pair for some 0 ≤ j ≤ n− 1.

• There is a word w ∈ (Σn)
∗ with |w| = 2n − 1 that does not contain a bad j-pair for every 0 ≤ j ≤

n− 1.

With this in mind, it is intuitively true that in a delay game with winning condition Pn as given in
Example 2.3, Player O can always win if she has at least a lookahead of 2n on Player I’s moves, but
not with less lookahead. This was formally proven in [16]. In our upcoming proofs, we will incorporate
variations of Example 2.3.
To conclude, we show that the game presented in Example 2.3 implies an exponential lower bound

result on the necessary lookahead for Player O to win delay games with deterministic weak Muller
automata winning conditions which are stated explicitly.
The following results is obtained by picking Ln = Pn and showing that Pn is an explicit-wDMA with

set F = {F0, . . . , Fn−1}, where the set Fi contains qI and qf as well as all (that is, the two states) from
gadget Gi. To see this, consider a run that starts in qI and reaches the sink qf : only one of the gadgets
Gi is visited. Also, both states of Gi must be visited.

Corollary 2.5. For every n ∈ N≥1, there exists a language Ln recognized by an explicit-wDMA An of
size O(n) such that

• Player O wins Γf (Ln) for some constant delay function f , but

• Player I wins Γg(Ln) for every delay function g with g(0) ≤ 2n.

3 Upper Bounds for Weak Muller Delay Games

We begin this section with a recap of known results used to prove our upper bounds on complexity and
necessary lookahead. Klein and Zimmermann [16, 17] have shown the following complexity results about
parity delay games.

Proposition 3.1.

1. Solving delay games with DPA winning conditions is ExpTime-complete.
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2. Solving delay games with NPA winning conditions is 2ExpTime-complete.

Furthermore, Klein and Zimmermann [16, 17] have shown tight bounds on the necessary lookahead
needed to win parity delay games. Here, we are interested in the upper bound results.

Proposition 3.2.

1. For every DPA A, the following are equivalent:

• Player O wins Γf (L(A)) for some constant delay function f where f(0) is exponential in the
size of A.

• Player O wins Γg(L(A)) for some delay function g.

2. For every NPA A, the following are equivalent:

• Player O wins Γf (L(A)) for some constant delay function f where f(0) is doubly-exponential
in the size of A.

• Player O wins Γg(L(A)) for some delay function g.

To obtain our upper bounds on weak Muller delay games stated below (see Theorems 3.4 and 3.5), we
explicitly state the following easy result on the translation from weak Muller into parity automata.

Lemma 3.3.

1. For every wDMA (in any representation) there exists an equivalent exponentially-sized DPA.

2. For every wNMA (in any representation) there exists an equivalent exponentially-sized NPA.

Proof. Given a weak Muller automaton A, it suffices to construct a parity automaton A′ that additionally
tracks the occurrence set of a run of A. To this end, the parity automaton uses the state set Q×2Q where
Q is the set of states of A. The first component simulates a run of A while the second one accumulates
the occurrence set of the run prefix simulated thus far.
States of the form (q,O) with O ∈ F are assigned color 2 and those with O /∈ F are assigned color 1.

The resulting parity automaton is equivalent to the original weak Muller automaton, as the occurrence
set eventually stabilizes.

We are ready to prove our upper bounds (regarding complexity and necessary lookahead) for delay
games with weak Muller automata winning conditions.
The combination of Proposition 3.1 and Lemma 3.3 immediately yields our first theorem which states

upper bound complexity results.

Theorem 3.4.

1. Solving delay games with wDMA winning conditions (in any representation) is in 2ExpTime.

2. Solving delay games with wNMA winning conditions (in any representation) is in 3ExpTime.

The combination of Proposition 3.2 and Lemma 3.3 immediately yields our next theorem which gives
upper bounds on the necessary lookahead for Player O to win delay games.

Theorem 3.5.

1. For every wDMA A (in any representation), the following are equivalent:

• Player O wins Γf (L(A)) for some constant delay function f where f(0) is doubly-exponential
in the number of states of A.

• Player O wins Γg(L(A)) for some delay function g.

2. For every wNMA A (in any representation), the following are equivalent:

• Player O wins Γf (L(A)) for some constant delay function f where f(0) is triply-exponential
in the number of states of A.

• Player O wins Γg(L(A)) for some delay function g.

In Sections 4 and 5 we show matching lower bounds for Theorems 3.4 and 3.5.
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4 Lower Bounds for Deterministic Weak Muller Delay Games

This section is devoted to showing lower bounds for delay games with deterministic weak Muller automata
winning conditions.

Lookahead. We begin this section by showing a doubly-exponential lower bound on the necessary
lookahead for Player O to win, which yields a tight bound in combination with Theorem 3.5.

Recall Example 2.3, where the concept of bad j-pairs was introduced, and an automaton of size O(n)
was given where the first letter, say i0 ∈ [0, n − 1] of the output component indicates the existence of
a bad i0-pair in the input component (starting from the second letter) which is a word over [0, n − 1].
Recall that according to Proposition 2.4, one needs exponential lookahead in n to correctly identify a
bad j-pair in a word over [0, n− 1].
We are going to design a variant where a doubly-exponential lookahead is necessary. To this end, we

encode the numbers in the range [0, 2n − 1] in binary and show how to construct a small automaton
that checks whether the input component has a bad i0-pair, where i0 is the first number in the output
component. This results in a game that Player O can only win with doubly-exponential lookahead.
In Example 2.3, the automaton stores i0 in its state space, as there are only n possibilities. However,

this is no longer feasible with the range [0, 2n − 1] and a polynomially-sized automaton, as there are 2n

possible values for i0. Instead, Player O has to mark two numbers she claims to form a bad i0-pair and
the automaton then checks whether the two marked numbers are equal to i0 and whether all numbers
in between are strictly smaller than i0. Using the succinctness of the Emerson-Lei condition, this can be
achieved with a linearly-sized automaton.

Theorem 4.1. For every n ∈ N≥1, there exists a language Ln recognized by an Emerson-Lei-wDMA An

of size O(n) such that

• Player O wins Γf (Ln) for some constant delay function f , but

• Player I wins Γg(Ln) for every delay function g with
∑n−1

i=0 g(i) ≤ 22
n

.

Proof. Pick some n ∈ N≥1. Our goal is to give a language Ln recognized by an Emerson-Lei-wDMA An

of size O(n) such that the input component encodes a sequence x0, x1, x2, . . . of numbers xi ∈ [0, 2n− 1],
and the output component encodes a sequence y0, y1, y2, . . . of numbers yi ∈ [0, 2n − 1]. Each xi and
yi is encoded as an n-bit sequence. For acceptance, we require that x1x2 · · · contains a bad y0-pair.
According to Proposition 2.4, finding a bad j-pair in a word over [0, 2n − 1] requires in the worst case a
word of length 22

n

. Consequently, using Ln as the winning condition for a delay game will ensure that
a doubly-exponential lookahead (in n) is necessary.
We go into details. The automaton we construct uses the product alphabet {0, 1,#} × {0, 1,✕,#}.

We first describe what we call valid input resp. output encodings:

• An input sequence α is a valid encoding if it is of the form

((0 + 1)n#)ω.

The i-th n-bit sequence encodes the number xi ∈ [0, 2n− 1], the least significant bit is the leftmost
one.

• An output sequence β is a valid encoding if it is of the form

((0 + 1)n(✕ +#))ω

such that ✕ occurs exactly twice. The i-th n-bit sequence encodes the number yi ∈ [0, 2n− 1], the
least significant bit is the leftmost one.

The behavior of the automaton is described below, where we distinguish three cases. The first two
cases simply state that (viewed as a game) the player who first violates the correct encoding format loses.

1. If there exists some i such that α(0)α(1) · · ·α(i) cannot be completed to a valid input encoding,
but β(0)β(1) · · ·β(i− 1) can be completed to a valid output encoding, the automaton accepts.
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Figure 3: A gadget to add two n-bit sequences in little endian notation. Missing transitions are implied

by gray dashed arrows. States for positions 2 to n− 2 are not drawn. The state label
pos=k
res=b

carry=b′

indicates that adding the bits at position k yields the result b and b′ is the carry bit relevant

for the addition at position k + 1. The state
pos=0
res=1

carry=1
is not reachable and can be omitted.

2. If there exists some i such that β(0)β(1) · · ·β(i) cannot be completed to a valid output encoding,
but α(0)α(1) · · ·α(i) can be completed to a valid input encoding, the automaton rejects.

3. If α and β are valid encodings, the automaton accepts if a bad y0-pair is correctly marked.

We first explain the idea of Item 3. The intention of the marker ✕ is to be placed before two numbers
xj and xj′ such that xj = xj′ = y0 and they enclose a bad y0-pair, i.e., xi < y0 for j < i < j′.

In order to check whether xj = xj′ = y0 it suffices to have three gadgets similar as in Example 2.1 for
n-bit sequences. The first gadget stores y0, we index its states with S for start, The second and third
gadgets are entered when the first resp. second ✕ is seen, and thus store xj and xj′ , we index its states
with M1 resp. M2 for marked numbers. Validating whether xj = xj′ = y0 is done via the acceptance
condition by a formula similar to the formula presented in Example 2.2, which we present further below.
Our formula also enforces that there are two marked numbers.
Instead of checking whether xi < y0 for j < i < j′, the automaton checks for another condition which

is expressible with a small enough automaton and formula. Namely, whether xi + yi = y0 for j < i < j′.
Note that this is only equivalent to xi ≤ y0. However, recall Footnote 2. The intention is that, during a
play, Player O can make this condition true if, and only if, xj and xj′ indeed enclose a bad y0-pair.

In order to check whether xi+yi = y0 for all j < i < j′, one gadget is used that computes the addition
of two n-bit sequences. Such a gadget is depicted in Fig. 3. We index its states by A for addition. This
gadget is entered for every n-bit sequence between the first two marked sequences. Expressing that the
automaton accepts if xi + yi = y0 for all j < i < j′ is expressed via a formula which we give further
below.
Now, we briefly explain the overall automaton structure. We construct a deterministic automaton,

thus, Items 1 to 3 must be handled in parallel. Note that the gadgets we introduced for Item 3 can easily
be extended to check whether either sequence is invalid (i.e., whether Item 1 or Item 2 holds) without
introducing new states for the gadgets. The automaton needs two additional sink states qacc resp. qrej
that are entered when the input resp. output sequence is not a valid encoding.
After the S-gadget and before the M1-gadget, and after the M2-gadget, it suffices to check whether

Item 1 or Item 2 holds and go to the corresponding sink state. This can be done with O(n) many states.
All in all, An is a sequence of six different gadgets which are all of size O(n), so An is of size O(n):

1. The first gadget, S, stores y0 the first number picked by Player O.

2. The second gadget checks that the format of the input and output is correct.

3. The third gadget, M1, is entered when the first ✕ occurs, say at the beginning of the j-th block.
It stores xj .
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4. The fourth gadget, A, is entered immediately after the j-th block and only left when the second ✕
occurs, say at the beginning of the j′-th block. It checks that xi + yi = y0 holds for all j < i < j′.

5. The fifth gadget, M2, is entered when the second ✕ occurs. It stores xj′ , the number marked by
the second ✕.

6. The last gadget again checks that the format of the input and output is correct.

Note that the gadgets S, M1, M2, and A also check the format of the input and output is correct. As
explained earlier, this does not increase their size.
Finally, we are ready to present the acceptance condition φn of the automaton An. We state its

intended meaning in words first:

• the rejecting sink is not seen, and

• the accepting sink is seen, or

• for every position k ∈ [0, n− 1] and every bit value b ∈ B:
– If y0(k) = b, then xj(k) = b and xj′(k) = b, i.e., the two marked numbers are equal to the

first one in the output.

– If y0(k) = b, then the k-th bit of xi + yi is not 1 − b for every j < i < j′, i.e., all pairs of
numbers between the marked ones add up to the first one in the output.

We define φn = ¬qrej ∧ (qacc ∨ ψn) with

ψn =
∧

k∈[0,n−1]

∧
b∈B

S (bk=b) →

[
M1(bk=b) ∧M2(bk=b) ∧

∧
b′∈B

¬A
(

pos=k
res=1−b
carry=b′

)]
.

Note that φn is of size O(n).
Now, we show that

• Player O wins Γf (Ln) for some constant delay function f , but

• Player I wins Γg(Ln) for every delay function g with
∑n−1

i=0 g(i) ≤ 22
n

.

We start by giving a constant delay function f such that Player O has a winning strategy in Γf (L(An)).
According to Proposition 2.4, the sequence x1 · · ·x22n of numbers is guaranteed to contain a bad j-pair
for some j ∈ [0, 2n − 1]. Hence, we let f(0) = m, where m is some number large enough to ensure
that x1, . . . , x22n is included in the lookahead (assuming that Player I plays a valid input encoding).
If Player I plays a valid input encoding, Player O’s strategy is to output some y0 such that x1 · · ·x22n
contains a bad y0-pair. She marks the pair correctly with ✕, and can ensure that she produces output yi
such that xi + yi = y0 in between the marked numbers. At other positions, she plays arbitrary numbers,
and no other marks.
We argue that φn is satisfied. The state qrej is never reached, as if Player I does not play a valid

input encoding, the state qacc is reached independently of Player O’s moves and the formula is trivially
satisfied. Assume that Player I plays a valid input encoding, and Player O behaves as described. Clearly,
S (bk=b) → (M1(bk=b) ∧M2(bk=b)) for all k ∈ [0, n − 1] and b ∈ B. Since for all numbers yi between the
marked numbers xi + yi = y0 holds, we also have that if S (bk=b) has been seen, then the k-th bit of

xi + yi is equal to b. Hence, only the states A

(
pos=k
res=b

carry=0

)
and A

(
pos=k
res=b

carry=1

)
can be seen. This implies

that ¬A
(

pos=k
res=1−b
carry=0

)
∧ ¬A

(
pos=k

res=1−b
carry=1

)
is true.

For the other direction, assume that g is a delay function such that
∑n−1

i=0 g(i) ≤ 22
n

. We show
that Player I wins Γg(Ln). According to Proposition 2.4, there exists a word w over [0, 2n − 1] with
|w| = 22

n − 1 that contains no bad j-pair for every j ∈ [0, 2n − 1]. Player I’s strategy is to play a valid
input encoding such that xi is the n-bit sequence that encodes w(i) for all 0 ≤ i ≤ 22

n − 1. After round

n− 1, Player O has finished y0. Furthermore, the condition
∑n−1

i=0 g(i) ≤ 22
n

ensures that Player I has
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not yet begun to spell the n-bit sequence that encodes x22n . Hence, since y0 is known to Player I, he
can pick a number x ̸= y0 and continues to produce a valid input encoding such that every xi encodes
x for all i ≥ 22

n

.
We show that Player I wins playing as described. Player O’s goal is to satisfy the formula φn. Clearly,

she loses if her moves do not produce a valid output encoding (as qrej would be reached), so we assume
that she produces a valid output encoding. The state qacc is not reached, as it is only reached if the input
sequence is invalid, hence, the other part of the formula must be satisfied. Note that the implication
S (bk=b) → (M1(bk=b) ∧M2(bk=b)) for all k ∈ [0, n− 1] and b ∈ B can only be satisfied if Player O marks
two numbers with ✕, because the S-gadget stores y0 making the lefthand-side of the implication true.
However, since Player I’s moves ensured that the input sequence does not contain a bad y0-pair, the
righthand-side of the implication∧

k∈[0,n−1]

∧
b∈B

S (bk=b) →

[
M1(bk=b) ∧M2(bk=b) ∧

∧
b′∈B

¬A
(

pos=k
res=1−b
carry=b′

)]

is not satisfied. We have shown that Player I wins Γg(L(An)).

Complexity. Next, we settle the complexity of solving delay games with Emerson-Lei-wDMA winning
conditions by proving a 2ExpTime lower bound. Our construction is a generalization of the ExpTime
lower bound for solving delay games with winning conditions given by deterministic parity automata [16].
Intuitively, Player I produces a sequence of configurations of an alternating exponential-space Turing

machine. Each of these is of exponential length, i.e., the cells of each configuration can be addressed
with polynomially many bits. Now, Player I picks the successor configuration of universal configurations
while Player O picks the successor configuration of existential configurations (by picking a transition to
apply). Relying on the lookahead, Player O has always access to the full current configuration picked
by Player I before she has to pick a transition to apply. Dually, to account for the lookahead, Player I
is allowed to copy a configuration to fill the lookahead while he waits for Player O to pick a transition.
Hence, two successive configurations played by Player I should either be equal or the second one should
be a successor configuration of the first one.
To force Player I to faithfully simulate the Turing machine, i.e., to only copy configurations or to

pick a valid successor configuration (in particular the one determined by Player O in case of existential
configurations), Player O can mark cells for the automaton to check for correctness: This is sufficient
as an error by Player I manifests itself in a single wrongly updated or copied cell. Using the addresses
of the cells and the markers used by Player O, a small automaton can check whether there is an error
or not. Finally, Player O is able to correctly apply the markers, as she has enough lookahead to always
observe the next two configurations, enough to spot errors introduced by Player I.
Altogether, we obtain a delay game simulating an alternating exponential-space Turing machine, and

AExpSpace = 2ExpTime yields the desired result.

Theorem 4.2. Solving delay games with Emerson-Lei-wDMA winning conditions is 2ExpTime-complete.

Proof. The upper bound was shown in Theorem 3.4, we show the corresponding lower bound.
We give a reduction from the word problem for alternating exponential space Turing machines. Since

2ExpTime = AExpSpace [5], we obtain the desired result.
Let M = (Q = Q∃ ⊎Q∀,Σ, qI ,∆, qA, qR) be an alternating exponential space Turing machine, where

∆ ⊆ Q × Σ × Σ × Q × {−1, 0, 1}. Furthermore, let p be a polynomial such that 2p bounds the space
consumption of M and let w ∈ Σ∗ be an input word. We fix n = p(|w|). Wlog., we assume that
the accepting state qA and the rejecting state qR are equipped with a self-loop. Furthermore, wlog.,
we assume that either qA or qR is reached in every run of M on w. An alternating exponential space
Turing machine that does not have this property can be turned into an equivalent TM M′ that satisfies
the property as follows: The number of configurations that can be reached on w is bounded (doubly-
exponentially in n). Hence, M can be equipped with an exponentially-sized counter in order to detect
that a configuration repetition has occurred (when the counter has surpassed the maximum) and reject
if so. Then, M′ is used as the starting point for the reduction instead of M.
We construct an Emerson-Lei-wDMA A of polynomial size in (|∆|+ n) such that M accepts w if, and

only if, Player O wins Γf (L(A)) for some delay function f .
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The idea is that, in the delay game, the players build a run of M on w in the form of a configuration
sequence. Player I controls the universal states and Player O the existential ones. Furthermore, Player I
spells all configurations with his moves. The configurations are of exponential size in n, so each cell of
M’s tape is addressed by an n-bit counter. In between configurations there is a delimiter, either C or
N , to denote if the next configuration is a copy of the previous one or a new one. The need to copy
configurations arises since, in the delay game, Player O is behind with her moves, so Player I needs to
wait for Player O’s pick if the current configuration is existential.

We go into details. The automaton we construct uses the product alphabet

({0, 1, C,N, } ∪Q ∪ Σ)× ({✓,✗,❋} ∪∆) .

Recall that Q,∆, and Σ are components of the Turing machine M and are used to encode configurations
and to pick transitions to apply. We first describe what we call valid input resp. output formats:

• An input sequence α is valid if it is of the form(
(C +N)

[
(0 + 1)

n
(Σ +Q+ )

]+)ω

,

to be interpreted as a sequence of configurations (C + N)c0(C + N)c1 · · · where each ci is a

configuration delimited by C or N . A configuration is encoded by a sequence
[
(0+1)n(Σ+Q+ )

]+
,

where each n-bit sequence encodes an address a ∈ [0, 2n−1], the least significant bit is the rightmost
one, and the letter after the address encoding is either the tape cell content (that is, a letter σ ∈ Σ,
or a blank (denoted as )) or a state q ∈ Q. Note that the format does not imply that a sequence

in
[
(0 + 1)n(Σ +Q+ )

]+
encodes a configuration of length 2n. This will be later enforced by the

rules of the game.

• An output sequence β is valid format if it is of the form(
∆
[
(✓ + ✗ + ❋)n+1

]+)ω

,

and if for every position i, α(i) ∈ {C,N} if, and only if, β(i) ∈ ∆, i.e., the letters τ ∈ ∆ occur at
the same positions as the configuration delimiters C and N . We give the intended interpretation
of this format, which is explained in more detail below: The markers ✓ resp. ✗ and ❋ are intended
to indicate the absence of resp. the existence of an error. If ✗ marks a bit in an address block,
it should indicate an error in updating the address block at this bit, if ❋ marks the first bit of
an address block, then it should indicate that there is a copy or update mistake in the successive
configuration which manifests itself at the cell with the marked address.

The behavior of the automaton is as follows:

1. If there exists some i such that α(0)α(1) · · ·α(i) cannot be completed to have a valid format, but
β(0)β(1) · · ·β(i− 1) can be completed to have a valid format, the automaton accepts.

2. If a configuration encoding c contains not exactly one state or the first address block is not zero,
the automaton accepts.

3. If c0 does not encode the initial configuration on w, it accepts.

4. If there exists some i such that β(0)β(1) · · ·β(i) cannot be completed to have a valid format, but
α(0)α(1) · · ·α(i) can be completed to have a valid format, the automaton rejects.

We refer to Items 1 to 3 as simple input errors, and to Item 4 as simple output error. These conditions
can be easily checked using the automaton structure with O(|∆| + n) states. We use designated sink
states qacc and qrej .

5. If there are no simple errors, and there is a position marked by ✗ in some address block ai (say
ai(k)), the automaton checks if ai+1(k) (assuming there is no ai(k

′) for some k′ < k which is also
marked by ✗) is wrongly updated in the next address block ai+1. We call this an address update
error. If the address is indeed wrongly updated, then the automaton accepts, otherwise it rejects.
We explain further below how to achieve this behavior.
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6. If there are no simple errors, and there is an address block a whose first position is marked by ❋
the following is checked:

• The next configuration must contain an address block a′ whose first position is marked by ❋,
otherwise the automaton rejects. (This is easily checkable via the automaton structure.)

• If a ̸= a′, the automaton rejects.

• If a = a′, check whether the tape cell addressed by a contains an error:

– If the delimiter between the configurations is C: The cell content is not correctly copied.
We call this copy error.

– If the delimiter between the configurations is N : The cell content is not correctly updated
according to the picked transitions. We call this update error.

If an error is claimed correctly, the automaton accepts, otherwise it rejects.

We explain further below how to achieve this behavior.

7. Lastly, if none of the above cases occurs, if there is a configuration that contains qA, then the au-
tomaton accepts, if there is a configuration that contains qR, then the automaton rejects. Therefore,
when a rejecting resp. accepting configuration has been seen, the automaton goes into designated
new sink states qR resp. qA.

Now, we explain how to handle Item 5, i.e., the detection of an address update error. When a bit is
marked with ✗, its value is stored in the state space. Using a modulo counter, it is easy to find the same
bit in the next address block. It is not difficult to see that the value of a bit only flips if all remaining bits
(that is, all bits to the right) are one, because then adding one to the address counter causes an overflow
of all less significant bits (which are denoted to the right of the marked bit). Hence, an automaton can
check with O(n) states whether a marked address bit has been updated correctly.
Regarding Item 6, checking whether the two marked (with ❋) n-bit sequences are the same can be

done by using two gadgets and a formula as explained in Examples 2.1 and 2.2. Such a formula is of
size O(n).

In order to check whether there is a copy error between successive configurations it suffices to remember
whether the delimiter between them is C and the cell content of the marked cell.
Checking whether there is an update error between successive configurations c and c′ is more involved:

• The delimiter between them has to be N .

• A window of three cell contents around the cell whose address is marked must be remembered.

• If c is a universal configuration, it has to be verified (using the stored three-cell window) whether
the update in c′ is achievable by applying a transition from ∆. (It is not specified in the input
sequence which transition should be applied.)

• If c is an existential configuration, the transition to be applied is specified in the output sequence.
However, the transition to be applied has been given (possibly much) earlier: When the delimiter
before a configuration is N , the configuration is new. If this configuration is existential, in the
output sequence, the letter after the configuration specifies the transition to be applied.

• Transitions that are given after copied configurations as well as universal configurations are irrele-
vant.

• Thus, the automaton stores a specified transition only if it occurs after a new existential configu-
ration. This is the transition to be applied to obtain the next new configuration.

An automaton needs a polynomial number of states (in (|∆|+ n)) to store the required pieces of infor-
mation and verify that there is an update error.
Since we are constructing a wDMA, all of Items 1 to 7 need to be checked simultaneously. Therefore

we build a product automaton which we denote by A with one special feature, namely, the introduced
sink states qacc, qrej , qA, qR are global sink states (as opposed to product states).
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This product automaton has a number of states polynomial in (|∆| + n) since it is constructed from
gadgets whose number of states are polynomial in (|∆| + n). As mentioned before, regarding Item 6,
the formula needed to verify that two n-bit addresses are the same is of size O(n). Since A is a product
automaton, the formula describing that two address are equal needs to be adjusted to incorporate the
product structure which causes a polynomial in (|∆|+n) blow-up of the formula. We briefly explain how
to take a product structure into account by a small example. Let C1,C2,C3 be some gadgets with state
sets Q1, Q2, Q3, respectively, and the product automaton is of the form C1×C2×C3. Say a formula only
refers to states in C1 which contains the state p. Then the updated formula must replace all occurrences
of p with

∨
q∈Q2

∨
r∈Q3

(p, q, r).
All in all, the final formula φ looks as follows:

φ = ¬(qrej ∨ qR) ∧ (qacc ∨ qA ∨ φerror?),

where φerror? describes that either the gadgets to store the n-bit address sequence have not been entered
(meaning no copy/update error needs to be verified), or that they store the same n-bit address sequence
(the claimed copy/update error is verified via the automaton structure). The formula φerror? is adjusted
to the product automaton structure.
Recall that n = p(|w|), hence, φ is of polynomial size in (|∆|+ p(|w|)). All in all, A is of polynomial

size in (|∆|+ p(|w|)).
It is left to show that M accepts w if, and only if, Player O wins Γf (L(A)) for some delay function f .
To begin with, assume M accepts w. Let f be a constant delay function such that f(0) = m, where

m is chosen such that Player O has enough lookahead to see a full configuration before she has to start
with its output. To be more concrete, m = 2n(1 + n) + 1 suffices to capture a whole configuration
including the address blocks and the delimiter.
We show that Player O wins Γf (L(A)). We assume that either player does not make simple errors

(recall that this means playing in the wrong format). Firstly, assume that Player I either does not
update an address correctly, or introduces a copy or update error. The lookahead is large enough to
correctly claim such an error. The formula is then satisfied. Secondly, assume that Player I does not
introduce such errors. Since M accepts w, Player O can pick existential transitions such that if Player I
applies the picked transitions an accepting configuration will be reached. Note that, in order to pick an
existential transition such that an accepting configuration will be reached, it is only necessary to have the
knowledge of the current configuration. This fact can be easily seen when visualizing the run tree of M
on w. If an accepting configuration is seen, the formula φ is clearly satisfied. Player I can prevent that
an accepting configuration is seen by always copying the current configuration. But then, the formula
φ is also satisfied, because the sub-formula φerror? is satisfied if no copy/update error is claimed or a
copy/update error is correctly claimed. Player O does not claim such an error, as we assumed that
Player I does not introduce such an error.

For the other direction, assume M rejects w. We show that Player I wins Γg(L(A)) for every delay
function g. Again, we assume that either player does not make simple format errors. No matter the
existential transitions that Player O choses, Player I can always pick universal transitions such that
eventually a rejecting configuration is reached. Hence, we assume that Player I advances the run by
giving new configurations according to his and Player O’s choices.
We go into more detail. Whenever Player I has provided a new existential configuration, he has to wait

for Player O to provide a transition to be applied since she is behind with her moves. While Player O has
not provided her transition choice, Player I copies the current configuration until the choice of Player O is
known. Then, Player I produces a new configuration obtained by applying Player O’s choice. Whenever
Player I has provided a new universal configuration there is no need to copy the configuration, a new
configuration can be provided directly after.
Furthermore, we assume that Player I does not introduce address update errors or configuration

copy/update errors as this is not beneficial for him. Player O loses a play where a rejecting configuration
is reached. Hence, her only chance is to claim an error. Since there are no errors introduced by Player I,
this approach is not fruitful as this consequently falsifies φ. Player O cannot not win a play, i.e., Player I
wins Γg(L(A)).
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5 Lower Bounds for Non-Deterministic Weak Muller Delay Games

In this section, we show lower bounds for delay games with non-deterministic weak Muller automata
winning conditions.

Lookahead. We show a triply-exponential lower bound on the necessary lookahead for Player O to win,
which yields a tight bound in combination with Theorem 3.5.
To this end, we again implement the bad j-pair game described in Example 2.3, this time with numbers

in the range [0, 22
n −1]. As argued before, this allows Player O to win with triply-exponential lookahead,

but not with less. Thus, we show that winning conditions specified by non-deterministic automata allow
to implement the bad j-pair game with exponentially larger numbers than deterministic automata. This
increase requires some additional mechanism to allow the automaton to check the existence of a bad
j-pair, which we describe below.
The binary encoding of each number in [0, 22

n − 1] is of exponential length, i.e., each bit can be
addressed with n additional address bits. Player I produces a sequence of such encodings of numbers
and Player O picks a number i0 in her first move, claiming that the sequence picked by Player I contains
a bad i0-pair. To verify this claim, Player O is required to repeat i0 ad infinitum.
Thus, both players can now cheat during their moves, Player I by not updating the addresses correctly

and Player O by not copying i0. Thus, both players need to use markers to claim such errors, unlike in
the analogous result for deterministic automata.
However, due to the lookahead, Player I cannot mark the position where Player O has wrongly copied

i0. However, such an error manifests itself in a single bit and Player I is able to mark its address at a
later position. As there are exponentially many addresses, we rely on non-determinism to guess for each
address whether it is equal to the marked one, i.e., it needs to be checked for a copy error, or whether
it is not equal to the marked address. It is this exponential succinctness, that leads to the increase in
required lookahead from doubly-exponential to triply-exponential when allowing non-determinism.

Theorem 5.1. For every n ∈ N≥1, there exists a language Ln recognized by an Emerson-Lei-wNMA An

of size O(n3) such that

• Player O wins Γf (Ln) for some constant delay function f , but

• Player I wins Γg(Ln) for every delay function g with
∑(n+2)·2n

i=0 g(i) ≤ 22
2n

.

Proof. Pick some n ∈ N≥1. Our goal is to give an Emerson-Lei-wNMA An of polynomial size in n such
that Player O needs triply-exponential lookahead in n to win the corresponding delay game. Recall
Example 2.3 and Proposition 2.4. We are constructing a bad j-pair automaton over numbers ranging

between 0 and 22
n − 1 which enforces the need of a word composed of at least 22

2n

numbers to be
guaranteed the existence of a bad j-pair.

To build an automaton of polynomial size in n, we encode a number x ∈ R = [0, 22
n − 1] as a word

over B as follows: To represent a number x ∈ R in binary one needs 2n bits, we address each bit by an
n-bit sequence.

We go into more detail. A sequence of the form a0b0 · · · a2n−1b2n−1 such that ai ∈ Bn and bi ∈ B for
0 ≤ i ≤ 2n − 1 is called a superblock. A block ai ∈ Bn is interpreted as an address block whose least
significant bit is the rightmost one. The bit sequence b0 · · · b2n−1 is interpreted as a number x ∈ R, the
least significant bit is the rightmost one. We refer to these bits as special bits.
In order to explain the idea, assume that in a play, Player I plays an input sequence that encodes a

sequence of numbers x0, x1, . . . ∈ R. We give a construction such that Player O’s moves must produce
an output sequence that encodes a sequence of numbers y0, y1, . . . ∈ R such that x1x2 · · · contains a
bad y0-pair and it holds that y0 = y1 = y2 = · · · . In words, we enforce that Player O has to copy her
first number ad infinitum. The technique to enforce Player O to copy her first number ad infinitum
is as follows: When Player I realizes that she has not faithfully copied her number, then there exists
an address a such that there are two superblocks whose values of the special bits addressed by a differ.
Player I marks an address block that encodes a, and the winning condition (i.e., the automaton) enforces
that all special bits which are addressed by a must have the same value. This is then violated, so Player O
loses if she does not copy her choice of y0 ad infinitum.
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Furthermore, the automaton we construct verifies that the input sequence indeed contains a bad y0-
pair. Since it is enforced that y0 = y1 = y2 = · · · , verifying whether a bad y0-pair exists is doable with
a small enough automaton which we explain further below.
We go into details. The automaton we construct uses the product alphabet {0, 1,✕,#}×{0, 1,#,✓,✗}.

We first describe what we call valid input resp. output format:

• An input sequence α has a valid format if it is of the form(
(✕ +#)(0 + 1)n+1

)ω
,

where ✕ occurs exactly once.

• An output sequence β has a valid format if it is of the form(
#(✓ + ✗)n(0 + 1)

)ω
.

The intention is that ✓ resp. ✗ are used to mark the absence resp. the presence of errors in updating
the address blocks.

We now describe how the automaton An behaves, then how to achieve this behavior.

1. If there exists some i such that α(0)α(1) · · ·α(i) cannot be completed to have a valid format, but
β(0)β(1) · · ·β(i− 1) can be completed to have a valid format, the automaton accepts.

2. If there exists some i such that β(0)β(1) · · ·β(i) cannot be completed to have a valid format, but
α(0)α(1) · · ·α(i) can be completed to have a valid format, the automaton rejects.

3. If the very first address is not zero, it accepts.

4. If the k-th bit of an address block is marked with ✗ (and no earlier ✗ occurs), then it is verified if
the k-th bit of the next address block is correctly updated. If the update is faulty, the automaton
accepts, if the update is correct, the automaton rejects.

5. If ✕ marks an address a, then the special bits picked by Player O that are addressed with a either
have all value zero or all have value one. If this condition is violated, the automaton rejects.

6. If none of the conditions before have lead to acceptance or rejection, the automaton verifies whether
x1x2 · · · contains a bad y0-pair. If the answer is yes, it accepts, otherwise it rejects.

We now describe how to achieve the desired behavior. Note that Items 1 to 3 can be easily checked in
parallel via the automaton structure of an automaton with O(n) states. We use designated sink states
qacc resp. qrej that are reached when the automaton accepts resp. rejects.
Note that Item 4 can be handled as Item 5 introduced in the proof of Theorem 4.2 where we re-use

the sink states qacc , qrej . Again, O(n) states are used.
It is left to handle Items 5 and 6. Regarding Item 5, we need one gadget that stores the n-bit sequence

that has been marked by ✕. We refer to this sequence as address a. Such a gadget uses O(n) states and
was first introduced (and used) in Examples 2.1 and 2.2. We index its states with A for address.
The automaton needs to verify that all special bits that are addressed by a have the same value.

Therefore, the automaton behaves as follows:

• Before a new address block begins, the automaton guesses whether this address will be equal to a.

• If the automaton guesses that the addresses are equal:

– It must be verified that the guess is right. If the guess is wrong, the automaton rejects.

– In order to do the verification we need one additional gadget that stores an n-bit sequence
such as in Example 2.1. We index its states by A= for equal address. The automaton enters
this gadget every time it guesses that the address will be equal to a. Further below, we give
a formula that is satisfied if, and only if, the guess is always right.
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b0=0 b1=0 b2=0 b3=0

b0=1 b1=1 b2=1 b3=1

0

0,1 0,1 0,1

1

0,1 0,1 0,1

0,1 0,1

0,1 0,1

0,1 0,10,1

0 0 0

1 1 1

Figure 4: A gadget to (non-deterministically) store a single bit from a 4-bit sequence. The top and
bottom row of states serve the same purpose (namely, a bit has been stored) so they could be
merged, but it is easier to draw the gadget in this way. This gadget is easily generalized to an
n-bit sequence.

– Additionally, the automaton must store the values (as a set) of the special bits picked by
Player O that occur as the next letter.

• If the automaton guesses that the addresses are not equal:

– It must be verified that the guess is right. If the guess is wrong, the automaton rejects.

– To verify, guess some i ∈ [0, n− 1] and check that the value of the i-th address bit is different
from the i-th bit of the address a (recall, which is marked by ✕, and stored in gadget A).

– In Fig. 4 we give a gadget that implements the guessing and storing of a bit. We index its
states by G for guessing. The automaton enters this gadget every time it guesses that the
address will be not equal to a.

– Further below, we give a formula that is satisfied if, and only if, always a bit could be found
such that the values at this bit in the inspected address and in address a differ.

Such an automaton needs O(n) states.
Lastly, regarding Item 6, the automaton guesses before the beginning of some superblock that its

encoded number xj is such that xj = y0. Whether a position is the beginning of a superblock can be
guessed and verified by the automaton, as all its special bits are zero. Since Item 5 ensures that yj = y0
and yj occurs below xj it is easy to verify that the guess is correct (if the guess is wrong, the automaton
rejects). Then, for the following numbers xj+1, xj+2, . . . it has to verify that xj+1 < yj+1, xj+2 < yj+2, . . .
until some xj′ is seen such that xj′ = yj′ . To verify that some number x is smaller than y, first, recall that
x and y are encoded by their sequence of special bits such that the least significant bit is the rightmost
one. If x < y, there exists a special bit at some position i such that all previous special bits had the
same value for x and y, the special bit at position i has value zero in x and value one in y. The values
of the special bits to the right play no role. If the verification fails, the automaton rejects by going to
some new sink qverif−fail . If some xj′ = yj′ has been seen, the automaton goes into a new accepting sink
qverif−ok . Such an automaton needs a constant number of states, as the positions of special bits can be
easily identified in a valid output sequence.
Recall that we construct a non-deterministic automaton, hence, the desired automaton An is given as

(Aformat × Aaddress) ∪ (Aformat × Acopy × Apair )

where Aformat handles Items 1 to 3, Aaddress handles Item 4, Acopy handles Item 5, and Apair handles
Item 6. The automaton has O(n3) states.
The acceptance condition is given by the formula φn defined as

¬qrej ∧ ¬qverif−fail ∧ (qacc ∨ (qverif−ok ∧ φcopy)) ,
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where φcopy is defined as ∧
k∈[0,n−1]

∧
b∈B A=(bk=b) → A(bk=b)

∧
∧

k∈[0,n−1]

∧
b∈B A(bk=b) → ¬G(bk=b)

∧ φsame−value .

The first line of φcopy is satisfied if, and only if, the automaton whenever it has guessed “current address
equals marked address” is right. If a such guess is wrong there is some k ∈ [0, n− 1] and b ∈ B such that
A(bk=b) and A=(bk=1−b) have been visited, falsifying the formula.

The second line of φcopy is satisfied if, and only if, the automaton whenever it has guessed “current
address is not equal to marked address” is right. Since the current address and the marked address differ
in the value of at least one bit, the automaton can always guess to store this different bit in the gadget
G. Hence, the second line of the formula is satisfiable in this way.
The formula φsame−value expresses that the relevant special bits either all have value zero, or all have

value one.
Note that the formula φn needs to be adjusted to talk about the (product-like) structure of An (which

can be done as explained in the proof of Theorem 4.2), hence, its final size is O(n3).
It is left to prove that

• Player O wins Γf (L(An)) for some constant delay function f , but

• Player I wins Γg(L(An)) for every delay function g with
∑(n+2)·2n

i=0 g(i) ≤ 22
2n

.

We start by giving a constant delay function f such that Player O has a winning strategy in Γf (L(An)).
According to Proposition 2.4, the sequence x1 · · ·x222n of numbers is guaranteed to contain a bad j-pair

for some j ∈ [0, 22
n − 1]. Hence, we let f(0) = m, where m is some number large enough to ensure that

x1, . . . , x222n is included in the lookahead (assuming that Player I plays valid superblocks with either #
or ✕ (used once) in front of an address block). We call playing valid superblocks with either # or ✕ in
front of an address block playing valid for short.
If Player I plays valid, Player O’s strategy is to output some y0 such that x1 · · ·x222n contains a bad

y0-pair. The number y0 is repeated ad infinitum.
If Player I does not play valid, Player I either violates the format, or he introduces an error in updating

the address counter. In the former case, qacc is reached and the formula φn is trivially satisfied. In the
latter case, Player O has enough lookahead to realize this and mark the error. Then, also qacc is reached.
The state qrec is never reached as she does not violate the desired format.
The sub-formula φcopy is also satisfied as she faithfully copies her first number y0 ad infinitum. It

is left to explain why qverif−fail is not reached and qverif−ok is reached. Since the sequence x1x2 · · ·
contains a bad y0-pair, it possible for the automaton to pick a run that correctly verifies this, hence,
only qverif−ok is reached. Thus, we have shown that the formula φn is satisfied when Player O plays
according to her strategy.

We turn to the other direction. Let g be a delay function with
∑(n+2)·2n

i=0 g(i) ≤ 22
2n

. We show that
Player I wins Γg(L(An)).

According to Proposition 2.4, there exists a word w over [0, 22
n − 1] with |w| = 22

2n − 1 that contains
no bad j-pair for every j ∈ [0, 22

n − 1]. Player I’s strategy is to play a valid input sequence such that xi

is the bit sequence that encodes w(i) for all 0 ≤ i ≤ 22
2n − 1.

Recall, a superblock is of length (n+ 2) · 2n as we have 2n address blocks of length n, 2n special bits,
and, additionally, 2n address “markers” (# signifying unmarked, ✕ signifying marked). After round

(n + 2) · 2n, Player O has finished y0. Furthermore, the condition
∑(n+2)·2n

i=0 g(i) ≤ 22
n

ensures that
Player I has not yet begun to spell the superblock that encodes x

222
n . Hence, since y0 is known to

Player I, he can pick a number x ̸= y0 and continue to produce a valid input sequence such that every
xi encodes x for all i ≥ 22

n

.
We show that Player I wins playing as described. Player O’s goal is to satisfy the formula φn. Clearly,

she loses if her moves have the wrong format (as qrej would be reached), so we assume that she produces
an output sequence that has the right format. The state qacc is not reached, as it is only reached if
the input sequence is invalid, hence, ¬qverif−fail ∧ (qverif−ok ∧ φcopy) must be satisfied. We can assume
that Player O faithfully copies y0 to satisfy φcopy . But, since the input sequence does not contain a
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bad y0-pair, no matter which run An takes, the verification of a bad y0-pair is never successful. Hence,
qverif−fail is reached, falsifying φn. Player I wins.

Complexity. Finally, we turn to complexity showing a 3ExpTime lower bound on solving delay games
with Emerson-Lei-wNMA winning conditions. To this end, we generalize the analogous construction
for Emerson-Lei-wDMA presented in the proof of Theorem 4.2: Here, the players simulate a doubly-
exponential space Turing machine. Thus, the use of non-deterministic automata for the winning condition
allows us to add an additional exponential blowup in the space consumption of the Turing machine.
Again, this requires some additional mechanisms, e.g., both players have to check their opponent’s
moves for correctness. We describe these changes in comparison to the construction for deterministic
automata below.
As before, Player I is in charge of producing the sequence of configurations (with repetitions to fill

the lookahead) and of picking successors of universal configurations while Player O picks successors for
existential configurations (by picking a transition for Player I to apply). As configurations are now
of doubly-exponential length, we address their cells by exponentially long addresses. Hence, the bits
of these addresses have to be addressed using linearly-sized addresses as well, i.e., there are two levels
of addresses. Player O has again markers to force Player I to faithfully simulate the Turing machine
while Player I also has markers to ensure that Player O correctly marks errors. Altogether, we obtain a
delay game that simulates an alternating doubly-exponential space Turing machine, and A2ExpSpace
= 3ExpTime yields the desired lower bound.

Theorem 5.2. Solving delay games with Emerson-Lei-wNMA winning conditions is 3ExpTime-complete.

Proof. The upper bound was shown in Theorem 3.4, we show the corresponding lower bound.
We give a reduction from the word problem for alternating doubly-exponential space Turing machines.

Since 3ExpTime = A2ExpSpace [5], we obtain the desired result.
Let M = (Q = Q∃ ⊎Q∀,Σ, qI ,∆, qA, qR) be an alternating doubly-exponential space Turing machine,

where ∆ ⊆ Q × Σ × Σ × Q × {−1, 0, 1}. Furthermore, let p be a polynomial such that 22
p

bounds the
space consumption of M and let w ∈ Σ∗ be an input word. We fix n = p(|w|). Wlog., we assume that
the accepting state qA and the rejecting state qR are equipped with a self-loop. Furthermore, wlog.,
we assume that either qA or qR is reached in every run of M on w. We have explained in the proof of
Theorem 4.2 that such an assumption can be made.
We construct an Emerson-Lei-wNMA A of polynomial size in (|∆|+ n) such that M accepts w if, and

only if, Player O wins Γf (L(A)) for some delay function f .
As in the proof of Theorem 4.2, the idea is that, in the delay game, the players build a run of M

on w in the form of a configuration sequence. Player I controls the universal states and Player O the
existential ones. Furthermore, Player I spells all configurations with his moves.
The configurations are of doubly-exponential size in n, so each cell of M’s tape is addressed by a

superblock as introduced in the proof of Theorem 5.1.
In between configurations there is a delimiter, either C or N , to denote if the next configuration is

a copy of the previous one or a new one. The need to copy configurations arises since, in the delay
game, Player O is behind with her moves, so Player I needs to wait for Player O’s pick if the current
configuration is existential.
We go into details. The automaton we construct uses the product alphabet

({0, 1, C,N, ,✕,#} ∪Q ∪ Σ)× ({0, 1,#,❋,✖,✓,✗} ∪∆) .

Recall that Q,∆, and Σ are components of the Turing machine M and are used to encode configurations
and to pick transitions to apply. We first describe what we call valid input resp. output formats:

• An input sequence α is valid if it is of the form(
(C +N)

[
S(Σ +Q+ )

]+)ω

,

where S stands for superblock and is defined as

S =
(
(✕ +#)(0 + 1)n+1

)+
.
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– The sequence α is to be interpreted as a sequence of configurations

(C + N)c0(C + N)c1 · · ·

where each ci is a configuration delimited by C or N . Note that the correct encoding of such
configurations is enforced by the rules of the game.

– In a configuration encoding, a superblock defines the number of a cell, the letter after the
superblock is either the tape content (that is, a letter σ ∈ Σ, or a blank (denoted as )) or a
state q ∈ Q.

– Recall that a superblock S is to be interpreted as first a marker ✕ or # to mark (the posi-
tion before) an address block inside a superblock, then an n-bit address block encoding an
address a, followed by a special bit b. Then again, a marker, an address block, a special bit,
a marker, and so on.

– The sequence of special bits of a superblock defines the number of the cell.

– The marker ✕ can be used once in the input sequence to mark (the position before) an address
inside a superblock. The purpose is explained further below.

– The letter # is to be interpreted as unmarked.

• An output sequence β is valid if it is of the form(
∆
[
(❋ + ✖ +#)(✓ + ✗)n(0 + 1)

]+)ω

,

and if for every position i, α(i) ∈ {C,N} if, and only if, β(i) ∈ ∆, i.e., the letters τ ∈ ∆ occur at
the same positions as the configuration delimiters C and N . We give the intended interpretation
of this format, which is detailed below.

– The markers ✓ resp. ✗ are intended to indicate the absence of resp. the existence of an error
an address block.

– If ✗ marks a bit in an address block, it should indicate an error in updating the address block
at this bit.

– If ❋ marks (the position before) an address block, say the block encodes address a, then it
should indicate that there is an error in updating the special bit with address a in the next
superblock.

– Finally, if ✖ marks (the position before) an address block, then it should indicate that there
is a copy or update mistake in the successive configuration.

The behavior of the automaton is as follows. We first describe the occurrence of simple format errors
that lead to acceptance resp. rejection:

1. If there exists some i such that α(0)α(1) · · ·α(i) cannot be completed to have a valid format, but
β(0)β(1) · · ·β(i− 1) can be completed to have a valid format, the automaton accepts.

2. If a configuration encoding c contains not exactly one state or the first address block in a su-
perblock is not zero, or the first superblock of a configuration does not encode the number zero,
the automaton accepts.

3. If c0 does not encode the initial configuration on w, it accepts.

4. If there exists some i such that β(0)β(1) · · ·β(i) cannot be completed to have a valid format, but
α(0)α(1) · · ·α(i) can be completed to have a valid format, the automaton rejects.

Items 1 to 4 can be handled similar to Items 1 to 4 in the proof of Theorem 4.2. One needs automata
of polynomial size in (|∆|+ n) to do so.
We now describe different kinds of (more involved) errors and how they are handled:
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5. If the k-th bit of an address block is marked with ✗, then it is verified if the k-th bit of the next
address block is correctly updated. If the update is faulty, the automaton accepts, if the update is
correct, the automaton rejects.

This item can be handled as Item 5 in the proof of Theorem 4.2 with O(n) states.

6. If ❋ marks an address a in a superblock, then the automaton checks whether the special bit that
is addressed by a in the next superblock has been correctly updated. If an error has been correctly
claimed, the automaton accepts, otherwise it rejects.

To achieve this behavior, a gadget as introduced in Example 2.1 is needed that stores the address marked
by ❋. To determine how the value of the special bit addressed by the marked address changes it suffices
to check whether all special bits (in the same superblock) to the right are one. If at least one zero is
seen, the value of the special bit does not flip. Otherwise it does. In the next superblock, the automaton
has to find the special bit that has the same address. It has to guess when it has advanced to this
address block and verify that the guess is correct. Therefore, we need another gadget as introduced in
Example 2.1 to store the guessed bit and compare via a formula that the two stored addresses are equal.
The gadgets need O(n) many states, checking whether the special bit is correctly updated can be done
with a constant number of states.

7. If the ✖ marker occurs in a superblock S, then the automaton checks whether there is a copy or
update error between successive configurations that manifests in the cell whose number is encoded
by S. If an error had been correctly claimed, the automaton accepts, otherwise it rejects.

We have detailed in the proof of Theorem 4.2 (regarding Item 6) how a copy or update error is checked
when the relevant pieces of information are known (which requires O(|∆| + n) states). The difficulty
lies in finding the same cell in the current and in the successor configuration. Therefore, the automaton
guesses at the beginning of a superblock, say S, whether it has some address that is marked with ✖. (A
wrong guess leads to rejection.) If the superblock S contains a ✖, then the automaton enforces that,
from then on, the output must copy the special bits of S ad infinitum. This condition makes it easy to
find the cell addressed by S in the next configuration, because it suffices to find the cell addressed by a
superblock such that the special bits in the input and output sequence are equal.
We have described in detail in the proof of Theorem 5.1 (see Item 5) how to enforce that a bit sequence

is faithfully copied. We use the same technique here, which needs O(n) states. To recap, in case of an
error, the input sequence marks an address of a special bit with ✕. This address is where a copy error
has manifested.
The last condition is concerned with whether w is accepted by M:

8. If the format is valid and no error occurred so far: If a configuration with qA resp. qR is seen, the
automaton accepts resp. rejects.

This can be handled as Item 7 in the proof of Theorem 4.2 with a constant number of states.
All in all, the automaton A needs a polynomial number of states (in |∆|+ n).
Finally, we are ready to describe the acceptance condition of A as a formula φ defined as

¬qrej ∧ ¬qR ∧ (qacc ∨ qA ∨ φ❋ ∨ φ✖) .

The formula φ❋ is satisfied if the gadgets to store two addresses needed to find an update error regarding
a special bit have not been entered (no special bit error is claimed) or the stored addresses are equal.
The formula φ✖ is satisfied if the gadget to check faithful copying is either not entered or the gadget

is entered and indicates that copying is successful. There are two reasons why the copy gadget is not
entered. The marker ✖ is not used in the output, i.e., no configuration copy or update error is claimed.
Or, ✖ is used, but the marker ✕ is not used in the input, i.e., no error in copying the special bits is
claimed.
The size of φ is polynomial in (|∆|+ n).
It is left to show that M accepts w if, and only if, Player O wins Γf (L(A)) for some delay function f .

To begin with, assume M accepts w. Let f be a constant delay function such that f(0) = m, where
m is chosen such that Player O has enough lookahead to see a full configuration before she has to start
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with her output. This means m is triply-exponential in n. We show that Player O wins Γf (L(A)). We
assume that either player does not make simple errors (recall that means playing in the wrong format).
Firstly, assume that Player I either does not update an address block correctly, does not update a
special bit in a superblock correctly, or introduces a configuration copy or update error. The lookahead
is large enough for Player O to correctly claim such an error. The formula is then satisfied. Secondly,
assume that Player I does not introduce such errors. Since M accepts w, Player O can pick existential
transitions such that if Player I applies the picked transitions an accepting configuration will be reached.
If an accepting configuration is seen, the formula φ is clearly satisfied. Player I can prevent that an
accepting configuration is seen by always copying the current configuration. But then, the formula φ
is also satisfied, because the sub-formulas φ❋ and φ✖ are satisfied if no error of any kind is claimed.
Player O does need to claim an error, as we assumed that Player I does not introduce an error.
For the other direction, assume M rejects w. We show that Player I wins Γg(L(A)) for every delay

function g. Again, we assume that either player does not make simple format errors. No matter the
existential transitions that Player O chooses, Player I can always pick universal transitions such that
eventually a rejecting configuration is reached. Hence, we assume that Player I advances the run by
giving new configurations according to his and Player O’s choices. A more detailed description what it
means to advance a run is given in the proof of Theorem 4.2.
Furthermore, we assume that Player I does not introduce any kind of errors as this is not beneficial

for him. Player O loses a play where a rejecting configuration is reached. Hence, her only chance is to
claim an error. Since there are no errors introduced by Player I, this approach is not fruitful as this
consequently falsifies φ. Player O cannot win a play, i.e., Player I wins Γg(L(A)).

6 Conclusion

We took the first step towards investigating delay games with Muller conditions by showing doubly- and
triply-exponential bounds for deterministic and non-deterministic delay games with weak Muller condi-
tions. More, specifically we have shown that solving such games is 2ExpTime-complete (for deterministic
automata) and 3ExpTime-complete (for non-deterministic automata) and that doubly-exponential (for
deterministic automata) and triply-exponential lookahead (for non-deterministic automata) is necessary
and sufficient. These results have to be compared to those for deterministic safety and parity automata,
for which solving delay games is ExpTime-complete and exponential lookahead is necessary and sufficient.
Similarly, for non-deterministic safety and parity automata solving delay games is 2ExpTime-complete
and doubly-exponential lookahead is necessary and sufficient. Thus, the succinctness of weak Muller
conditions (encoded by formulas) yields an exponential increase in comparison to both safety and parity
conditions.
There are two immediate directions for further research: Try to lift our results to (standard) Muller

conditions and to strengthen the lower bounds by proving them for less succinct representations of F .
Recall that our lower bounds for weak Muller conditions rely on gadgets comparing n-bit strings for

some fixed n. This is possible for a fixed number of comparisons by having one gadget for each string
to be compared and then using the formula defining F to implement the actual comparison. A natural
way to lift, say, the bad j-pair lower bound game is to just play this game infinitely often. However, this
requires to reuse the gadgets infinitely often, which then means one cannot compare strings from one
iteration of the bad j-pair game, but compares strings from all iterations.

Let us stress again that all our upper bounds are independent of the representation of the acceptance
condition. However, our lower bounds only hold for Emerson-Lei conditions, which is the most succinct
representation. Strengthening the lower bounds via less succinct representations most likely requires a
new approach, as all lower bounds we have proven require the comparison of n-bit strings. This can be
done with a small formula, as shown here, but not with the less succinct presentations considered by
Hunter and Dawar for delay-free games [14, 13]. In particular, it is even open whether delay games with
explicit Muller conditions (the least succinct representation) are harder than delay games with parity or
safety conditions. Note that in the delay-free case, explicit Muller games can be solved in polynomial
time [11].
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