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1  |  INTRODUC TION

Data collected from 1993 through 2006 in the United States 
showed injuries to the UN to be the most frequent upper extrem-
ity peripheral nerve injuries, with an average hospital charge, in 
2006, of $25,311 and 40.4% of the cases requiring acute repair 
(Lad et al., 2010). They can result both in sensory and motor deficits 

in the hand (Woo et al., 2015) and, consequently, reduced quality 
of life and high impact on society (e.g., loss of production due to 
a	 lengthy	 sick	 leave	 of	 on	 average	 160 days)	 in	 a	 relatively	 young	
population	(average	of	39.9 years	old)	(Bergmeister	et	al.,	2020). The 
UN is, therefore, a key target for developing nerve repair techniques 
(Brown	&	Mackinnon,	2008;	Galtrey	&	Fawcett,	2007). In addition to 
nerve repair, the UN is commonly used to develop peripheral nerve 
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Abstract
The knowledge of the morphology and morphometry of peripheral nerves is essential 
for developing neural interfaces and understanding nerve regeneration in basic and 
applied research. Currently, the most adopted animal model is the rat, even though 
recent studies have suggested that the neuroanatomy of large animal models is more 
comparable to humans. The present knowledge of the morphological structure of 
large animal models is limited; therefore, the present study aims to describe the mor-
phological characteristics of the Ulnar Nerve (UN) in pigs. UN cross- sections were 
taken from seven Danish landrace pigs at three distinct locations: distal UN, proximal 
UN	and	at	the	dorsal	cutaneous	branch	of	the	UN	(DCBUN).	The	nerve	diameter,	fas-
cicle	diameter	and	number,	number	of	fibres	and	fibre	size	were	quantified.	The	UN	
diameter was larger in the proximal section compared to the distal segment and the 
DCBUN.	The	proximal	branch	also	had	a	more	significant	number	of	fascicles	(median:	
15)	than	the	distal	(median:	10)	and	the	DCBUN	(median:	11)	segments.	Additionally,	
the	mean	 fascicle	diameter	was	 smaller	 at	 the	DCBUN	 (mean:	165 μm) than at the 
distal	 (mean:	 197 μm)	 and	 proximal	 (mean:	 199 μm) segments of the UN. Detailed 
knowledge of the microscopical structure of the UN in pigs is critical for further stud-
ies investigating neural interface designs and computational models of the peripheral 
nervous system.
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interfaces to restore sensorimotor functions after limb amputation 
(Micera	et	al.,	2011; Raspopovic et al., 2014) and probe the neural cir-
cuitry (Janjua et al., 2021). Thus, in preclinical phases, investigating 
the UN in animal models is essential to understand and appreciate 
the mechanisms that lead to nerve repair and neural prosthetics to 
improve patient outcomes. Nevertheless, the most widely adopted 
animal to study peripheral nerve regeneration and peripheral nerve 
interfaces	today	is	the	rat	(Larson	&	Meng,	2020; Vela et al., 2020), 
even though recent studies have shown that porcine models may 
be	 a	 more	 appropriate	 model	 because	 of	 their	 comparable	 size,	
fibre number and fascicular pattern (Stakenborg et al., 2020; Zilic 
et al., 2015). The advantages of a better translational animal model 
have direct implications for facilitating the transition from research 
to the clinic.

In humans, the Ulnar Nerve (UN) contains both motor and sen-
sory axons that originate from the ventral rami of the C8 and T1 
nerve roots, passing from the axilla into the medial aspect of the 
anterior compartment of the upper arm, passing behind the me-
dial epicondyle at the elbow, descending to the forearm (Polatsch 
et al., 2007). In the forearm, the UN supplies motor branches to 
the flexor carpi ulnaris muscle and the flexor digitorum profundus 
muscle (Tubbs et al., 2006).	 At	 approximately	 the	 distal	 third	 of	
the	forearm,	the	UN	gives	off	the	Dorsal	Cutaneous	Branch	of	the	
Ulnar	Nerve	(DCBUN)	from	the	main	trunk	(Goto	et	al.,	2010). The 
DCBUN	innervates	the	dorsal	skin	of	the	fifth	and	the	medial	half	of	
the fourth digits and the ulnar side of the carpus and hand; the main 
trunk continues to enter the hand, providing innervation to most of 
the hand intrinsic muscles, including the thumb adductor muscles 
and the palmaris brevis muscle (Woo et al., 2015).

The interest in swine as translational animal models for bio-
medical research has significantly increased in recent years 
(Swindle et al., 2012) in several fields such as nutrition (Roura 
et al., 2016),	pain	(Meijs	et	al.,	2021), neurodegenerative diseases 
(Hoffe	&	Holahan,	2019) and brain imaging (Sauleau et al., 2009). 
The reason is that swine's comparative anatomy and physiology 
is more similar to humans than rodents (Douglas, 1972). Studies 
have shown that the anatomical, biochemical and cellular compo-
sition of the peripheral nerves in swine is more similar in struc-
ture to humans than in rats (Pelot et al., 2020; Zilic et al., 2015), 
and a recent study by Hanna et al. (2021) showed how the nerves 
in the brachial plexus of the Wisconsin miniature swine have a 
similar	structure	and	size	to	humans	(Hanna	et	al.,	2021). Studies 
comparing the cervical and abdominal vagus nerve composition 
between humans, mice and pigs have also demonstrated a higher 
degree of similarity between the pigs and humans in terms of 
diameter, connective tissue, fibre number and fascicle diameter 
(Pelot et al., 2020; Stakenborg et al., 2020). The characteristics of 
peripheral nerves in swine have also been investigated regarding 
surgical approach, accessibility and histological characteristics. In 
particular, it has been shown that the UN at the forearm level may 
be a desirable target for regeneration studies due to the superfi-
ciality of the nerve, that does not require the dissection of deeper 
structures	(Scholz	et	al.,	2010).

The morphology and morphometry of the ulnar nerve have 
been	extensively	described	in	humans	(Brill	&	Tyler,	2017; Oliveira 
et al., 2011; Schenck et al., 2015)	and	rodents	(Barton	et	al.,	2016; 
Bertelli	 et	 al.,	1995; Santos et al., 2007). Nevertheless, there is a 
lack of knowledge of large animal models such as pigs. The internal 
morphology	 of	 nerves	 is	 crucial	 for	 optimizing	 the	 design	 of	 neu-
ral interfaces since the morphological structure of the nerve (e.g., 
fibre diameter, fascicle diameter and spatial arrangement of fasci-
cles) significantly influence electrical activation thresholds (Grinberg 
et al., 2008). Similarly, information on nerve morphology directly 
affects the approach required for nerve repair (e.g., fascicular re-
pair may be more appropriate for mono-  or oligofascicular patterns, 
whereas group fascicular or epineural repair are more suitable for 
polyfascicular	nerves)	(Matsuyama	et	al.,	2000). The morphology of 
the	ulnar	nerve	in	pigs	has	been	described	by	Kundu	et	al.	(2012), but 
only	for	proximal	regions	of	the	forelimb	(Kundu	et	al.,	2012). Con-
sequently, the present study aimed to investigate the morphology 
and morphometry of the ulnar nerve in the distal forelimb of pigs 
(i.e.,	the	DCBUN	and	the	main	trunk	of	the	ulnar	nerve	at	two	distal	
segments (before and after branching)).

2  |  METHODS

2.1  |  Nerve dissection

All	 animal	 procedures	 were	 performed	 in	 accordance	 with	 the	
Danish	 Veterinary	 and	 Food	 Administration	 under	 the	 Ministry	
of	Food,	Agriculture	and	Fisheries	of	Denmark	 (protocol	number	
2017- 15- 0201- 01317). Seven female Danish Landrace pigs, with 
a	mean	weight	of	34.1 kg	(range:	29.0–	39.0 kg),	were	used	for	this	
study. The animals were anesthetised using sevoflurane (1.5 to 
2.5%	minimum	alveolar	concentration),	propofol	 (2 mg/h/kg)	and	
fentanyl (10/μg/h/kg) and then euthanised with an overdose of 
pentobarbital.

The animals were placed in a supine position, an incision of ap-
proximately	20 cm	was	made	on	the	posterior	right	forelimb,	and	the	
ulnar nerve was carefully exposed and freed from the surrounding 
tissue.	Three	nerve	 segments	of	2 mm	each	were	 selected	 for	 the	
analysis	of	the	morphology	and	morphometry:	(1)	At	the	main	trunk	
of	 the	ulnar	nerve,	approximately	4 cm	above	the	branching	point,	
(2)	at	the	main	trunk,	approximately	3 cm	after	the	branching	of	the	
main	trunk	giving	off	the	DCBUN,	and	(3)	at	the	DCBUN	at	2 cm	after	
the branching point. Figure 1 illustrates the location of the nerve 
segments used for the analysis.

2.2  |  Histological procedures and analysis

The nerve specimens were cut and fixed by immersion in a 4% 
formaldehyde	solution	for	at	least	24 h.	After	fixation,	the	specimens	
were embedded in paraffin and stained with haematoxylin and eosin 
(H&E).	Histologic	slices	of	2.5 μm	were	digitized	using	a	NanoZoomer	
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S360 digital slide scanner (Hamamatsu Photonics) under 40× 
magnification.

First,	the	fascicles	were	visually	identified	and	counted.	To	obtain	
the area and diameter values, the external boundary of the epineurium 
was used to measure the sectional area of the entire nerve, and the 
perineurium was used as a landmark to obtain the area of the fascicles. 
Then, the cross- sectional areas were converted into effective diame-
ters	assuming	a	circular	cross-	section.	For	comparison	with	previous	
reports, when the area was provided, it also converted it to effective 
diameter. These features were measured with the freehand selection 
tool	from	FIJI	software	(Schindelin	et	al.,	2012).	Additionally,	the	fas-
cicles	were	visually	identified	and	counted.	As	tissue	samples	undergo	
shrinkage when fixed in formalin, a correction factor was applied to the 

nerve area and fascicle diameters. The correction factor of 1.25 was 
selected since it has been shown to adjust for shrinkage by comparing 
frozen	and	formalin-	embedded	samples	(Kundu	et	al.,	2012).

Fibre	 count	 and	 diameter	 were	 determined	 according	 to	 the	
method described by Engelmann et al. (Engelmann et al., 2020), a semi- 
automatic	axon	quantification	software	carried	out	using	the	FIJI	plat-
form (Schindelin et al., 2012) with a sensitivity of 94% and a specificity 
of	87%.	Briefly,	the	images	were	pre-	processed	by	first	increasing	the	
contrast, and subsequently converted into binary images using a uni-
form	threshold	adjustment.	At	this	point,	axons	were	enclosed	in	white	
ellipses with black edges. Then, axons were automatically counted 
using	the	analyse	particle	tool	with	circularity = 0.10–	1.00.	A	low	cut-	
off	value	for	the	inclusion	of	axons	was	4.0 μm, since we observed that 

F I G U R E  1 Photograph	and	illustration	of	the	ulnar	nerve	and	the	dorsal	cutaneous	branch	of	the	ulnar	nerve	(DCBUN)	in	the	forelimb	
of	a	pig.	On	the	left	image,	it	is	shown	the	proximal	UN	nerve	and	the	split	between	the	UN	and	the	DCBUN.	On	the	right,	the	orange	dots	
highlight the location of the nerve segments used for the morphometrical analysis and the distance between the segments extracted for 
following analysis.

F I G U R E  2 (a)	Representative	image	
of the proximal branch of the ulnar 
nerve with 14 fascicles, (b) image of the 
distal branch of the ulnar nerve with 
nine	fascicles	and	(c)	the	DCBUN	with	
six	fascicles.	Haematoxylin–	eosin	(H&E)	
stained.	Scale	bar = 500 μm. The insert 
shows one fascicle in higher magnification, 
where it is possible to identify the 
perineurium and the myelinated fibres in 
the endoneurium (the white rings being 
the ghost image of the myelin sheath). 
Scale	bar = 180 μm.
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4 of 10  |     ANDREIS et al.

this	 parameter	was	 optimal	 to	minimize	 false	 positives	 detection.	A	
representative image of the swine's UN is illustrated in Figure 2.

2.3  |  Statistical analysis

A	linear	mixed	model	was	used	to	compare	the	measurements	be-
tween the branches using the branches as a within- subject factor 
(Location:	DCBUN,	proximal	main	trunk,	distal	main	trunk),	while	the	
animal was treated as a random effect. The normality assumption 
was verified through residual analysis (histograms and Q- Q plots). If 
not	stated	otherwise,	 results	are	shown	as	mean ± standard	devia-
tion. The adopted significance level was 0.05, and statistical analysis 
was performed in R software package (R Core Team, 2020).

3  |  RESULTS

In seven Danish landrace pigs, the morphology of the ulnar nerve at 
the	proximal	and	distal	segments	in	the	forelimb	and	the	DCBUN	in	
the	forearm	were	quantified.	The	DCBUN	from	animal	three	was	ex-
cluded from the analysis because the sample was not collected. The 
results of the nerve diameter, fascicle number and diameter for the 
three	ulnar	nerve	 segments	 (DCBUN,	distal	UN	and	proximal	UN)	
are provided in Figure 3 and Table 2.

3.1  |  Comparison of nerve diameter

The nerve branches' diameter was significantly different between 
the UN segments (p < 0.05);	the	diameter	of	the	main	trunk	before	
giving	off	the	DCBUN	branch	(1713 ± 153 μm) was significantly larger 
than	 the	main	 trunk	 after	 the	 branching	 (1392 ± 207 μm, p < 0.05)	
and	the	DCBUN	(1074 ± 66 μm, p < 0.05);	there	was	also	a	difference	
between the diameter of the main trunk after the branching and the 
DCBUN	(p < 0.05)	(Figure 3a). Interestingly, Figure 3a also illustrates 
a consistent pattern for all animals and nerve segments: the diam-
eter of the nerve in the proximal UN was always larger compared to 
the distal UN. Likewise, despite the lack of statistical significance, 
the	diameter	of	the	distal	UN	was	always	larger	than	the	DCBUN.

3.2  |  Comparison of fascicle number and 
fascicle diameter

The	 three	 ulnar	 nerve	 segments	 (DCBUN,	Distal	 UN	 and	 Proxi-
mal UN) also had a significantly different number of fascicles 
(p < 0.05)	 (Figure 3b). The proximal main trunk contained a me-
dian	 value	 of	 15	 fascicles	 (range:	 14–	16),	 that	 was	 significantly	
higher	 than	 the	DCBUN	 (median:	 11,	 range:	 6–	13,	 p < 0.05)	 and	
the	distal	main	trunk	(median:	10,	range:	8–	13,	p < 0.05).	However,	
there was no difference in the fascicle number for the distal UN 
and	the	DCBUN	(p = 0.97).	Lastly,	the	fascicle	diameters	differed	

across the branches (p < 0.05).	The	mean	fascicle	diameter	of	the	
proximal	main	 branch	 (199 ± 57 μm) was significantly larger than 
the	mean	fascicle	diameter	of	the	DCBUN	(165 ± 67 μm, p < 0.05).	
The	mean	fascicle	diameter	of	the	distal	branch	(197 ± 57 μm) was 
also	 larger	 than	the	DCBUN	(p < 0.05).	Conversely,	 there	was	no	
difference in the fascicle diameters between distal and proximal 
main trunks (p = 0.96)	(Figure 3c).

3.3  |  Comparison of fibre count

There was a significant difference in fibre number across the 
three segments of the ulnar nerve (p < 0.05).	The	proximal	branch	
of	 the	UN	 contained,	 on	 average,	 4040 ± 572	 fibres,	 considerably	
more	 than	 the	 distal	 UN	 (1876 ± 384,	 p < 0.05)	 and	 the	 DCBUN	
(1174 ± 253,	p < 0.05).	The	DCBUN	and	the	distal	UN	also	showed	a	
different number of myelinated fibres (p < 0.05).	Table 1 provides a 
summary of the parameters extracted from each animal.

4  |  DISCUSSION

The morphological characteristics of porcine nerves have been most 
thoroughly investigated for the vagus nerve. The results have been 
shown to approximate the human models in terms of nerve diameter, 
fascicular structure and connective tissue (Pelot et al., 2020; Staken-
borg et al., 2020).	Recently,	a	study	also	reported	a	similar	size	and	
origin for the brachial plexus of swine compared to humans (Hanna 
et al., 2021). Nevertheless, there is still a gap in the literature re-
garding morphological and morphometrical data for distal segments 
of peripheral nerves in large animal models, even though forelimb 
and hindlimb nerves are the most studied for direct peripheral nerve 
repair (Vela et al., 2020) being of great importance for developing 
neural prostheses (Raspopovic et al., 2021).	Anatomically,	peripheral	
nerves, particularly the UN in swine, have shown to be a suitable 
model for nerve regeneration because of their easy accessibility 
that	 does	 not	 require	 the	 dissection	 of	 deeper	 structures	 (Scholz	
et al., 2010). The superficiality of the UN is also a desirable charac-
teristic for testing the long- term safety and stability of peripheral 
nerve interfaces as it reduces surgical complexity and the likelihood 
of tissue damage. Therefore, we provide quantitative information on 
the morphometry of the UN in the forelimb of swine.

Table 2 shows data from experimental studies investigating the 
UN at the forearm level in humans, rats, dogs and swine. Through-
out the discussion, these findings will be compared to and discussed 
with those obtained by the studies in Table 2 to understand how the 
parameters obtained in pigs relate to other species.

4.1  |  Nerve diameter

Measurements	from	this	study	showed	a	larger	diameter	in	the	main	
branch	of	the	ulnar	nerve	before	branching	into	the	DCBUN.	Brill	et	al.	
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quantified, in humans, the ulnar nerve from the axilla to the wrist; the 
authors have also found a reduced nerve area from the elbow to more 
distal	 locations	(Brill	&	Tyler,	2017). The same pattern was observed 
in	rats	from	the	arm	to	the	wrist	(Barton	et	al.,	2016). We found the 
proximal	main	trunk	to	have	a	mean	diameter	of	1.71 mm,	substantially	
larger	than	the	0.60 mm	found	in	the	rat	forelimb	(Bertelli	et	al.,	1995) 
and	 more	 comparable	 to	 the	 2.60 mm	 found	 in	 humans	 (Brill	 &	
Tyler, 2017). Closer to the wrist, the ulnar nerve diameter was found 
to	be	2.82 mm	in	humans	(Brill	&	Tyler,	2017), considerably larger than 
the	0.28 mm	observed	in	rats	(Barton	et	al.,	2016). In pigs, we showed 
that	the	diameter	of	the	distal	UN	is	1.30 mm,	demonstrating,	again,	
how the diameter of the UN in pigs is more comparable to humans 
than	rats.	For	the	DCBUN,	human	studies	have	found	diameter	sizes	
of	1.60	and	2.40 mm	(Botte	et	al.,	1990; Cavusoglu et al., 2011). The 
results	from	this	study	show	that	the	diameter	of	the	DCBUN	in	pigs	is	
on	average	1.07 mm.	Comparable	nerve	diameters	may	allow	for	better	
translational success rates by designing neural interfaces that closely 
resemble human dimensions; the electrode- fibre distance is an essen-
tial parameter for recording neural activity since it is inversely propor-
tional to the amplitude of a single- unit action potential (Struijk, 1997). 

Therefore, as the diameter of the pig UN best approximates the human 
UN, it may be a promising alternative for testing electrodes and stimu-
lation parameters.

4.2  |  Number of fascicles

The number of fascicles significantly decreased between the most 
proximal branch (i.e., the main trunk) and the more distal branches (i.e., 
DCBUN	and	main	trunk	after	branching);	a	similar	pattern	has	been	ob-
served	in	the	ulnar	nerve	of	pigs	from	5	to	7 cm	proximal	to	the	elbow	
joint	until	1	to	2 cm	below	the	elbow	joint	(Kundu	et	al.,	2012). The op-
posite pattern was observed in Wistar rats, with a single fascicle at the 
axilla	level	and	a	range	of	1–	4	fascicles	at	a	distal	level	(forearm,	distal	
1/3) (Santos et al., 2007). On the contrary, humans have a similar num-
ber	of	fascicles	from	past	the	elbow	to	the	wrist	(Brill	&	Tyler,	2017). 
The main branch of the ulnar nerve had a median value of 15 fascicles, 
fewer than what has been found in humans at the forearm level (mean 
of	20.7	fascicles	(Brill	&	Tyler,	2017)) but in a larger number than what 
has	been	observed	 in	rats	 (range:	1–	4,	 (Santos	et	al.,	2007)).	For	the	

F I G U R E  3 Comparison	of	the	morphometric	data	of	the	ulnar	nerve	segments.	(a)	The	nerve	diameter	was	significantly	larger	in	the	
proximal segment of the UN compared to the distal segment of the UN (p < 0.05)	and	the	dorsal	cutaneous	branch	of	the	UN	(DCBUN)	
(p < 0.05).	(b)	The	proximal	segment	of	the	UN	presented	a	significantly	larger	number	of	fascicles	compared	to	the	DCBUN	(p < 0.05)	and	
the distal segment of the UN (p < 0.05).	(c)	The	mean	fascicle	diameter	of	the	DCBUN	was	significantly	smaller	compared	to	the	distal	UN	
(p < 0.05)	and	the	proximal	UN	(p < 0.05).	In	all	boxplots,	centre	lines	represent	the	median	value,	and	the	box	limits	illustrate	the	lower	and	
upper quartiles (25th and 75th percentiles). The upper and lower whiskers extend to ±1.5× the interquartile range and data beyond the end 
of	the	whiskers	are	outliers.	The	individual	observations	are	also	displayed,	coloured	by	Animal	ID.	One	asterisk	indicates	p < 0.05	while	n.s.	
indicate	non-	significant	differences	at	a	significance	level	of	0.05.	The	DCBUN	from	animal	three	is	not	included	in	the	analysis	because	the	
sample was not collected.
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DCBUN	branch,	we	observed	a	median	of	11	fascicles,	whereas	human	
studies have shown a mean of 5 (Luo et al., 2018; Oliveira et al., 2011). 
A	 study	 using	 dogs	 has	 also	 reported	 a	 smaller	 number	 of	 fascicles	
(range:	1–	4)	 for	 the	cutaneous	branch	 (Illanes	et	al.,	1990). Interest-
ingly, a study comparing the morphology of the vagus nerve of hu-
mans, pigs and rats has found an increased number of fascicles in pigs, 
around 10 times more fascicles than in humans (Pelot et al., 2020); like-
wise, compared to humans, a higher number of fascicles have been ob-
served in the Wisconsin miniature swine for the median nerve (Hanna 
et al., 2021). The fascicular number and structure should be considered 
when designing neural interfaces as gradients in the extracellular field 
potential are dependent not only on a target fascicle but on its neigh-
bouring fascicles (Grinberg et al., 2008); hence, using animal models 
with a monofascicular structure may provide inaccurate activation 
thresholds when results are translated to nerves with a polyfascicu-
lar	structure.	Furthermore,	having	an	animal	model	with	a	compara-
ble number of fascicles is essential for the investigation of fascicular 
selectivity in neuroprosthetic devices, where, ideally, the control of a 
particular muscle is achieved without the concomitant activation of 
different	muscles	innervated	by	the	same	nerve	(Badia	et	al.,	2011).

4.3  |  Fascicle diameter

The	average	fascicle	diameter	of	the	DCBUN	was	smaller	than	the	av-
erage fascicle diameter of the main trunk of the ulnar nerve before 
and after the bifurcation point. However, at the main trunk of the UN, 

there was no difference between the fascicle diameters proximally and 
distally.	A	study	investigating	the	fascicle	diameter	of	the	ulnar	nerve	
in	pigs	at	three	levels:	(1)	5	to	7 cm	proximal	to	the	elbow	joint,	(2)	1 cm	
proximal	to	the	elbow	joint	and	(3)	1	to	2 cm	distally	to	the	elbow	joint	
also found a similar fascicle diameter across the three levels, with an 
average	fascicle	diameter	of	0.26 mm	(Kundu	et	al.,	2012). In the main 
trunk,	we	found	a	mean	fascicle	diameter	of	0.20 mm	and	0.19 mm	for	
the proximal and distal segments, respectively. This result may indicate 
a trend that the fascicular diameter is larger in the upper limb, a result 
which has also been observed in a study exploring nine regions (from 
the axilla to the wrist) of the ulnar nerve in humans, where fascicular 
diameters were larger in the upper arm than they were in the forearm 
(Brill	&	Tyler,	2017). In that study, the authors reported a mean fascicu-
lar	diameter	of	0.38 mm	in	the	forearm.	Notably,	 the	same	effect	of	
decreasing fascicular area for the distal segments has been observed 
in rats for the ulnar, median and radial nerves (Santos et al., 2007). It 
has been shown that fascicular diameter considerably affects electrical 
stimulation thresholds. Specifically, small fascicles have lower activa-
tion	thresholds	than	large	fascicles	(Koole	et	al.,	1997). These results 
can,	therefore,	be	used	to	optimize	computational	tools	and	neural	in-
terface designs.

4.4  |  Fibre number

It is well known that the number of fibres in a peripheral nerve 
is constant during adulthood (Jeronimo et al., 2005; Schellens 

Segment
Animal 
ID

Nerve 
(μm)

Fascicle 
number

Fascicle 
diameter (μm)

Number of 
myelinated fibres

1 1131 13 176 ± 35.2 1266

2 1045 11 205 ± 14 1238

DCBUN 4 952 6 180 ± 51.1 852

5 1111 12 169 ± 12.0 1573

6 1113 9 167 ± 56.7 1156

7 1093 11 145 ± 29.8 962

1 1223 10 226 ± 74.7 2125

2 1277 13 168 ± 30.7 2201

3 1785 8 269 ± 32.9 1627

Distal UN 4 1395 12 206 ± 55.8 1559

5 1269 9 207 ± 5104 1826

6 1246 9 237 ± 25.8 1454

7 1551 10 233 ± 49.7 2341

1 1773 16 236 ± 47.2 3319

2 1662 15 237 ± 55.8 4156

3 2042 14 252 ± 56.3 4476

Proximal UN 4 1680 15 223 ± 55.3 3719

5 1663 15 230 ± 54.1 3989

6 1573 14 216 ± 34.7 3677

7 1637 14 238 ± 55.7 5033

TA B L E  1 Animals,	nerve	diameters,	
fascicular number and diameter, and the 
number of fibres.
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et al., 1993; Thomas et al., 1980). Thus, the number of fibres can 
be one of the parameters that correlate with nerve function. The 
ulnar nerve and its branches were dissected at the same levels in 
all animals studied, and the fibre number was higher for the proxi-
mal branch, followed by the distal branch and the smallest num-
ber	for	the	DCBUN.	Information	on	the	fibre	number	of	the	ulnar	
nerve in pigs is rare in the literature. Nevertheless, these results 
are similar to those obtained in humans (Oliveira et al., 2011) and 
much larger than those obtained in rats (Santos et al., 2007). Once 
again, indicating that the porcine model is suitable and can be 
more comparable to humans concerning neural interface design, 
data interpretation and translational studies.

4.5  |  Methodological considerations

Counting small myelinated fibres is considered difficult because 
they are generally harder to stain and also because using manual 
morphometry techniques or sampling schemes, the observers 
might underestimate them (da Silva et al., 2007; Ellis et al., 1980; 
Mezin	et	al.,	1994). There is a possibility that in the present study, 
the total number of fibres may have been underestimated. Three 
main factors should be taken into consideration for this possi-
ble	 underestimation.	 First,	we	 used	 paraffin-	embedded	 samples,	
which causes a disruption of the myelin sheath during the xylol 
baths before paraffin baths and embedding. This may cause diffi-
culty	in	visualizing	and	identifying	small,	myelinated	fibres.	Second,	
the semi- automated axon quantification method used in this study 
(Engelmann et al., 2020) was validated in samples stained with 
paraphenylenediamine, which primarily stains the myelin sheath 
of	 peripheral	 nerves.	 Third,	 we	 adopted	 a	 cut-	off	 value	 of	 4 μm 
diameter for the axon count, so smaller myelinated fibres are un-
derrepresented.	Further	studies	involving	nerve	specimens	epoxy	
resin embedding, semi- thin sectioning and computed morphom-
etry	will	be	performed	to	better	investigate	the	number	and	size	of	
the	myelinated	fibre	in	this	model.	Fourth,	the	animals	investigated	
in this study were relatively young, and significant alterations are 
observed in the nerve morphometry of developing animals, such 
as increase in fascicular area, myelinated fibre and myelin sheath 
area (Jeronimo et al., 2005). Therefore, a direct comparison must 
consider the effect of ageing in the nerve morphometry.

The present study extracted the nerve segments with reference 
to	the	DCBUN	split,	as	it	allows	to	account	for	between-	animal	vari-
ations and has been used as a reference point by previous studies 
(Tereshenko et al., 2023). Therefore, care must be taken comparing the 
results to different studies that have used distinct reference points.

5  |  CONCLUSION

This study develops on the knowledge of the swine ulnar nerve mor-
phology and morphometry by quantifying key features of the ulnar 

nerve in the pig's forelimb at two levels of the main branch and the 
dorsal cutaneous branch of the ulnar nerve. The measures include 
nerve	 diameter,	 number	 of	 fascicles,	 fascicle	 size	 and	 myelinated	
fibre number, which can provide reference values for developing 
electrode designs, computational models and clinical procedures for 
nerve repair in the future.
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