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Abstract 

In this article, we conduct a qualitative systematic review of studies examining the use of digital games to promote students’ mathematical 

reasoning in primary and lower secondary schools. Digital games now have a prominent role in students’ leisure time, as has mathematical 

reasoning in curricula around the world. This study investigates how the affordances of digital game-based learning environments 

(DGBLEs) are used to support students’ mathematical reasoning. Through a thematic analysis, we construct five distinct themes that 

describe how mathematical reasoning is afforded in the DGBLEs in the reviewed studies: developing (winner) strategies, exploring an 

immersive environment, experimenting, designing learning games, and solving tasks. By analysing the themes in relation to the reasoning 

and proof cycle, we found that DGBLEs primarily supported exploration, conjecturing and, to a lesser extent, justification. We conclude that 

students’ mathematical reasoning can be achieved through DGBLEs that specifically target exploration, conjecturing and justification and 

by carefully structuring students’ interactions with and dialogues about the games played.  
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Introduction 
 

There is a long tradition of mathematics teachers employing gameplay to support students’ mathematical learning 

(Bright, 1983; Oldfield, 1991). However, new reinterpretations of the educational role of games are motivated by the 

promising possibilities of digital games (Devlin, 2011), which permeate children’s leisure time today. Children often 

play for extended periods while being deeply immersed. To understand children’s engagement with games, Gee (2003) 

studied the learning principles used by the game design industry and how to exploit these principles in educational 

contexts. Gee’s seminal work has contributed to an understanding that digital games can be used to introduce new 

literacies (Gee, 2003) and new learning opportunities in education more generally.   

There has been some optimism in mathematics education regarding the use of digital games (Divjak & Tomić, 

2011). Following Gee’s (2003) principles, Devlin (2011) argued that video games are the ideal medium for learning 

mathematics, and Larkin (2015) used the principles to evaluate mathematical apps for learning. Moreover, Hainey et al. 

(2016) reported that digital game-based learning (GBL) approaches are frequently applied in mathematics education. 

Based on a survey of 684 K-8 teachers, Takeuchi and Vaala (2014) concluded that, among the subjects in question, 

“mathematics ranked highest, with 71% of [digital game-using teachers] reporting that digital games have been either 

effective or highly effective in improving their students’ mathematical learning” (p. 48). This indicates a strong belief 

among teachers that digital games can help children learn mathematics. Indeed, in a meta-analysis of computer games 

as learning tools, Ke (2011) found that, across subjects, games seemed to promote players’ higher-order thinking, such 

as reasoning, to a greater degree than the learning of facts. Ke’s finding aligns with Gee’s (2003) view on the learning 

potential of digital games.  

Contrary to these positive findings, Young et al.’s (2012) review stressed the difficulties involved in exploiting 

the potential of GBL in mathematics education as opposed to, for instance, using GBL to learn language and history. 

Moreover, two recent meta-analyses of GBL within the context of mathematics education only found minor positive 

effects (Byun & Joung, 2018) or marginally significant effects (Tokac et al., 2019) on students’ mathematical 

achievement. These meta-analyses also reported considerable differences in the effectiveness of GBL approaches in the 

selected studies. Thus, the key question is not whether digital games as such are effective in mathematic teaching but, 

rather, how the use of specific digital games can lead to students’ mathematical learning.  

In this review, we seek to understand how digital games can be used to promote students’ mathematical 

reasoning in primary and lower secondary education. Our motivation for focusing on digital games is that, while they 

are perceived to offer new and transformational potential in mathematics education, this has seldom been realised 

(Lowrie & Jorgensen, 2015). Therefore, we want to understand the specific features of the digital components in terms 

of their potential to support students’ mathematical learning.  

We identified three motivations for combining our focus on digital games with mathematical reasoning. The 

first is that research into the use of analogue games suggests that games can be used to help students construct 

mathematical arguments (Moyer & Bolyard, 2003; Olson, 2007), explore gameplay dynamics that possibly lead to 

reasoning and justification (Chick, 2010), generalise and reason for a winning strategy (Day, 2014), and reason 

axiomatically during gameplay (Kaufmann et al., 2009). The second motivation is that previous reviews on games and 

mathematics learning have focused broadly on mathematical conceptual knowledge or procedural skills and not on 

specific processes or competencies such as reasoning. The third motivation is that over recent decades, mathematical 

reasoning has gained a prominent role in primary and secondary curricula around the world, and a number of studies 

have shown that mathematical reasoning is difficult for students to learn and teachers to teach (e.g., G. J. Stylianides et 

al., 2017). Therefore, our primary research interest here is to understand how digital games, and the context in which 

they are used, can support primary and lower-secondary students’ learning of mathematical reasoning. 

 

Games and Affordances 

 

In our definition of a digital game, we mean any game (including game apps) that can be played on a digital device such 

as a computer, tablet, mobile device, or gaming console. The sheer diversity of games makes it difficult to define a 

game more precisely. However, we rarely have trouble recognising a game when we see one (Skaug et al., 2020). For 

the purpose of our study, we understand games in line with an often-used definition: “a game is a system in which 

players engage in an artificial conflict, defined by rules, that results in a quantifiable outcome” (Salen & Zimmerman, 

2004, p. 80). This means that a game involves one or more active participants (players) who interact with a system and 

engage in an artificial conflict, that there is some form of contest, and that the game maintains some boundary from 

everyday life. The game is structured by rules, and playing it will result in a quantifiable outcome: for example, one 

player wins and another loses (Salen & Zimmerman, 2004), or the desirable completion of a challenge, such as the 

rescuing of a wounded eagle (Gresalfi & Barnes, 2016).   
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We understand participation in games along the lines of Goffman (1961), who distinguishes between the game 

as a set of rules and materials, and the gaming encounter as the social interaction in which the game takes place. In this 

understanding, a game will not simply be played as designers intend but will be constructed as a local cosmos with 

specific meaning by the participants in the gaming encounter. According to Goffman (1961), “while it is as players that 

we can win a play, it is only as participants that we can get fun out of this winning” (p. 34). The sense that is created 

from playing a game is thus created by the participants in this social encounter, and the goals of such encounters are not 

solely directed at winning. DeKoven (2013) describes that in a play community with the aim of collective enjoyment, 

the goal could be to participate in the community by engaging in the game; in some role-playing games, playing to win 

can be considered an outright destructive approach (Gribble, 1994). Deterding (2013) identifies five different 

motivational relevancies for playing digital games: relaxation, relatedness, engrossment, competence and achievement. 

Such relevancies can be seen in games such as Minecraft played in creative mode for engrossment, or The Sims played 

for relaxation. The need to understand students’ participation in games is highlighted by Bishop (1991), who suggests 

that fun should be an important construct when appreciating the playing of games as a mathematically significant 

activity and when organising a mathematics curriculum that incorporates games. However, how to organise a 

curriculum in this way is an open question, and the concept of fun is seldom defined in the GBL literature. Nonetheless, 

in our understanding of games, we stress a two-fold perspective: one related to the formal structures of the game (i.e., 

its design), and the other related to the social interactions of the players involved in the game.  

The concept of affordance has been used in technology-related fields, such as information studies, to capture 

aspects of the relationship between users and technology in relation to possibilities for action. In this sense, what is 

afforded is considered more than part of the technology; it also emerges as possible interactions from the relationship 

between the user and the technology, where multiple affordances can be identified (Volkoff & Strong, 2017). Gibson 

(1977), who initially coined the term affordance, defined it as an interactional relationship between objects, actors and 

the actions that the environment offers to specific actors. Importantly, this does not imply that these actions will 

necessarily occur. For GBL approaches, this means that even though specific affordances are designed into a game, it is 

not certain that students consider them as possible interactions. Therefore, some students play games differently than as 

intended by the teacher or designers (e.g., Al-Washmi et al., 2014). Drawing on Gibson’s work, Brown et al. (2004) 

described affordance as a promising notion in analyses of classroom activity, where “students are immersed in a 

mathematically and technologically rich learning environment” (p. 126). Along the lines of Kress (2005), we use 

affordance as a concept to describe students’ possibilities for action in relation to digital games and the surrounding 

environment with its culturally and socially produced resources. In this understanding, the affordances in a learning 

environment include the digital game and its specific design features, the relationships between the student and the 

game, and the social setting, including teacher support (Tanner & Jones, 2000).  

Using the phrase afforded interactions leading to mathematical reasoning, we refer to the relationships 

between students, games and the learning environment that can lead to students’ engagement in mathematical 

reasoning. This can be interactions afforded by specific design features of the digital game but also by the teacher’s 

ways of organising classroom talk, groupwork or tasks around the game. To capture this, we use the abbreviation 

DGBLE for digital game-based learning environment. Thus, we attempt to identify affordances of both the design 

features of digital games and the learning environments based on a GBL approach with digital games and how a 

teacher’s scaffolding can support students’ mathematical reasoning. With this understanding of affordance, we state our 

research question as follows:  

 

How do DGBLEs afford primary and lower-secondary students’ learning of mathematical reasoning? 

 

Digital Games and Mathematics Education 

 

Despite the promising opportunities for digital games to support mathematical learning (Devlin, 2011; Ke, 2011), 

studies have pointed to at least three complexities. The first is whether students become more motivated to learn 

mathematics when they use digital games. Studies disagree on this significant question (Monaghan, 2016). A second 

complexity regards the use of non-school digital games, that is, games that are not specifically designed to be played in 

a mathematics lesson (e.g. Angry Birds, Plants versus Zombies or The Sims). Avraamidou et al. (2015) have shown that 

the mathematical elements in these games are mostly invisible to the player, as they are integrated into the algorithmic 

design of the game. The mathematics in these games also differs from the mathematics curriculum. Thus, it can be a 

challenge for both teachers and students to discover the mathematics of a digital game and for teachers to establish 

meaningful connections between the game and the mathematics curriculum. A third complexity is the unpredictability 
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of students’ gameplay, which makes it difficult for the teacher to achieve common learning goals (e.g., Avraamidou et 

al., 2015). 

The various digital games designed to support mathematics learning introduce at least three additional 

challenges. The first is that the overwhelming majority of digital games used for mathematics learning only enhance 

basic skills (Larkin, 2015). These simple skill-and-drill games are often simple training software in attractive graphics 

that mainly focus on procedural fluency in subject areas such as algebra, geometry and measurement. As such, they 

cover only small and not very complex parts of the mathematics curriculum (Byun & Joung, 2018), such as the four 

basic operations (de Carvalho et al., 2016). Some researchers perceive such games as a waste of students’ time (Fox et 

al., 2014), criticising them for not engaging students in mathematical processes such as problem solving and reasoning 

(Van Eck, 2015). A second challenge is that the available empirical research is rather narrow in terms of mathematical 

content areas and builds predominantly on these skill-and-drill games or gamified versions of traditional worksheets. A 

third challenge is a concern raised by Lowrie and Jorgensen (2015a): that these visually appealing drill-and-practice 

games seem to be the kind of games that teachers will use. This concern is underscored by two international teacher 

surveys: Egenfeldt-Nielsen et al. (2011) show that 52% of a sample of 275 teachers used games designed to learn skills, 

while Takeuchi and Vaala (2014) stress that mathematics teachers generally used short standalone games or mini-

games. Evidently, these teachers did not use longer, complex, immersive decision-making games, even though these in 

general perform better in research on learning outcomes. However, in contradiction to these challenges and tendencies, 

other studies (e.g., Ke, 2011) point out that, in general, games seem more useful in promoting higher-order thinking, 

such as reasoning, than they are in supporting conceptual and factual knowledge acquisition.  

 

Reasoning in School Mathematics 
  
In curricula documents around the world, reasoning has gained a prominent role in school mathematics during the last 

two decades. To use the Danish syllabus as an example, the so-called mathematical thinking and reasoning competency 

(Niss & Højgaard, 2019) is expected to play an important role from the first to ninth grades in all subtopics of 

mathematics (Ministry for Children Education and Gender Equality, 2015). This competency encompasses being “able 

to relate to and pose the kinds of generic questions that are characteristic of mathematics and relate to the nature of 

[expected] answers” (Niss & Højgaard, 2019, p. 15) as well as “to analyse or produce arguments (i.e., chains of 

statements linked by inferences) put forward in oral or written form to justify mathematical claims” (p. 16). A similar 

shift in focus can be seen in the Common Core State Standards in the US (National Governors Association Center for 

Best Practices, 2010), where two of the eight mathematical practices involve reasoning, that is, the ability to reason 

abstractly and quantitatively, to construct viable arguments, and to critique the reasoning of others (e.g., Dingman et al., 

2013).  

This renewed focus on mathematical reasoning has at least three possible explanations. The first is that 

reasoning and proving are key activities in the field of mathematics. As Schoenfeld (2009, p. xii) states, “If problem 

solving is the ‘heart of mathematics’, then proof is its soul”. The expectation is that students can learn to think 

mathematically and learn mathematics in a more in-depth manner through engagement in activities that involve 

reasoning and proving (A. J. Stylianides, 2016). The second includes the new opportunities for explorations, dynamic 

visualisations, calculations, and so on, offered by digital technologies (e.g., dynamic geometry systems and computer 

algebra systems). These technologies allow students to explore and discover relationships, systems and regularities and 

thus to formulate hypotheses more easily (Sinclair & Robutti, 2013). The third explanation is a general tendency in 

mathematics education to also focus on students’ learning of mathematical processes, such as reasoning, modelling and 

problem solving, rather than (as previously) on their learning of mathematical products, such as concepts and 

procedures (NCTM, 2000). The idea is that students will learn these products more profoundly by engaging in 

mathematical processes.  

Based on the above-described tendencies and explanations, this study will focus on students’ learning of one 

specific process, namely mathematical reasoning, and not on their learning of mathematical products. However, there is 

overwhelming evidence that teachers find it challenging to teach mathematical reasoning and that students find it 

difficult to learn (Nardi & Knuth, 2017; A. J. Stylianides, 2016; G. J. Stylianides & Stylianides, 2017). In the case of 

Denmark, these difficulties were recently documented in the large-scale project on student mathematical reasoning, 

Quality in Teaching Danish (L1) and Mathematics (Hansen et al., 2020), where teachers struggled to teach 

mathematical reasoning even though they used tasks pre-designed by researchers for this purpose, and the learning 

results were poor in terms of student mathematical reasoning (Moeskær Larsen & Lindhardt, 2019). 

In the field of mathematics education, mathematical reasoning and proofs are defined in various ways (A. J. 

Stylianides, 2016). G. J. Stylianides et al. (2017) identified a range of definitions from a mathematical standpoint that 

associate reasoning and proofs with logical deduction and link premises with conclusions to a social perspective that 

focuses on how members of a community jointly approve an argument as a proof. For our purpose, we found the 

definition of reasoning and proof—in terms of a reasoning and proof (R&P) cycle—proposed by NCTM (2008) 
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appropriate. In contrast to the mathematical thinking and reasoning competency in the Danish national syllabus, the 

R&P cycle emphasises the meaning-making aspects of the reasoning process, including a broader set of activities. This 

broader approach to reasoning seems to be more in line with the opportunities for actions that may arise when students 

play digital games. 

The R&P cycle consists of three interconnected phases: exploration, conjecturing and justification. In the 

exploration phase, students intuitively investigate mathematical phenomena for patterns and structures in an attempt to 

detect regularities and relationships. In the conjecturing phase, they use their observations to formulate hypotheses or 

modify existing hypotheses. In the justification phase, they validate or refute their conjectures by explaining why they 

are true (or not true) from a mathematical point of view. The result of the justification phase can be a mathematical 

proof in a formal sense, but it can also be more informal arguments dependent, among other things, on the age of the 

students. The three phases can occur in any order, and reasoning processes in classrooms often consist of iterative 

cycles of these phases. Here, we apply this approach to reasoning in school mathematics to investigate the affordances 

of DGBLEs.   

 

Methodological Approach 

 

We conducted a qualitative systematic review and used a systematic literature search strategy to synthesise the existing 

research through a thematic analysis (Grant & Booth, 2009). To review a broad spectrum of research and follow a 

systematic approach, we selected and searched four relevant academic databases: Education Research Complete, British 

Education Index, ERIC through Ebscohost, and Matheduc (a mathematics education database). We followed the 

building-blocks search strategy (Johannsen & Pors, 2013) by identifying key terms and including synonyms for each of 

the terms separated by the Boolean operator OR. The four key terms, including synonyms, were separated by the 

Boolean operator AND. Our first search string consisted of the four key terms (including synonyms): game, reasoning, 

mathematics and age group. We selected studies where all four terms (or synonyms, see Table 1) were present in the 

title, keyword or abstract.  

Following Sidenvall (2019), we pilot-tested the search string and found that the inclusion of more than the key 

term—reasoning—in the second search term resulted in too many unwanted results. Therefore, we removed the 

synonyms (problem-solving, modelling and higher-order mathematical thinking) in the second term and only used 

reasoning, which encompassed prefixes such as mathematical, deductive and inductive. We did not include more 

specific features of reasoning, such as exploring, conjecturing, justifying, generalising or identifying patterns (Jeannotte 

& Kieran, 2017). Another limiter for the search was to include only peer-reviewed studies written in English.  

 

Table 1 

  

Final Search String  

Term 1  Term 2 Term 3 Term 4 

game OR gaming OR 

gamification OR game 
based learning OR 

educational games OR 

puzzle 

reasoning  mathematics OR math* 

OR mathematical 

“basic education” OR 

K12 OR primary OR 
secondary OR 

elementary OR “middle 

school”  

 

After the removal of 41 duplicates found in several databases, our final search string produced 151 unique 

results. We based our first screening of the studies’ titles and abstracts on four criteria to ensure a systematic and 

consistent inclusion process. The inclusion criteria were as follows: 

 

1. An explicit focus on student reasoning; 

2. Empirical research studies; 

3. A broad focus on students, rather than specific groups of students;  

4. Publication in peer-reviewed journals, books or conference proceedings. 

The first screening resulted in 25 studies. For some studies, we could not determine whether they fulfilled the criteria 

from simply reading the title and abstract. If not, they were excluded from the subsequent steps. We also read through 

the references in these 25 studies for titles relating to our research question and screened possible relevant studies 
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according to the four criteria. This resulted in six additional studies. Thus, we selected 31 studies in total for full text 

reading. Based on this reading, we excluded 17 studies for various reasons: for example, some did not address digital 

games, some focused on the tertiary level of education, and others were not empirical studies. In the end, 14 studies 

matched our criteria and were selected for review. This small number of studies should be seen in relation to the fact 

that relatively few studies exist on games and learning in mathematics (Ke, 2014). Aside from the strategy games in 

Houssart and Sams (2008) and Lee and Chen (2009), the digital games in the remaining 12 studies were designed 

specifically for the purpose of supporting students’ mathematical learning.  

 

Thematic Analysis 
 

In the 14 selected studies, we found mathematical reasoning to be connected to a wide range of interactions, including 

engaging with a narrative (Gresalfi & Barnes, 2016), designing a game (Ke, 2014), and discussing a single move in a 

game of Lines (Houssart & Sams, 2008). This diversity in DGBLEs across the studies—both in terms of the game 

designs and the didactical framing of activities and dialogue about the gameplay—prompted us to use a thematic 

analysis (Braun & Clarke, 2006). We used the six steps from Braun and Clarke (2006) to structure our thematic 

analysis. First (step 1), we familiarized ourselves with the data through full text readings. Second (step 2), we generated 

the following initial codes: student age, methodological approach, description of digital game, kind of student 

reasoning, emphasised aspects of (design of) teaching, and perceived affordances of the digital game. We then analysed 

each study using these codes. Later in the process, we also coded the studies according to author affiliation and research 

interest as well as the research fields of the journals. Third (step 3), we developed themes to capture a patterned 

response or meaning (Braun & Clarke, 2006) in the DGBLEs to understand the opportunities emerging in the studies for 

learning to reason mathematically. The affordances in the DGBLEs led us to divide the studies into five themes, each 

comprising distinct potentials in and challenges to establishing a learning environment where mathematical reasoning 

was afforded. These themes were continuously reviewed (step 4), then refined and renamed (step 5) to ensure clear 

definitions of each theme. Finally (step 6), examples were found to represent each theme.  

The themes describe the overall forms of interaction in the different DGBLEs in terms of the kinds of 

mathematical reasoning afforded to the students. We call this the main affordance for mathematical reasoning of a 

DGBLE. For example, we coded one affordance for mathematical reasoning under the theme ‘exploring an immersive 

environment’. Different elements of the DGBLE afforded exploration of the immersive environment, one of which was 

a non-player character (NPC) who gives feedback to students’ recommendations, requiring them to apply statistical 

reasoning to determine their consequences in the gameplay (Gresalfi, 2015). Another type of main affordance for 

mathematical reasoning was coded under the theme ‘developing (winner) strategies’, an example of which was 

provided by Houssart and Sams (2008). Here, the computer is the students’ opponent in a strategic game, and the 

students position the computer as an adversary who they have to outsmart and after whom they have to model their own 

winning strategies in terms of how the computer-player played. The specific ways in which the computer-player formed 

part of this DGBLE thus afforded the students to reason through the development of winner strategies.  

The five themes considered are as follows:  

 

1. Developing (winner) strategies—The main affordance for mathematical reasoning is to figure out how to 

play better than one’s opponents by developing (winner) strategies. 

2. Exploring an immersive environment—The player is invited to explore a virtual world and engage in 

solving problems within it. The main affordance for mathematical reasoning is to solve problems and 

understand the consequences for the world, scenario or narrative. 

3. Experimenting—The player is offered an experimental context where the main affordance for 

mathematical reasoning is to experiment with different values of game settings and explore their 

relationship. 

4. Designing learning games—The main affordance for mathematical reasoning is to design and create 

content-specific learning games. 

5. Solving tasks—The main affordance for mathematical reasoning is to solve closed tasks to move forward 

in an appealing game context.  

 

Finally, we analysed the studies according to whether (and if so, how) they addressed each of the three R&P phases. 

This analysis showed a variety of ways in which the use of digital games afforded students’ engagement in different 

parts of the mathematical reasoning process.  



7 

 

 
 

Table 2  

Overview of Thematic Analysis 

Note. Studies with a similar shade of grey are part of the same research project. A parenthesised X indicates that the 

identified R&P phase was present to a lesser degree, implicit in the study or not part of the main affordance for 

mathematical reasoning. Note that two studies did not present evidence that we interpreted as being part of the R&P 

phases. This issue is addressed under the theme solving tasks.  

 

The following five sections present the main affordances for mathematical reasoning. Each contributes to 

answering the research question by describing and exemplifying different ways in which DGBLEs afforded students’ 

mathematical reasoning through the lens of the R&P cycle. 

 

 Main Affordance for Mathematical Reasoning Forms of Mathematical Reasoning,  

R&P Cycle  

 1.  

Developing 

(winner) 

strategies 

2.  

Exploring an 

immersive 

environment 

3. 

Experime

nting  

4.  

Designing 

learning 

games 

5.  

Solving tasks 

Exploration Conjecturing Justifying 

Pareto (2014) X   
 

 X (X) (X) 

Pareto et al. (2012) X   
 

 X (X) (X) 

(Houssart & Sams, 

2008) 

X     X X X 

Gresalfi (2015)  X  
 

 X (X) (X) 

Gresalfi and Barnes 

(2016)  

 X    X X (X) 

Kolovou and van den 

Heuvel-Panhuizen 

(2010) 

  X  
 

 X X (X) 

Van den Heuvel-

Panhuizen et al. 

(2013) 

  X    X X (X) 

Bakker et al. (2015)   X    X X  

Ke (2014)    X   (X)   

Ke (2019)  X     X (X)  

Lee and Chen (2009) X    
 

 X (X)  

Wijers et al. (2010)  X    X   

Wouters et al. (2015)    
 

X    

Wouters et al. (2017)     X    
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Developing (Winner) Strategies 
 

The main affordance for mathematical reasoning by the four studies under this theme (Houssart & Sams, 2008; Lee & 

Chen, 2009; Pareto, 2014; Pareto et al., 2012) was to develop one or more (winner) strategies to outplay one’s 

opponent(s). This affordance was provided by using strategic games in which the objects of mathematical reasoning 

were closely tied to their rules and aims, and students were required to explore and identify underlying patterns and 

develop strategic approaches to win the games. We emphasise two overall findings here.  

The first finding was that the studies did not consider students’ interactions with the games as sufficient in 

themselves to support their learning. Rather, the game was used as part of a wider DGBLE, where students’ gameplay 

and situations around their gameplay were scaffolded. Learning was thus afforded by both the design features of the 

game and by the environment in which it was played. The didactical framing in the environment included teachers 

posing specific questions that related game aspects to mathematics (Lee & Chen, 2009), as well as the use of an 

intelligent teachable agent (TA) that challenged students’ arguments (Pareto, 2014; Pareto et al., 2012). The teacher’s 

scaffolding of group and classroom talks in Houssart and Sams (2008) is an example of framing dialogues about 

gameplay that led students to conjecture and then modify and justify their conjectures.  

Houssart and Sams (2008) was the only reviewed study that convincingly engaged students in all three R&P 

phases. It involved nine primary classes in England (children aged 9–11 years) in the use of a game of strategy called 

Lines (in 4–8 lessons). The game is a digital version of Connect Four, but its pieces can be placed anywhere on the 

digital board, and the coordinates of each move are displayed along with sequences of previous moves. In the study, 

groups of two or three students played against the computer. The computer adopted the best strategy, but since the 

students were always allowed the first move, it was possible for them to develop a winning strategy and win. A key 

factor in the study was the ‘set of rules for talk’ (Houssart & Sams, 2008, p. 60)—inspired by Mercer’s (1995) 

exploratory talk—that each class developed to encourage students to work and talk together while using computers. The 

authors reported that questions such as “Where should we put our counter?” followed by “Why do you think that?” 

enabled the students to explore and reason together in ways that led them to develop winner strategies, which they 

might not have been able to achieve without being taught how to effectively reason together (Houssart & Sams, 2008, p. 

69). Another key factor in the study was the possibility of rewinding the game (i.e., a design feature) so that the 

combined set of moves could be examined by the students.  

A second finding is that three of the four studies used a virtual character—a specific affordance of digital 

games—to support student mathematical reasoning. Characters can be an expert game player that inspires students to 

develop winner strategies by modelling its behaviour or encouraging students to outsmart the computer (Houssart & 

Sams, 2008). A promising example of a designed feature added to a game is the virtual character in the form of a TA 

(Pareto, 2014; Pareto et al., 2012), an agent that can be taught to play the games by the students through a master–

apprentice scheme. These two studies used a collection of two-player digital games built on an animated, graphical 

model to represent numbers and simulate arithmetic calculations. The game objectives were to teach younger students 

arithmetic concepts (especially place value and operations involving carrying and borrowing) and to stimulate their 

reasoning and strategic thinking. The students and computer-player took turns placing cards representing an arithmetic 

operation on a game board until all cards were played. In one game, the students placed cards on top of already played 

cards and received points for each 10 they created. The students could see their opponent’s cards; thus, they could 

prevent their opponent from creating 10s and develop strategies to avoid this. To win, students had to develop strategies 

by calculating mentally, reasoning about numbers and computations, and judging the impact of certain moves on future 

game conditions. However, these were not explicit activities; rather, the game was purposely designed so they would 

appear as side effects of playing (Pareto et al., 2012). The TA learned the game in two ways. One was to play against 

students and learn from their corrective feedback and acceptance/rejection of the TA’s suggestions. The other was to 

watch students play and ask them about the reasons for their choice of cards before the consequences of these choices 

appeared in the game. For example, the TA could ask “Why do you choose card 7?” in a game where the goal is to 

make 10s, with the following possible answers: 

• “It’s obviously the best one! It gives 1 point and it’s the only card that blocks the opponent.” 

• “It gives 1 point. Unfortunately, it doesn’t block the opponent from getting points.” 

• “It doesn’t give any points, but it blocks at least the opponent from getting points.” 

• “I don’t know.” 

(Pareto, 2014, p. 262). 
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To choose from such predefined explanations, students must evaluate them in relation to the game situation. In this 

sense, students can be said to be engaged in the justification phase, albeit without being required to develop arguments 

themselves. One result is that students who improved their performance based on the TA questions became better at 

selecting the correct explanations but not at developing such explanations themselves (Pareto, 2014). The purpose of the 

TA was both to challenge students to reflect on their gameplay and to act as a role model of exploration by prompting 

students to consider and explain their choices. As the students taught the TA to play, the TA’s learning level became a 

proxy for their own learning.  

Overall, this theme shows that students’ engagement in one or all three R&P phases could be afforded in a 

DGBLE with a strategic game if the students’ interactions with the game were framed didactically. This could be 

achieved either through specific rules to support explorative talk or, to some extent, by introducing virtual characters 

that either played the game or simulated learning the game from the students.  

 

Exploring an Immersive Environment 

 
The main affordance for mathematical reasoning by the four studies under this theme (Gresalfi, 2015; Gresalfi & 

Barnes, 2016; Ke, 2019; Wijers et al., 2010) was to explore an artificial virtual world and solve problems within it: for 

instance, to help an injured eagle in Adventure at Boone’s Meadow by planning flight routes (Gresalfi & Barnes, 2016) 

or to help rebuild an area hit by a natural disaster in an architecture simulation game (Ke, 2019). The affordances for 

mathematical reasoning in these DGBLEs were closely tied to the extent to which the immersive environments carried 

out the contextual consequences of the player’s choices. In cases of high and credible alignment between the player’s 

choice and its contextual consequences, the players (i.e., students) had better opportunities to evaluate, discuss and 

argue about the appropriateness of their solutions from both a game and mathematical perspective. We stress three 

findings here.  

The first finding is that exploring an immersive environment can afford the need to justify solutions 

mathematically if justifiable solutions are required by the environment. One example of this was when students assisted 

a mayor in the virtual Ander City to use statistical problem-solving to make decisions about which bike brands were 

safer to use (Gresalfi, 2015). By comparing sets of data using statistical tools (e.g., mean, median), the students 

developed data-based arguments for or against specific decisions. The consequences of their recommendations were 

then enacted in the game environment. An NPC provided the students with statistical data as well as feedback on their 

recommendations, which afforded them to relate the statistical reasoning behind their recommendations to the context 

where the consequences appeared. During a first research iteration, Gresalfi (2015) found that asking students to explain 

their recommendations was rarely sufficient to provoke discussions about statistical tools or prompt mathematical 

argumentation, as students seemed to think that the problems only had one legitimate solution. Therefore, a second 

research iteration was conducted, where a competing mayor was implemented to challenge the students’ 

recommendations and arguments and to offer conflicting perspectives. This helped the students understand that 

alternative solutions were possible, which improved the justifications for their recommendations.  

The second finding is that immersive environments can afford multifaceted contextual perspectives on 

problems through the enactment of contextual consequences of their solutions. This is emphasised as a key ingredient in 

promoting students’ justification, as it supports them in realising the possibility of different solutions, which in turn 

affords them to justify their own solution. One example is Adventure at Boone’s Meadow (Gresalfi & Barnes, 2016), in 

which students must rescue a wounded eagle by making transportation-related decisions. Depending on their solution, 

the eagle will live as before, endure with an amputated wing, or die. As the consequences of the decision appear in the 

game (which the authors called consequential feedback), the students can evaluate and validate their mathematical 

thinking in relation to this context. If, for instance, the eagle dies, their solution may involve incorrect calculations or 

ignore important contextual features that should have been included in their calculations or reasoning (Gresalfi & 

Barnes, 2016). Here, the authors distinguish between mathematical justifications (e.g., use of mathematics to justify a 

decision, for example, by comparing route lengths) and consequential justifications (e.g., justifying one’s decision in 

relation to its contextual consequences). This signals that not all the students’ justifications in this environment were 

mathematical (and hence why we only marked this study with (X) under justification). 

The third finding is that the timing of consequential feedback provided through and in relation to the game 

narrative was essential to support the students’ mathematical reasoning and was especially effective in the explorative 

and conjecturing phases. Gresalfi and Barnes (2016) found that feedback provided after students’ problem solving was 

not used in revising their mathematical reasoning or in considering alternative solutions. However, consequential 

feedback provided early in the students’ thinking about how to solve a problem nurtured their awareness of multiple 

perspectives on the problem, potentially factored into their thinking about aspects they would not have otherwise 

considered and promoted a higher degree of justification for their final solution. Additionally, early consequential 

feedback on the students’ initial hypotheses enabled them to test these hypotheses and realise that other solutions 

existed.  
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Experimenting 
  
The main affordance for mathematical reasoning in the three studies under this theme (Bakker et al., 2015; Kolovou & 

van den Heuvel-Panhuizen, 2010; van den Heuvel-Panhuizen et al., 2013) was to experiment with different values of 

game settings and explore their relationship. One example was the game Hit the Target, designed by the research team 

behind the three studies, which is an interactive simulation of an archery game consisting of a bow, a target, a pile of 

arrows, rules for distribution of points, and a scoreboard. Students can change the number of arrows and points given 

for a hit and a miss, and by experimenting with these quantities, they can realise the covariation between them and the 

score number.  

In the three studies, the research team investigated the influence of different conditions on students’ algebraic 

reasoning, such as playing at home or at school with different didactical framings. Three key points are highlighted 

here. The first is that playing an experimental game at home can be an effective extension of school learning. Students 

are reported to perform better in the online environment, via game-generated and situation-based feedback, than in a 

paper-and-pencil scenario without feedback (Kolovou et al., 2010). However, statistical analysis of results from a 

randomized longitudinal experiment showed no significant effects for students playing at home without the support of 

didactical framings around the game (Bakker et al., 2015). This implies that simply playing at home is not necessarily 

sufficient to facilitate student mathematical reasoning. Rather, students’ gameplay needs to be directed at specific 

problems or accompanied by activities that can elicit the discovery of embedded mathematical relations in the game 

(van den Heuvel-Panhuizen et al., 2013). These activities can be in the form of follow-up class discussions at school on 

student discoveries of certain relationships, systems or patterns when they play (Bakker et al., 2015), or non-routine 

tasks that require students to experiment with game settings to solve them, such as “What is the game rule to get 16 

points in total with 16 hits and 16 misses?” or “Are there other game rules to get 16 hits, 16 misses and 16 points?” (van 

den Heuvel-Panhuizen et al., 2013, p. 10).  

The second point is that digital games inviting students to experiment with quantitative values of game 

settings, and to collect data on the effect of these changes, have the potential to engage students in the exploration and 

conjecturing phases. Furthermore, the three studies indicated a progression whereby younger students primarily 

engaged in the exploration and conjecturing phases, while students in the fifth and sixth grades also engaged in the 

justification phase. Justification consisted primarily in arguing for experimental results by performing calculations.  

The third point is that an experimental game should offer students situation-based feedback on their actions, 

rather than evaluating their answers, as situation-based feedback enables students to revise and refine their solutions and 

reflect on their learning process (Kolovou & van den Heuvel-Panhuizen, 2010). Situation-based feedback was provided 

indirectly by hitting the target in the score number, which was influenced by the students’ choices of the number of 

arrows and points given for a hit and a miss. In this sense, the situation-based feedback invited the students to explore 

the influence of varying the game settings to solve the tasks involved. 

 

Designing Learning Games  
 

The main affordance for mathematical reasoning in the one study under this theme (Ke, 2014) was to design and create 

content-specific learning games. This was envisioned as engaging students in mathematical reasoning in three ways. 

The first was by providing opportunities to learn mathematics by designing a game with the aim of explaining content-

specific concepts or processes to younger students. The second was by working with mathematical concepts, such as 

variables, when programming a game. The third was by considering how mathematical concepts affected the design of 

the game (Ke, 2014). This theme is distinct from the others because its main affordances for mathematical reasoning are 

related to creating games and not playing them. The kind of reasoning addressed in the game creation addressed 

exploration, conjecturing and justification, but this was in relation to the interplay between developing a game world 

and using mathematics (e.g., numbers, x and y-coordinates, variables) to program it.  

The first finding is that it was challenging for students to design a game about mathematics, even when they 

had been exposed to a variety of such learning games. Ke (2014) described how the mathematics in the students’ games 

were predominantly depicted as integer calculations and as an extrinsic add-on to game actions. Some games included 

no mathematical learning content at all.  

The second finding is that it was challenging for students to base their programming on abstract and 

quantitative reasoning. Ke (2014) found that, rather than analysing scripts or coding gameplay actions, the students 

engaged in aesthetics programming, such as designing game sprites. Furthermore, they explored their use of variables in 

programs by re-executing their games without first exploring the relationship between such variables or engaging in 

deeper learning about them as a mathematical concept. Therefore, rather than exploring the mathematical content in the 

games and the gameplay mechanics, the students spent time and effort creating game worlds and crafting their story 



11 

 

 
 

using visual and sound effects. Only a few students reasoned abstractly as they tried to model and coordinate the 

animations and events in a game.  

 

Solving Tasks 

 

The main affordance for mathematical reasoning in the two studies under this theme (Wouters et al., 2015, 2017) was to 

solve traditional closed tasks in order to move forward in an appealing game context. The studies examined the effect of 

curiosity-triggering events (Wouters et al., 2015) and surprising events (Wouters et al., 2017) in the game Zeldenrust in 

secondary prevocational education. The game is a simulation of a summer job at a virtual hotel. It integrates a set of 

proportional reasoning problems related to different authentic situations, such as sorting a refrigerator and mixing 

drinks. The studies investigated proportional reasoning skills, defined as the activities students perform when they find 

solutions to comparison problems, missing value problems and transformation problems (Tourniaire & Pulos, 1985). 

Wouters et al. (2015) presented an example task for measuring proportional reasoning skills: “For a banana milkshake, 

you have to use 28 bananas and 48 units of ice. How many units of ice do you need if you are going to use 56 bananas 

and you want to remain the same proportion?” (p. 197). 

Both studies (Wouters et al., 2015, 2017) showed that students improved their proportional reasoning skills. 

However, no evidence was found of students transferring their reasoning to problems in different contexts, becoming 

more motivated (in fact, the opposite was observed), or developing new mathematical insights (Wouters et al., 2017). 

The authors attributed these results to the strongly repetitive nature of the game (Wouters et al., 2015), indicating that 

continuously using repetitive games, which resemble training software in the guise of a game, was not valued by the 

students—at least not at this age.  

 

Discussion 

 

The mathematical content areas in the studies were varied and included: arithmetic (Pareto, 2014; Pareto et al., 2012), 

early algebra (Kolovou & van den Heuvel-Panhuizen, 2010; van den Heuvel-Panhuizen et al., 2013), statistics (Gresalfi, 

2015), fractions (Gresalfi & Barnes, 2016), geometry (Ke, 2019; Wijers et al., 2010) and coordinates and variables (Ke, 

2014). Across these different content areas, the thematic analysis identified five distinct ways that DGBLEs afforded 

students’ mathematical reasoning. We now discuss these results. First, we synthesize the results by answering our 

research question. Second, we highlight promising game design features for mathematical reasoning. Third, we discuss 

how the studies differed in their ways of defining mathematical reasoning. Fourth, we discuss issues with the 

documentation of student mathematical reasoning. Fifth, we note obstacles to supporting students’ mathematical 

reasoning in the studies.  

 

Affordances for Mathematical Reasoning  

 

The thematic analysis answered our research question by identifying five general ways in which students’ mathematical 

reasoning is afforded in the selected studies. Now, we synthesise and discuss how, and to what extent, the DGBLEs 

afforded students’ mathematical reasoning in terms of the R&P cycle, which consists of the following three phases: 

exploration, conjecturing and justification.  
As Table 2 shows, 11 (12 including the markings in parentheses) studies engaged students in exploration, five 

(10) studies engaged students in conjecturing, and one (seven) study engaged students in justification. This means that 

the DGBLEs afforded new learning opportunities that particularly supported students’ exploration and conjecturing and, 

to a lesser extent, their justification. This seems to reflect a level of complexity in terms of what is required to engage 

students in mathematical reasoning: exploration is the least complex, and justification is the most complex. In addition, 

none of the studies engaged students in formal proving activities, which is arguably the most complex form of 

justification. This indicates that DGBLEs are particularly suited to afford exploration, conjecturing to a certain degree, 

and justification to a lesser degree.   

In terms of exploration, all studies except those under the solving task theme afforded the opportunity, to some 

extent, for students to explore mathematical relationships or relationships between mathematics and the game contexts. 

Under the theme of developing (winner) strategies, the students explored and identified the underlying patterns of the 

rules in the games. Under the theme of exploring an immersive environment, the students explored how the environment 

carried out the consequences of their choices, and under the theme of experimenting, the students explored the 

relationships between different values in game settings.  

Concerning conjecturing, the five studies (marked with an X) under the first three themes (developing (winner) 

strategies, exploring an immersive environment and experimenting) afforded students the opportunity to make 

conjectures of a mathematical character. According to these studies, it is crucial to scaffold students’ conjecturing in 
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relation to their gameplay; they provide no evidence that students’ conjecturing occurred as a result of simply playing 

these games. Houssart and Sams (2008) and Bakker et al. (2015) have stressed the importance of the teacher’s 

scaffolding of explorative talks among students and debriefing sessions for the whole class to encourage students to 

formulate their own hypotheses and talk about their discoveries of new strategies or relationships among variables or 

quantities. As an alternative, Gresalfi (2015) and Gresalfi and Barnes (2016) exploited a digital design feature in the 

form of a virtual character that, among other things, supported the students in formulating hypotheses. However, it is 

less clear whether the students’ conjectures were related to statistics or to the anticipated consequences of their choices 

in virtual environments. In Pareto (2014) and Pareto et al. (2012), a TA afforded the students with an opportunity to 

engage in conjecturing, primarily by assessing the TA’s own conjectures and questions.  

In relation to justification, Houssart and Sams’ (2008) study provided the most convincing case of students’ 

engagement in mathematical argumentation and, thus, in the entire R&P cycle. The students in this study argued 

mathematically as to why their strategies were winner strategies, supported by the teacher’s scaffolding of their mutual 

and whole class talks. While the students in Gresalfi (2015) and Gresalfi and Barnes (2016) engaged predominantly in 

consequential and not mathematical justification, in Bakker et al. (2015), Kolovou and van den Heuvel-Panhuizen 

(2010) and van den Heuvel-Panhuizen et al. (2013), they justified their experimental data primarily by performing 

calculations.  

Our analysis suggests that the main affordance developing (winner) strategies seems highly promising for 

students to learn to reason mathematically when the reasoning process is thoroughly framed didactically. One reason for 

this is that the object of student reasoning is closely tied to the rules of the game, and students must explore and identify 

underlying mathematical patterns to develop strategies to win the games. This affordance for exploration gives teachers 

opportunities to engage students in all three R&P phases, and this engagement is supported by letting students play the 

game and by prompting their reflections on how the game is played. Notably, the games Lines (Houssart & Sams, 2008) 

and Frog Leap (Lee & Chen, 2009) are not advanced in terms of graphics, narrative or other features normally 

associated with commercial digital games. Instead, their design is focused on making the mathematical structures of the 

games visible and encouraging experimentation with them. This is done through in-game features such as the possibility 

to rewind and fast-forward the game (Houssart & Sams, 2008) and the ability to edit relevant game settings, such as the 

number of frogs in Frog Leap (Lee & Chen, 2009). Such design features afford student experimentation and are a 

starting point for dialogue about the influence of different settings on students’ gameplay.  

In summary, the most promising DGBLEs for mathematical reasoning combine a game that supports students’ 

exploration of mathematical relations, or highly specific game design features that target elements of the R&P cycle, 

and a dialogical framework that supports students’ conjecturing and justification. This could take the form of students’ 

gameplay in school or at home followed by classroom discussions (van den Heuvel-Panhuizen et al., 2013), or 

exploratory talk (Mercer, 1995) to structure dialogue around gameplay (Houssart & Sams, 2008), or asking students to 

compare and discuss different results from a game with other students who have reached different results (Gresalfi & 

Barnes, 2016). The positive findings from these studies highlight that a DGBLE aimed at using digital games to 

promote mathematical reasoning must consider the use of the game in relation to the classroom environment. In 

particular, classroom interactions between students, as well as between students and teachers, are vital for affording 

mathematical reasoning. In this regard, the integration of digital games in education mimics results from general studies 

on ICT that show that technology and pedagogy must be well integrated to be useful (e.g. Genlott & Grönlund, 2016), 

as well as outcomes suggesting that the teacher’s role can both support students’ gameplay and, at the same time, be in 

conflict with the game-based approach to learning (Vangsnes & Økland, 2015).  

 

Game Design Affordances 
 

In the analysis, we have identified how the DGBLEs afford mathematical reasoning. Three design features of the digital 

games afforded this in particularly positive ways: situation-based feedback, influencing game settings, and NPCs.  

First, situation-based feedback can lead to increased student verification in the justification phase (Kolovou & 

van den Heuvel-Panhuizen, 2010). The timing of feedback is essential: feedback provided after students deliver their 

solution does not lead them to revise their reasoning or consider alternative solutions. On the other hand, feedback 

provided early in the students’ problem-solving process can create awareness of multiple solutions and increase student 

justification of their own solutions (Gresalfi & Barnes, 2016). Second, allowing students to experiment with changing 

game settings (Lee & Chen, 2009) can support them in engaging in both the exploration and conjecturing phases 

(Kolovou & van den Heuvel-Panhuizen, 2010). This second design feature makes the underlying structures of the game 

available for interaction, thereby affording student exploration and dialogue about patterns in the game, such as 

showing a second mathematical representation of the gameplay, displaying the coordinates for each move along with 

sequences of previous moves, and making it possible to rewind gameplay (Houssart & Sams, 2008). Third, NPCs are a 

new feature of digital games that were implemented differently across the studies. The TA interacted with students’ 
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gameplay, learning from the students’ input, which led students to judge the TA’s conjectures and justifications (Pareto, 

2014; Pareto et al., 2012). Another NPC was the expert computer player that acted both as an inspiration for playing 

smartly and as an opponent that encouraged students to outsmart their opponent (Houssart & Sams, 2008). In addition, 

the second mayor in Ander City was an NPC, introduced as a part of the game narrative, to support students to see that 

problems could have more than one legitimate solution, which increased their justifications of their own solutions 

(Gresalfi, 2015). These three design features highlight the potential for the digital component of games to create other 

forms of interactions (compared to analogue games) that afford mathematical reasoning.  

 

Approaches to Mathematical Reasoning 

 

The reviewed studies defined mathematical reasoning in a variety of ways, which complicates comparison between 

them. At one end, Wouters et al. (2015, 2017) investigated proportional reasoning skills, without explicitly defining 

them, and with tasks that primarily seemed to support students in practicing skills and memorising facts. The two 

studies do not refer to exploration, conjecturing or justification, and their approach has little in common with the R&P 

cycle. At the other end, Ke (2014) defined mathematical reasoning as modelling, focusing on the relationships between 

developing, testing and debugging a program and the mathematics involved. Ke (2014) also used abstract reasoning, 

content-specific reasoning, case-based reasoning, fundamental reasoning skill, everyday reasoning, quantitative 

reasoning, inductive and deductive reasoning, analytical reasoning, math reasoning or simply reasoning, which makes 

it difficult to navigate the different concepts in the study. Between these two ends, other studies have used, for instance, 

procedural, conceptual, consequential and critical engagement in mathematics to analyse students’ activities (Gresalfi, 

2015; Gresalfi & Barnes, 2016). While the last two of these considered mathematical reasoning to some extent, as 

consequential engagement involves exploring and predicting the impact of one’s solutions in a game context and 

linking different solutions with different consequences, critical engagement captures the decision-making involved in 

problem-solving, such as actively choosing tools and mathematically justifying one’s choices.  

Some authors distinguished between mathematical and other forms of reasoning; for example, Ke (2019) refers 

to crude reasoning and Pareto (2014) refers to casual reasoning. To add to the complexity, reasoning was also used to 

refer to logical thinking with implicit understandings of what this meant in the specific context, for example, reasoning 

about area (Wijers et al., 2010) or deep-level reasoning (Pareto, 2014). This complexity is underscored by what Yackel 

and Hanna (2003) describe as the sometimes present implicit assumption that there is a universal agreement on what 

reasoning means, which Jeannotte and Kieran (2017) later clarified was not the case. These diversities in the studies’ 

approaches to reasoning make comparison between them difficult.  

One explanation for the diversity may be the skewed distribution of research fields in the studies. In our initial 

coding, we found that only four of the 23 authors in the studies were affiliated with mathematics education, while eight 

were from departments of general education, teaching and learning, and a further eight from departments of educational 

technology, computer education, computing sciences and instructional technology. Of the 14 studies, eight were both 

published in journals outside of mathematics education and by authors outside this field. Only two studies were 

published in a mathematics education journal and had at least one author working in a mathematics education 

department. The former combination of both journals and authors from outside the field of mathematics education could 

prove problematic for a research field dedicated to understanding students’ learning of mathematics; such studies risk 

presenting results that are difficult to reconcile with those from the mathematics education community, especially if 

they do not take research from this field into account. We do not intend to suggest that this highly interdisciplinary field 

should only be restricted to mathematics education researchers. However, we do highlight the apparent lack of 

mathematics education researchers interested in this field, and that quality and relevance could be improved by 

promotion of the mathematics educational perspective in future studies. Ultimately, it would appear that special care 

needs to be given to understanding the domain of mathematics education, especially when broaching concepts such as 

mathematical reasoning, where even the current state of research within mathematics education is based on approaches 

so varied that comparison between them is difficult (Jeannotte & Kieran, 2017; A. J. Stylianides, 2016). In this review, 

we sought to mitigate this by being explicit about our own approach to mathematical reasoning.  

In our reading of the selected studies, we found that three aspects helped us understand how mathematical 

reasoning was conceptualised. We therefore encourage future research on the relationships between digital games and 

students’ mathematical reasoning to make these three aspects more explicit. The first is to define mathematical 

reasoning in terms that enable comparisons with existing research from mathematical education. The second is to 

distinguish between mathematical reasoning and reasoning in relation to games or contexts, such as consequential 

justification (Gresalfi & Barnes, 2016), as reasoning in and around the games does not need to be mathematical in 

nature. The third is to differentiate between mathematical reasoning and other forms of mathematical thinking, such as 
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being procedurally engaged (Gresalfi, 2015) or solving tasks, to clarify that students can engage with the mathematics 

of a DGBLE without being engaged in mathematical reasoning. 

 

Documenting Mathematical Reasoning 

 

The documentation of students’ mathematical reasoning and gameplay is a difficult task. The digital setting offers new 

possibilities for documentation, like logging students’ gameplay (Kolovou et al., 2010), but without necessarily making 

documentation of mathematical reasoning easier. Across the selected studies, the task of documenting was approached 

differently. In total, 10 studies (Bakker et al., 2015; Gresalfi & Barnes, 2016; Ke, 2019; Kolovou & van den Heuvel-

Panhuizen, 2010; Lee & Chen, 2009; Pareto, 2014; Pareto et al., 2012; van den Heuvel-Panhuizen et al., 2013; Wouters 

et al., 2015, 2017) included some form of post-test of mathematical learning. Additionally, some studies also identified 

mathematical reasoning by analysing transcriptions of students’ dialogues and interactions with the DGBLEs (e.g. 

Gresalfi & Barnes, 2016; Houssart & Sams, 2008; Ke, 2014, 2019), or by coding students’ written work in terms of 

mathematical and consequential justification (Gresalfi, 2015; Gresalfi & Barnes, 2016) or student strategies (Kolovou & 

van den Heuvel-Panhuizen, 2010). As a new means of documentation offered by the digital setup, Pareto (2014) and 

Pareto et al. (2012) used the level of the TA as a proxy to indicate students’ learning. However, being a proxy leads to 

uncertainty regarding what it means in relation to students’ mathematical reasoning.  

Regardless of the approach used, one issue in documenting student mathematical reasoning is that students can 

produce answers without using mathematical reasoning. For example, if students are asked to answer comparison and 

missing-value problems in the proportional reasoning domain, but not to explain how they arrived at their answer, it 

“can lead to greatly overestimating a student’s ability, since a correct answer can be generated from non-proportional 

reasoning” (Tourniaire & Pulos, 1985, p. 183). This suggests that post-tests determined to assess learning gains in terms 

of mathematical reasoning must enable students to explain their reasoning and not only measure correct answers. 

Moreover, the relationship between mathematical reasoning and the development of what Houssart and Sams 

(2008) call a reasoned and winning approach in gameplay was not always documented in the studies. There were clear 

intended affordances in the games that students would discover and explore properties and relations (Pareto et al., 

2012), predict, reason about numbers (Pareto, 2014), discover relations between quantities (van den Heuvel-Panhuizen 

et al., 2013), investigate and interpret (Ke, 2019), and explore and consider statistical tools (Gresalfi, 2015). However, it 

was often difficult to judge whether and how these affordances were exploited by the students, as crucial elements of 

these processes were not explicitly documented in the respective studies. Using the R&P cycle, we were able, in some 

cases, to conceive of the students’ game choices as hypotheses or conjectures that they were forming in relation to 

current and future game stages. Nevertheless, the developments of these conjectures were often implicit. For instance, it 

is unclear how students received feedback on their answers to the TA, or whether this feedback appeared only indirectly 

as consequences of their card choices in the game in Pareto (2014) and Pareto et al. (2012). This means that it is unclear 

how students can explain, validate or refute their hypotheses (answers) and be supported in developing strategies for 

playing well. As a result, a key issue for further research would be to make students’ conjectures more explicit and to 

document more precisely when and how students engage in reasoning processes, for instance, by using the R&P cycle.  

One challenge in making students’ mathematical reasoning explicit in games is that if students play against 

each other, cultural and social norms can encourage them to keep their strategies secret from other players rather than 

sharing them. One way to address this, which is afforded by digital games, is to position the students to compete with 

the computer-player or environment rather than each other.   

Another consideration is that the DGBLEs affect the students’ way of doing mathematics in unpredictable 

ways that can be difficult to document. Kolovou and van den Heuvel-Panhuizen (2010) suggest, for instance, that the 

game-generated feedback from the archery game led some students to verify answers in the post-test and create student-

generated feedback. This leads to a question over whether the lack of mathematical reasoning outcomes is due to the 

DGBLEs not affording it or simply insufficient documentation. As stated above, assessment of mathematical reasoning 

needs to include ways for students to explain their thinking to convincingly document their reasoning.  

The challenge, therefore, is to design a DGBLE that affords explicit exploration, conjecturing and justification, 

while at the same time allowing for documentation of their occurrences.  

 

Obstacles for Affording Mathematical Reasoning 

 

Engaging students in mathematical reasoning is a challenging task (Nardi & Knuth, 2017; A. J. Stylianides, 2016; G. J. 

Stylianides & Stylianides, 2017). The use of digital games in mathematics education presents us with some specific 
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obstacles. One idea is that digital games create engaging learning experiences (Kolovou & van den Heuvel-Panhuizen, 

2010) and can therefore be used to teach students specific content. However, to effectively afford this, certain structures 

need to be present in the learning experience (Bakker et al., 2015). Other elements are best avoided when using games 

for learning mathematical reasoning, such as the continuous use of repetitive games, which does not seem to lead to 

new mathematical insight (Wouters et al., 2015, 2017). Indeed, this can create tensions in the gaming encounter 

(Goffman, 1961), because it affects the kinds of sense that can be made by the participants. If such structures are not 

sensitive to the nature of participation in the game, they risk ruining the fun that can be created in the gaming encounter. 

In the reviewed studies, we interpret this issue to be seen in how the studies’ designed affordances for playing 

and reasoning mathematically were sometimes different from how students played and reasoned about the games in 

reality. Such discrepancies were variously described in the studies. Bakker et al. (2015) reported, for instance, that more 

gameplay did not automatically lead to more learning, while Pareto (2014) emphasised that it was important that 

students try to play well, defined as “making good choices […] which in turn involves predicting and performing mental 

calculations as well as reasoning about numbers and computations” (p. 255); she also showed that the students could 

play a lot without trying to play well and that they did not learn more simply by playing more. On the other hand, van 

den Heuvel-Panhuizen et al. (2013) identified three student strategies when playing: free playing, looking for answers 

(i.e., to the associated tasks) and exploring relationships. Students who explored relationships scored significantly 

higher in a post-test than those who played freely, while students who looked for answers scored marginally 

significantly higher than free-playing students. Hence, it is not only playing the game that leads to learning but 

particular ways of playing. Ke (2019) found that some students only explored and applied the targeted mathematical 

content when they valued mathematical reasoning as an efficient strategy. Otherwise, they circumvented mathematical 

content interaction and tried to outwit the environment through trial-and-error, estimation, guessing and crude 

reasoning; as such, they sometimes bypassed the mathematical task—actions that Ke describes as content-irrelevant 

gaming strategies and careless gameplay (p. 16). 

These discrepancies can possibly be attributed to poor design of games or poor application of the games by 

teachers. We suggest that it also points to a lack of understanding of how students make sense of DGBLEs in the 

classroom. Terms such as careless gameplay (Ke, 2019) indicate a specific perspective that may not encompass how 

students’ knowledge of how to play games from their leisure time influences what is afforded to them. An example is 

the opportunity to apply trial-and-error strategies that are sometimes highlighted as one potential for using GBL, and 

certainly as a valid form of interaction, in digital gameplay outside of school. However, we found that trial-and-error 

strategies needed to be applied to the learning content to be helpful in student learning (Ke, 2019; van den Heuvel-

Panhuizen et al., 2013). This indicates that, even though trial-and-error strategies are part of how the students approach 

the games, they are not efficient for learning in the long run, especially when applied to content other than the intended.  

The results here show that games and DGBLEs afford many different actions that do not only involve learning 

content. The perceived affordance to play well from a mathematical educational perspective is not necessarily the same 

affordance to play well from the student’s perspective. This calls for further investigation of what such games afford for 

the students and not only if they afford the expected mathematical interactions. In short, what does it mean to play a 

game well from the student perspective, and how does this relate to the designed games and teacher/researcher 

intentions? 

Our analysis shows less engagement of students in the justification process in particular. Here, we suggest two 

possible reasons for this. The first is that the consequences of the player’s actions in a digital game are often directly 

reflected in the game. This is in line with findings on the use of dynamic geometry systems, where it has been reported 

that compelling dynamic visualisations often provide sufficient empirical evidence to students, meaning they no longer 

feel the need for further justification (Sinclair & Robutti, 2013). Comparable to this, our results indicate that 

justification can become irrelevant when students play digital games because the way in which the narrative or context 

changes or how the empirical exploration occurs can be experienced as sufficient justification, making it unnecessary, 

from the students’ perspective, to engage in further argumentation to validate or refute conjectures. In games with a 

winner, a student’s logic may be: “If I won the game, there is no need to justify that what I did was correct because my 

winning proves it to be correct”. It can be argued that the justification the students forward in such a situation is the 

actual enacting of game strategies during gameplay, and if the strategies work in the game, then there is no need for the 

students to justify them. Game moves that are self-explanatory in this fashion do not afford explicit justification, as the 

effect they have on the game state can be considered self-justifying. 

The other reason relates to the social perspectives regarding justification (G. J. Stylianides et al., 2017), 

whereby both the need for and the process of justification involve considerable social meaning-making. This means that 

students (in part) justify based on how they interpret the social situation (Yackel & Cobb, 1996). In our review, this 

social aspect of justification was underlined by the fact that Houssart and Sams (2008)—the study that most explicitly 

engaged students in the entire R&P cycle—was also the study with the most explicit focus on students’ explorative 

dialogue and social interactions. Furthermore, the game design features that target justification do so by imitating forms 

of social interaction, such as the TA (Pareto, 2014; Pareto et al., 2012), which mimics a master–apprentice relationship, 
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or the competing mayors in the Gresalfi (2015) study. In this respect, future DGBLE designers must consider that 

justification will most likely happen if students can also participate in justifications as part of social interactions or 

interactions that imitate these social aspects. 

 

Conclusion 

 

This review of mathematical reasoning and digital games in the interdisciplinary field of mathematics education and 

game-based learning shows a large diversity among the 14 included studies in terms of the DGBLE affordances for 

mathematical reasoning offered to students. From the analysis, we draw six conclusions in relation to our research 

question. 

First, the thematic analysis answers our research question by identifying five main affordances for 

mathematical reasoning: (1) developing (winner) strategies and figuring out how to play better than one’s opponents; 

(2) exploring an immersive environment by solving problems and understanding the consequences in the world, 

scenario or narrative; (3) experimenting with different values of game settings and exploring their relationship; (4) 

designing learning games and creating content-specific learning games; and (5) solving tasks in an appealing game 

context. This shows that there are different ways to use digital games to support mathematical reasoning. However, 

developing (winner) strategies proved to be especially fruitful in affording all three phases of the R&P cycle, perhaps 

because the studies under this theme most successfully combined designed game features with a dialogical pedagogical 

frame. Themes 2, 3 and 4 each carry specific potentials that could be developed further. We identified the fifth theme—

solving tasks—as the least fruitful, in part because the studies here were aimed more at training in procedures than 

engagement in mathematical activity.    

Second, we found no evidence in the studies that students learn to reason mathematically as a natural by-

product of simply playing digital games, for instance, at home. The complex processes of mathematical reasoning are 

different from what is normally required to play a digital game well, which suggests that it requires a specific game 

design to afford mathematical reasoning as well as a specific research design to document it. The analyses suggest that 

digital games are better suited to afford experimentation and (to some extent) conjecturing, while justification was 

afforded more through dialogues about the game and gameplay. Nonetheless, we identified highly promising design 

features that should be developed and investigated further, such as NPCs like the TA character, situation-based 

feedback and features enabling interaction with the underlying patterns of the games. The analysis shows that 

mathematical reasoning can be achieved through the scaffolding of both students’ interactions with certain aspects of 

specific games and their reflections on these interactions. 

Third, students’ digital gameplay can support learning to reason mathematically if accompanied by tasks that 

can elicit their discovery of embedded mathematical relations in the game or, more effectively, through follow-up 

discussions in class on students’ discoveries of mathematical relationships between different game settings. Generally, 

reasoning is not especially present when students play the games in these studies, but it is present in their reflections on 

the gameplay. Moreover, interaction with specialised designed features, such as the possibility to rewind a game or 

experiment with game settings, affords reason. One issue, however, is that students’ conjectures in gameplay are mostly 

hidden, and it must be afforded for the students to make them explicit. Design features necessary to do so include, for 

example, the TA or the competing mayors.   

Fourth, our review shows that digital games and mathematical reasoning represent a small research niche, 

primarily conducted in the fields of educational technology and general education. This indicates that the field has yet to 

capture the interest of the broader mathematics education research field. To advance the field, more research is needed 

into whether and how DGBLEs can be designed to afford mathematical reasoning more explicitly, and how their 

affordances can be didactically framed to enhance students’ engagement in the conjecturing and justification phases of 

the R&P cycle in particular. One key issue here is that, without solid documentation of the students’ reasoning process, 

it is difficult to judge whether and under which conditions mathematical reasoning occurs. Researchers in the field 

should take special care to define their use of mathematical reasoning and aim to explicitly document when and how 

such reasoning is evident.  

Fifth, in the reviewed studies, the envisioned ways in which the students engaged in mathematical reasoning 

when playing well were seen primarily from a mathematical perspective, without considering how students would 

perceive playing well when using their everyday experience with games as a reference point. Even though exploration 

was afforded by many of the DGBLEs, this did not necessarily involve exploring the mathematical features of the 

game; certain students would merely experiment with the game as a whole and engage in different interactions with the 

game, some of which did not lead to learning. To us, this indicates that students can perceive playing well differently 

than the designers and researchers originally intended. Investigating what is afforded to the students when playing 

games in mathematics education seems crucial to understanding this further. Failing to do so risks excluding students 
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for one of the primary reasons for introducing games in education in the first place, namely that they are fun for 

students.  

Sixth, our review shows promising design features of digital games in DGBLEs in affording students’ learning 

of mathematical reasoning, such as offering a place for exploration or a virtual world in which to immerse themselves 

and imitate social interactions. However, when using digital games to enhance mathematical reasoning, one must 

acknowledge that mathematical reasoning also has a social component and that the teacher’s role remains pivotal. How 

DGBLEs afford students’ learning of mathematical reasoning is closely linked to both the design of the games and how 

they are played and reflected on in class. Designers of a game meant for the learning of mathematical reasoning should 

therefore consider which part of the R&P cycle is afforded by interactions with the game, with the teacher, and with 

other students. At this point, the most promising way to afford justification appears to be through dialogue about the 

games in student groups, with teachers or in classroom discussions. 
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