Robust Hinf control of uncertain switched systems defined on polyhedral sets with Filippov solutions
Ahmadi, Mohamadreza; Mojallali, Hamed; Wisniewski, Rafal

Published in:
ISA Transactions

DOI (link to publication from Publisher):
10.1016/j.isatra.2012.06.006

Publication date:
2012

Document Version
Early version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain.
- You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.
Robust $H_\infty$ control of uncertain switched systems defined on polyhedral sets with Filippov solutions

Mohamadreza Ahmadi$^a$, Hamed Mojallali$^{a,e}$, Rafael Wisniewski$^b$

$^a$ Department of Electrical Engineering, Faculty of Engineering, University of Guilan, Rasht, Iran
$^b$ Department of Electronic Systems, Automation and Control, Aalborg University, Fredrik Bajers Vej 7 C, 9220, Aalborg East, Denmark

1. Introduction

Piecewise linear (PWL) systems are an important class of hybrid systems, which have received tremendous attention in open literature [1–13]. By a PWL system, we understand a family of linear systems, which have received tremendous attention in open literature [1–13]. By a PWL system, we understand a family of linear systems defined on polyhedral sets such that the dynamics inside a polytope is governed by a linear dynamic equation. The union of these polyhedral sets forms the state-space. We say that a “switch” has occurred whenever a trajectory passes to an adjacent polytope.

The stability analysis of PWL systems is an intricate assignment. It is established that even if all the subsystems are stable, the overall system may possess divergent trajectories [11]. Furthermore, the behavior of solutions along the facets may engender unstable trajectories where transitions are, generally speaking, multi-valued. That is, a PWL system with stable Carathéodory solutions may possess divergent Filippov solutions such that the overall system is unstable (see Example 5 in [8]). Hence, the stability of Carathéodory solutions does not imply the stability of the overall PWL system.

The stability problem of PWL systems has been addressed by a number of researchers. An efficacious contribution was made by Johansson and Rantzer [4]. The authors proposed a number of linear matrix inequality (LMI) feasibility tests to investigate the exponential stability of a given PWL system by introducing the concept of piecewise quadratic Lyapunov functions. Following the same trend, [6] extended the results to the case of uncertain PWL systems. The authors also brought forward an $H_\infty$ controller synthesis scheme for uncertain PWL systems based on a set of LMI conditions. In [14], the stability issue of uncertain PWL systems with time-delay has been treated. The ultimate boundedness property of large-scale arrays consisting of piecewise affine subsystems linearly interconnected through channels with delays has also been investigated in [15].

However, the solutions considered implicitly in the mentioned contributions are defined in the sense of Carathéodory. This means that a solution of a PWL system is the concatenation of classical solutions on the facets of polyhedral sets. In other words, sliding phenomena or solutions with infinite switching in finite time are inevitably eliminated from the analyses. In this study, in lieu of the Carathéodory solutions, the more universal Filippov solutions [16] are considered and analyzed. This is motivated by recent trends in discontinuous control systems [17] and the renowned sliding mode control techniques [18]. Our approach has its roots in the results reported by [8], wherein the authors applied the theory of differential inclusions to derive stability theorems for switched systems with Filippov solutions. In this regard, we propose a methodology to synthesize robust controllers with $H_\infty$ performance. The results reported in this paper are formulated as a set of LMI or bilinear matrix inequality (BMI) conditions which can be formulated into a semi-definite programming problem. It is also shown that with slight modifications...
the same results can be utilized to analyze piecewise affine (PWA) systems.

The framework of this paper is organized as follows. A brief introduction to polyhedral sets and the notations used in this paper are presented in the subsequent section. The stability problem of PWL systems is addressed in Section 3. The $H_\infty$ Controller synthesis methodology and a V-K iteration algorithm to deal with the BMI conditions are described in Section 4. The accuracy of the proposed method is evaluated by two simulation examples in Section 5. The paper ends with conclusions in Section 6.

2. Notations and definitions

A polyhedral set is defined by finitely many linear inequalities $\{x \in \mathbb{R}^n | Ex \geq e\}$ with $E \in \mathbb{R}^{l \times n}$ and $e \in \mathbb{R}^l$ where the notation $\geq$ signifies the component-wise inequality. This definition connotes that a polyhedra is the intersection of a finite number of half-spaces. A polytope is a bounded polyhedral set or equivalently the convex hull of finitely many points. Suppose $X$ be a polyhedral set and assume $\Upsilon$ be a halfspace such that $X \subseteq \Upsilon$. Let $X^i = X \cap \Upsilon$ be non-empty. Then, the polyhedron $\hat{X}$ is called a (proper) face of $X$. Obviously, the improper faces of $X$ are the subsets $\emptyset$ and $X$. Faces of dimension $\dim(X) = 1$ are called facets [19].

In this study, we will consider a class of switched systems with Filippov solutions $S = (X, u, V, I, F, G)$, where $X \subset \mathbb{R}^n$ is a polyhedral set representing the state space, and $S = \{X_i\}_{i=1}^l$ is the set containing the polytopes in $X$ with index set $l = \{1, 2, \ldots, n\}$ (note that $\bigcup_{i=1}^l X_i = X$). Each polytope $X_i$ is characterized by the set $\{x \in X_i | x \succeq 0\}$, $U$ is the control space and $V$ is the disturbance space, which are both subsets of Euclidean spaces. In addition, each function $v(t)$ belongs to the class of square integrable functions $L_2[0, \infty)$, i.e., the class of functions for which

$$\|v\|_2 = \left( \int_0^\infty v(t)^2 \, dt \right)^{1/2}$$

is well-defined and finite. $F = \{f_i\}_{i=1}^l$ and $G = \{g_i\}_{i=1}^l$ are families of linear functions associated with the system states $x$ and outputs $y$. Each $f_i$ consists of six elements $(A_i, B_i, D_{ii}, A_{II}, D, A)$ and each $g_i$ is composed of four elements $(C_i, G_i, \Delta C_i, \Delta G_i)$. Furthermore, $f_i : y \times u \times V \rightarrow \mathbb{R}^n$ $(x, u, v)$ $\rightarrow \{z \in \mathbb{R}^n | z = (A_i + \Delta A_i)x + (B_i + \Delta B_i)u + (D_i + \Delta D_i)v\}$ and $g_i : y \times u \times V \rightarrow \mathbb{R}^m$ $(x, u, v)$ $\rightarrow \{z \in \mathbb{R}^m | z = (C_i + \Delta C_i)x + (G_i + \Delta G_i)u\}$ where $Y$ is an open neighborhood of $X$. The set of matrices $(A_i, B_i, C_i, D_i, G_i)$ are defined over the polytope $X_i$ and $(\Delta A_i, \Delta B_i, \Delta C_i, \Delta D_i, \Delta G_i)$ enclose the corresponding uncertainty terms. In order to derive the stability and control results, we assume that the upper bound of uncertainties are known a priori; i.e.,

$$\Delta A_i^T \Delta A_i \leq A_i^T A_i$$
$$\Delta B_i^T \Delta B_i \leq B_i^T B_i$$
$$\Delta C_i^T \Delta C_i \leq C_i^T C_i$$
$$\Delta D_i^T \Delta D_i \leq D_i^T D_i$$
$$\Delta G_i^T \Delta G_i \leq G_i^T G_i$$

in which $(A_i, B_i, C_i, D_i, G_i)$ are any set of constant matrices with the same dimension as $(A_i, B_i, C_i, D_i, G_i)$ satisfying (1).

The dynamics of the system can be described by

$$x(t) = \text{col}(F(x(t)), u(t), v(t)))$$
$$y(t) = \text{vec}(G(x(t), u(t)))$$

where $\text{col}(\cdot)$ denotes the convex hull, the set valued maps [20] $F$ and $G$ are defined as

$$F : \mathbb{X} \times U \times V \rightarrow \mathbb{R}^n$$
$$G : \mathbb{X} \times U \times V \rightarrow \mathbb{R}^m$$

where the notation $\mathbb{X}$ means the power set or the set of the union of subsets of $A$. Denote by $\overline{I} = \{i, j\}$ if $X_i \cap X_j \neq \emptyset, i \neq j$, the set of index pairs which determines the polytopes with non-empty intersections. We now assume that each polytope is the intersection of a finite set of supporting halfspaces. By $N_i$ denote the normal vector pertained to the hyperplane supporting both $X_i$ and $X_j$. Consequently, each boundary can be characterized as

$$X_i \cap X_j = \{x \in \mathbb{X} | N_i^T x \succeq 0, H_j x > 0, (i, j) \in I\}$$

where $\succeq$ represent the component-wise inequality and the inequality $H_j x > 0$ confines the hyperplane to the interested region. Throughout the paper, the matrix inequalities should be understood in the sense of positive definiteness; i.e., $A \succ B$ ($A \succeq B$) means $A - B$ is positive definite (semi-positive definite). In case of matrix inequalities, I denotes the unity matrix (the size of I can be inferred from the context) and should be distinguished from the index set I. In matrices, * in place of a matrix entry $a_{nm}$ means that $a_{nm} = a_{nm}^T$.

A Filippov solution to (2) is an absolutely continuous function $[0, T) \rightarrow \mathbb{X}$ $t \rightarrow \phi(t)$ $(T > 0)$ which solves the following Cauchy problem

$$\dot{\phi}(t) = \text{col}(F(\phi(t)), u(t), v(t))) \quad \text{a.e.,}$$
$$\phi(0) = \phi_0$$

In the sequel, it is assumed that at any interior point $x \in \mathbb{X}$ there exists a Filippov solution to system (1). This can be evidenced by Proposition 5 in [8]. For more information pertaining to the solutions and their existence or uniqueness properties, the interested reader is referred to the expository review [21] and the didactic book [16].

3. Stability of PWL systems with Filippov Solutions

In [8], a stability theorem for switched systems defined on polyhedral sets in the context of Filippov solutions is proposed. In what follows, we reformulate this latter stability theorem in terms of matrix inequalities which provides computationally doable means to inspect the robust stability of uncertain switched systems. These matrix inequalities would be later utilized to devise a stabilizing controller with $H_\infty$ disturbance rejection performance.

**Lemma 1.** Consider the following autonomous PWL system

$$\dot{x} = \text{col}(F(x(x)))$$

with $\Delta A_i \cong 0$. If there exists quadratic forms $\Phi(x) = x^T Q x$, $\Psi(x) = x^T (A_i^T Q_i + Q_i A_i) x$. $\phi_i(x) = x^T (A_i^T Q_i + Q_i A_i) x$ satisfying

$$\Phi(x) > 0 \quad \text{for all} \quad x \in X_i(0)$$
$$\Psi(x) > 0 \quad \text{for all} \quad x \in X_i \setminus \{0\}$$
$$\phi_i(x) > 0 \quad \text{for all} \quad x \in X_i \cap X_j(0)$$
$$\phi_i(x) = \phi_j(x) \quad \text{for all} \quad x \in X_i \cap X_j$$

for all $(i, j) \in I$. Then, the equilibrium point $\mathbf{0}$ of (8) is asymptotically stable.

**Remark 1.** The inclusions $x \in X_i(0)$ and $x \in X_i \cap X_j$ are analogous to $(x \in \mathbb{X} | x \succeq 0)$ and (6), respectively.

It is worth noting that Conditions (9)–(10) are concerned with the positivity of a quadratic form over a polytope; whereas, (11) is
Lyapunov functions can be formulated as
\[ V(x) = x^T F_i x \]
where the free parameters of Lyapunov functions are concentrated in the symmetric matrix \( M \). In the following lemma we generalize the results proposed by [4] to PWL systems with the more general Filippov solutions.

**Lemma 2.** Consider the PWL system (8) with Filippov solutions, and the family of piecewise quadratic Lyapunov functions \( V_i(x) = x^T Q_i x \), \( i \in I \). If there exist a set of symmetric matrices \( Q_i \), three sets of symmetric matrices \( U_i, S_i, T_{ij} \) with non-negative entries, and matrices \( W_{ij} \) of appropriate dimensions with \( i \in I \) and \( (i, j) \in \bar{I} \), such that the following LMI problem is feasible

\[
Q_i - E_i^T S_i E_i > 0
\]
(14)

\[
A_i^T Q_i + Q_i A_i + E_i^T U_i E_i < 0
\]
(15)

for all \( i \in I \) and

\[
A_i^T Q_i + Q_i A_i + W_{ij} N_{ij}^T + N_{ij} W_{ij}^T + H_{ij} T_{ij} H_{ij} < 0
\]
(16)

for all \( (i, j) \in \bar{I} \). Then, the equilibrium point \( 0 \) of (8) is asymptotically stable.

**Proof.** Matrix inequalities (14) and (15) are the same as Eq. (11) in Theorem 1 in [4] which satisfy (9)–(10). The continuity of the Lyapunov functions is also ensured from the assumption that \( V_i(x) = x^T Q_i x = x^T F_i x \), \( i \in I \) since \( F_i = F_i x \), for all \( x \in X_i \cap \bar{X} \) and \( (i, j) \in \bar{I} \) (11) is equivalent to \( x^T (A_i^T Q_i + Q_i A_i) x < 0 \) for \( x \in \bar{X} \cap \bar{X} \). Using the S-procedure and Finster’s lemma [22], we obtain (16) for a set of matrices \( T_{ij} \), \( (i, j) \in \bar{I} \) with non-negative entries and matrices \( W_{ij} \), \( (i, j) \in \bar{I} \) with appropriate dimensions. □

We remark that algorithms for constructing matrices \( E_i \) and \( F_i \), \( i \in I \), are described in [9].

**Remark 2.** A similar LMI formulation to (11) can be found in [9]; whereas, our analysis, in this paper, is established upon the stability theorem delineated in Proposition 10 in [8] which considered the Filippov Solutions.

### 4. Robust controller synthesis with \( H_\infty \) performance

In this section, we propose a set of conditions to design a robust stabilizing switching controller of the form

\[
u \in K(x) \]
(17)

with a guaranteed \( H_\infty \) performance [23]. That is, a controller such that, in addition to asymptotic stability (\( \lim_{t \to \infty} \Phi(t) = 0 \) for all \( \Phi(t) \) satisfying (7)), ensures that the induced \( L_2 \)-norm of the operator from \( v(t) \) to the controller output \( y(t) \) is less than a constant \( \eta > 0 \) under zero initial conditions (\( x(0) = 0 \)); in other words,

\[ \|y\|_{L_2} \leq \eta \|v\|_{L_2} \]
(18)
given any non-zero \( v \in L_2[0, \infty) \).

If we apply the switching controller (17) to (2) and (3), we arrive at the following controlled system with outputs

\[
\dot{x}(t) \in \mathcal{C}(\tilde{F}(x(t), v(t)))
\]
(19)

where \( \tilde{F} : \mathbb{R}^n \to \mathbb{R}^n \), \( \tilde{G} : \mathbb{R}^n \to \mathbb{R}^n \), \( \mathcal{C} = \mathcal{C}(x) \) if \( x \in X_i \) and \( i, j \in I \).

**Theorem 1.** System (19) is asymptotically stable at the origin with disturbance attenuation \( \eta \) as defined in (18), if there exist a set of symmetric matrices \( Q_i, i \in I \), three sets of symmetric matrices \( U_i, S_i, T_{ij} \), \( i \in I \), \( T_{ij}, (i, j) \in \bar{I} \) with non-negative entries, and matrices \( W_{ij} \), \( (i, j) \in \bar{I} \) of appropriate dimensions such that

\[
Q_i - E_i^T S_i E_i > 0
\]
(21)

\[
A_i^T Q_i + Q_i A_i + E_i^T U_i E_i < 0
\]
(22)

for all \( i \in I \), and

\[
A_i^T Q_i + Q_i A_i + W_{ij} N_{ij}^T + N_{ij} W_{ij}^T + H_{ij} T_{ij} H_{ij} < 0
\]
(23)

for all \( (i, j) \in \bar{I} \).

**Proof.** Refer to Appendix A.

**Theorem 2.** Given a constant \( \eta > 0 \), the closed loop control system (19) is asymptotically stable at the origin with disturbance attenuation \( \eta \), if there exist constants \( \epsilon_i > 0 \), \( (i, j) \in \bar{I} \), \( i, j \in I \), matrices \( K_i \) \( i \in I \), a set of symmetric matrices \( Q_i, i \in I \), three sets of symmetric matrices \( U_i, S_i, T_{ij} \), \( i \in I \), \( T_{ij}, (i, j) \in \bar{I} \) with non-negative entries, and matrices \( W_{ij} \), \( (i, j) \in \bar{I} \) of appropriate dimensions such that

\[
Q_i - E_i^T S_i E_i > 0
\]
(24)

\[
A_i < 0
\]
(25)

for all \( i \in I \), and

\[
A_j < 0
\]
(26)

for all \( (i, j) \in \bar{I} \), where

\[
A_i = \begin{bmatrix}
H_i & Q_i & K_i^T B_i & K_i^T E_i^T & K_i^T C_i & K_i^T D_i & K_i^T F_i \\
-\Theta_i^{-1} & 0 & 0 & 0 & 0 & 0 & 0 \\
-\epsilon_i & 1 + \epsilon_i & 0 & 0 & 0 & 0 & 0 \\
-1 & \epsilon_i & 0 & 0 & 0 & 0 & 0 \\
-\epsilon_i & 2 + \epsilon_i & \epsilon_i & 0 & 0 & 0 & 0 \\
-\epsilon_i & 1 + \epsilon_i & 2 \epsilon_i & 0 & 0 & 0 & 0
\end{bmatrix}
\]
with
\[
A_i = \begin{bmatrix}
\Pi_{ij} Q_i + K_i^T B_i^T C_j^T + K_i^T g_i^T \\
- \Theta_i^{-1} & 0 & 0 & 0 \\
-\epsilon_i & 0 & 0 & 0 \\
\end{bmatrix}
\]

\[
\Pi_i = A_i^T Q_i + Q_i A_i + W_i N_i^T N_i + W_i N_i^T H_i^T T_i D_i + \epsilon_i A_i \Psi_j + \left( 1 + \frac{3}{\epsilon_i} \right) C_i^T C_i + (1 + \epsilon_i) C_i^T C_i
\]

\[
\Pi_j = A_j^T Q_j + Q_j A_j + N_i W_i^T N_i^T + W_i N_i^T H_i^T T_i D_i + \epsilon_i A_j A_j + \left( 1 + \frac{3}{\epsilon_i} \right) C_j^T C_j + (1 + \epsilon_i) C_j^T C_j
\]

\[
\Theta_i = \begin{bmatrix}
(\epsilon_i + \frac{3}{\epsilon_i}) I + \eta^{-2} \left( 1 + \frac{1}{\epsilon_i} \right) D_i D_i^T + \eta^{-2} (1 + \epsilon_i) D_i D_i^T & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
\end{bmatrix}
\]

\[
\Theta_j = \begin{bmatrix}
(\epsilon_i + \frac{3}{\epsilon_i}) I + \eta^{-2} \left( 1 + \frac{1}{\epsilon_i} \right) D_j D_j^T + \eta^{-2} (1 + \epsilon_i) D_j D_j^T & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
\end{bmatrix}
\]

\[
{\textbf{Proof.}} \quad \text{We need to apply Theorem 1. Inequality (24) corresponds to (21). Substituting (21) in (23), the left-hand side of (23) is simplified as LHS = (A_i + \Delta A_i + (B_i + \Delta B_i) K_j)^T Q_i + Q_i (A_j + \Delta A_j + (B_j + \Delta B_j) K_j)^T Q_j + (C_i + \Delta C_i + (G_j + \Delta G_j) K_j)^T (C_i + \Delta C_i + (G_j + \Delta G_j) K_j) - A_i^T Q_i A_i + W_i N_i^T N_i + W_i N_i^T H_i^T T_i D_i + \epsilon_i A_i A_j + \left( 1 + \frac{3}{\epsilon_i} \right) C_i^T C_i + (1 + \epsilon_i) C_i^T C_i
\]

\[
\Pi_i = A_i^T Q_i + Q_i A_i + W_i N_i^T N_i^T + W_i N_i^T H_i^T T_i D_i + \epsilon_i A_i A_j + \left( 1 + \frac{3}{\epsilon_i} \right) C_i^T C_i + (1 + \epsilon_i) C_i^T C_i
\]

\[
\Theta_i = \begin{bmatrix}
(\epsilon_i + \frac{3}{\epsilon_i}) I + \eta^{-2} \left( 1 + \frac{1}{\epsilon_i} \right) D_i D_i^T + \eta^{-2} (1 + \epsilon_i) D_i D_i^T & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
\end{bmatrix}
\]

\[
\Theta_j = \begin{bmatrix}
(\epsilon_i + \frac{3}{\epsilon_i}) I + \eta^{-2} \left( 1 + \frac{1}{\epsilon_i} \right) D_j D_j^T + \eta^{-2} (1 + \epsilon_i) D_j D_j^T & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
\end{bmatrix}
\]

\[
{\textbf{Remark 4.}} \quad \text{Generalization of the results presented in this paper to the case of piecewise affine (PWA) dynamics is straightforward. This can be simply realized by augmenting the corresponding system matrices as demonstrated in [8]. The interested reader can refer to Appendix B.}
\]

5. Simulation results

In this section, we demonstrate the performance of the proposed approach using numerical examples. Example 1 deals with a switched system with Filippov solutions which is asymptotically stable at the origin; but, the disturbance attenuation performance is not satisfactory. Unlike Example 1, Example 2 considers an unstable PWL system in which both asymptotic stability and disturbance mitigation are investigated based on the proposed approach. Not to mention that in both cases uncertainties are also associated with the nominal systems.

5.1. Example 1

Suppose the state-space \( X = \mathbb{R}^2 \) is divided into four polytopes corresponding to the four quadrants of the second dimensional Euclidean space; i.e,

\[
X_1 = (x_1, x_2) \in \mathbb{R}^2 | x_1 > 0 \text{ and } x_2 > 0
\]

\[
X_2 = (x_1, x_2) \in \mathbb{R}^2 | x_1 < 0 \text{ and } x_2 > 0
\]

\[
X_3 = (x_1, x_2) \in \mathbb{R}^2 | x_1 < 0 \text{ and } x_2 < 0
\]

\[
X_4 = (x_1, x_2) \in \mathbb{R}^2 | x_1 > 0 \text{ and } x_2 < 0
\]

(27)

Consider a PWL system with Filippov solutions characterized by (19) and (20) where the associated system matrices are given by

\[
A_1 = A_2 = A_4 = \begin{bmatrix} 0 & 1 \\ -2 & 0 \end{bmatrix}, \quad A_3 = \begin{bmatrix} 0.5 & 0 \\ 0 & 0 \end{bmatrix}
\]

\[
B_1 = B_2 = B_3 = B_4 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}
\]

\[
C_1 = C_2 = C_3 = C_4 = \begin{bmatrix} 2 \\ 0 \end{bmatrix}
\]

\[
D_1 = D_2 = D_3 = D_4 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}
\]

and the uncertainty bounds specified as

\[
A_1 = A_2 = \begin{bmatrix} 0 & 0.03 \\ -0.03 & 0 \end{bmatrix}, \quad A_3 = A_4 = \begin{bmatrix} 0.03 & 0 \\ 0 & -0.03 \end{bmatrix}
\]

}\]
$c_1 = c_3 = \begin{bmatrix} 0.01 \\ 0 \end{bmatrix}^T$, $c_2 = c_4 = \begin{bmatrix} 0 \\ 0.01 \end{bmatrix}^T$

The matrices regarding the polytopes can be constructed as

$E_1 = -E_3 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, $E_2 = -E_4 = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$

$F_1 = \begin{bmatrix} E_1 \\ 1 \end{bmatrix}$, $F_2 = \begin{bmatrix} E_2 \\ 1 \end{bmatrix}$, $F_3 = \begin{bmatrix} E_3 \\ 1 \end{bmatrix}$, $F_4 = \begin{bmatrix} E_4 \\ 1 \end{bmatrix}$

$N_{12} = N_{34} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $N_{14} = N_{23} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

$H_{12} = -H_{34} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, $H_{14} = -H_{23} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$

Based on Theorem 2, a switching controller as defined in (17) is designed in order to ensure that (in addition to preserving the asymptotic stability property of the system) under zero initial conditions the disturbance signal of $w(t) = 5 \cos(\pi t)$ is attenuated with $\eta = 0.05$. In this experiment, the constant scalars were preset to $\epsilon_{12} = \epsilon_{23} = \epsilon_{14} = \epsilon_{34} = 1$ and $\epsilon_1 = \epsilon_2 = \epsilon_3 = \epsilon_4 = 5$. The algorithm was initialized using pole placement method with initial pole positions of $(-1, -2)$ and controller gains of

$K_1 = K_3 = \begin{bmatrix} -3 \\ 0 \end{bmatrix}^T$, $K_2 = K_4 = \begin{bmatrix} -3 \\ -5 \end{bmatrix}^T$

The following solutions was obtained in two iterations

$Q_1 = Q_3 = \begin{bmatrix} 78.29 & 5.96 \\ 5.96 & 3.01 \end{bmatrix}$, $Q_2 = Q_4 = \begin{bmatrix} 33.06 & -1.35 \\ -1.35 & 65.14 \end{bmatrix}$

$K_1 = K_3 = \begin{bmatrix} -0.9014 \\ -0.8292 \end{bmatrix}^T$, $K_2 = K_4 = \begin{bmatrix} -0.1137 \\ -0.2715 \end{bmatrix}^T$

$\gamma_{\text{min}} = -7.03921 \times 10^{-4}$

Fig. 1 sketches the trajectories of the closed-loop system without disturbance when the $H_\infty$ controller is incorporated. This demonstrates that the Filippov solutions of the closed-loop system are asymptotically stable at 0. One should observe that the solutions entering the facet $x_2 = 0$ cannot leave the facet (the so called attractive sliding mode property). This is due to the fact that the velocities at both regions $X_1$ and $X_2$ are toward the facet.

We emphasize that this result could not been achieved by previous studies which excluded those solutions with infinite switching in finite time. Moreover, Fig. 2. displays the evolution of the states of the closed-loop system. The applied control inputs corresponding to simulations portrayed in Fig. 2 are available in Fig. 3. As can be inspected from Fig. 3 (and of course as expected), the control signals are discontinuous since switching occurs in the neighborhood of the attractive facets. This switching in the applied control signals diminishes considerably as the trajectories converge to origin in approximately 30 s.

The disturbance mitigation performance of the proposed method can also be deduced from Fig. 4. It can be discerned from the figure that the disturbance signal is considerably attenuated as the $H_\infty$ controller is employed.

5.2. Example 2

For the sake of comparison, the example used in [6] is selected; but, instead of Carathéodory solutions, Filippov solutions are investigated. Therefore, the system structure has to be modified as delineated next. Consider an uncertain PWL system described by (19) and (20) with $I = \{1, 2, 3, 4\}$ and the state-space is a polyhedral set divided into four polytopes. The associated

Fig. 1. The trajectories of the closed loop system. The dashed lines illustrate the facets.

Fig. 2. Evolution of system states when the $H_\infty$ controller is applied: with an initial condition on a non-attractive facet (top) and with an initial condition on an attractive facet (bottom).
system matrices are
\[ A_1 = A_3 = \begin{bmatrix} 1 & 0.1 \\ -0.5 & 1 \end{bmatrix}, \quad A_2 = A_4 = \begin{bmatrix} 1 & 0.5 \\ -0.1 & -1 \end{bmatrix} \]
\[ B_1 = B_3 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad B_2 = B_4 = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \]
\[ D_1 = D_2 = D_3 = D_4 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad C_1 = C_2 = C_3 = C_4 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}^T \]
The uncertainty bounds are characterized as
\[ A_1 = A_3 = \begin{bmatrix} 0 & 0.02 \\ -0.01 & 0 \end{bmatrix}, \quad A_2 = A_4 = \begin{bmatrix} 0.01 & 0 \\ 0 & -0.02 \end{bmatrix} \]
\[ B_1 = B_3 = \begin{bmatrix} 0 \\ 0.02 \end{bmatrix}, \quad B_2 = B_4 = \begin{bmatrix} 0.02 \\ 0 \end{bmatrix} \]
The matrices characterizing the polytopes are given as follows
\[ E_1 = -E_3 = \begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix}, \quad E_2 = -E_4 = \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix} \]

Please cite this article as: Ahmadi M, et al. Robust \( H_\infty \) control of uncertain switched systems defined on polyhedral sets with Filippov solutions. ISA Transactions (2012), http://dx.doi.org/10.1016/j.isatra.2012.06.006

Fig. 3. Time histories of the applied control inputs corresponding to state evolutions provided in Fig. 2 (top), and the same figures enlarged (bottom).

Fig. 4. Response of the closed loop control system with disturbance and zero initial condition: before applying the \( H_\infty \) controller (left) and after utilizing the \( H_\infty \) controller (right).
\[
F_1 = \begin{bmatrix} E_1 \\ 1 \end{bmatrix}, \quad F_2 = \begin{bmatrix} E_2 \\ 1 \end{bmatrix}, \quad F_3 = \begin{bmatrix} E_3 \\ 1 \end{bmatrix}, \quad F_4 = \begin{bmatrix} E_4 \\ 1 \end{bmatrix}
\]
\[
N_{12} = N_{34} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad N_{14} = N_{23} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}
\]
\[
H_{12} = -H_{34} = \begin{bmatrix} -1 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \quad H_{14} = -H_{23} = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}
\]

It is worth noting that the open-loop system is unstable and since solutions with infinite switching in finite time are present the approach reported in [6] and common Lyapunov based methods are not applicable. The V–K iteration algorithm is initialized using pole placement method. The assigned closed-loop poles for the dynamics in each polytope are \([/C_0 3 , /C_0 2 ]\) and the corresponding initial controller gains are

\[
K_1 = K_3 = \begin{bmatrix} -119.5 \\ -7 \end{bmatrix}^T, \quad K_2 = K_4 = \begin{bmatrix} -5 \\ 19.5 \end{bmatrix}^T
\]

Using the scheme presented in this paper for a set of constants \(\epsilon_{12} = \epsilon_{23} = \epsilon_{34} = 10\) and \(\epsilon_1 = \epsilon_2 = \epsilon_3 = \epsilon_4 = 100\), the following solutions has been obtained

\[
Q_1 = Q_3 = \begin{bmatrix} 463.75 & 24.94 \\ 24.94 & 2.39 \end{bmatrix}, \quad Q_2 = Q_4 = \begin{bmatrix} 52.26 & -7.39 \\ -7.39 & 763.47 \end{bmatrix}
\]

\[
K_1 = K_3 = \begin{bmatrix} -637.72 \\ -30.14 \end{bmatrix}^T, \quad K_2 = K_4 = \begin{bmatrix} -21.53 \\ -1.69 \end{bmatrix}^T
\]

\[
\gamma_{\text{min}} = -2.7186 \times 10^{-5}
\]

for the \(H_{\infty}\) controller design with \(\eta = 0.1\) in five iterations. Consequently, it follows from Theorem 2 that the closed loop control system is asymptotically stable at the origin and the disturbance attenuation criterion is satisfied. Fig. 5 demonstrates the simulation results of four different initial conditions (in the absence of disturbance) using both the method expounded in [6] and the suggested scheme which prove the stability of the closed loop systems. It can be examined that the approach in [6] neglects the sliding motion along the facets; hence, it cannot take into account the solutions with infinite switching in finite time which are intrinsic to switched systems. Notice, in particular, that solutions with infinite switching in finite time on facets are also present (see Fig. 6.) when the proposed method is exploited. Additionally, the applied control inputs associated with the simulations in Fig. 6 are shown in Fig. 7. Once again as expected, the controller starts to switch (discontinuous
behavior) when the trajectories reach an attractive facet. The fluctuations of the control signal mitigates significantly in around 130 s, implying that the solutions have converged to the origin. This should be opposed to the results in [6] where only Carathéodory solutions are taken into account. Additionally, the simulation results in the presence of disturbance \( \nu(t) = 4 \sin(2\pi t) \) and zero initial conditions are illustrated in Fig. 8, which ascertains the disturbance attenuation performance of the proposed controller.

6. Conclusions

In this paper, the stability and control problem of uncertain PWL systems with Filippov Solutions was considered. The foremost purpose of this research was to extend the previous results on switched systems defined on polyhedral sets to the case of solutions with infinite switching in finite time and sliding motions. In this regard, a set of matrix inequality conditions are brought forward to investigate the stability of a PWL system in the framework of Filippov solutions. Additionally, a method based on BMIs are devised for the synthesis of stable and robust \( H_{\infty} \) controllers for uncertain PWL systems with Filippov solutions. These schemes has been examined through simulation experiments. The following subjects are suggested for further research:

- Due to practical considerations, it is sometimes desirable to assuage the switching frequency in the control signal which may contribute to unwanted outcomes, e.g., high heat losses in...
power circuits, mechanical wear, and etc. The authors suggest the application of chattering-free techniques such as boundary layer control (BLC). However, how these methods could be embedded in the framework of the analyses presented here is still an open problem.

- The robust control and stability results can be extended to other solution types for discontinuous systems, e.g., Krasovskii, Aizerman and Gantmakher (see the expository review [21]).
- The curious reader may consult [26] for novel (robust) stability analysis results on nonlinear switched systems defined on compact sets in the context of Filippov solutions.

**Appendix A. Proof of Theorem 1**

From (21)–(22) and Lemma 2, it can be discerned that the Filippov solutions of the closed loop system (19) converge to 0 asymptotically. Additionally, since \( Q = F_i \mathbf{M}_i \) and \( F_i = F_j \), for all \( x \in X_i \cap X_j \), the continuity of the Lyapunov functions is assured. What remains is to show that the disturbance attenuation performance is \( \eta \). Define a multi-valued function

\[
\lambda(x) = \{ z \in \mathbb{R}^d \mid z = V_i(x) \quad \text{if} \quad x \in X_i \}
\]

and set \( \Gamma(x) = \max \{ \lambda(x) \} \). This can be thought of as a switched Lyapunov function. Differentiating and integrating \( \Gamma \) with respect to \( t \) yields

\[
\int_0^\Gamma \frac{d\Gamma}{dt} dt = \int_0^{t_1} [\dot{x}^T(A_{11}Q_1 + Q_2A_2)x + v^T(D_1Q_1 + Q_2D_2)x + x^TQ_1D_1x] dt + \cdots
\]

\[
+ \int_1^{t_2} [\dot{x}^T(A_{21}Q_2 + Q_3A_3)x + v^T(D_1Q_2 + Q_3D_2)x + x^TQ_2D_1x] dt + \cdots
\]

\[
+ \sum_{i=1}^m \int_{t_{i+1}}^{t_i} \left\{ \begin{array}{l}
[\dot{x}^T(A_{1i}Q_i + Q_{i+1}A_{i+1})x + v^T(D_1Q_i + Q_{i+1}D_2)x + x^TQ_iD_1x] dt + \cdots
\end{array} \right\}
\]

\[
+ \sum_{i=1}^m \beta_i \left\{ \int_{t_{i+1}}^{t_i} \left[ \dot{x}^T(A_{2i}Q_i + Q_{i+1}A_{i+1})x + v^T(D_1Q_i + Q_{i+1}D_2)x + x^TQ_iD_1x] v dt \right] + \cdots
\]

\[
+ \int_0^\Gamma [\dot{x}^T(A_{1m}Q_m + Q_{m+1}A_{m+1})x + v^T(D_1Q_m + Q_{m+1}D_2)x + x^TQ_mD_1x] dt
\]

where \( \gamma_i, \beta_i > 0 \) such that \( \sum_{i=1}^{n-1} \gamma_i = 1 \) and \( \sum_{i=1}^{n-1} \beta_i = 1 \). \( m \) and \( r \) are the number of neighboring cells to a boundary where the solutions possess infinite switching in finite time (in the time intervals of \( [t_{i-1}, t_i] \) and \( [t_{i+1}, t_{i+2}] \)), respectively. With the above formulation, we consider a state evolution scenario including the interior of different polytopes as well as the facets. Suppose conditions (22) and (23) hold, then it follows that

\[
\int_0^b \left[ \dot{x}^T(A_{1i}Q_i + Q_{i+1}A_{i+1})x + v^T(D_1Q_i + Q_{i+1}D_2)x + x^TQ_iD_1x] dt \right]
\]

\[
< \int_0^b \left[ -\eta^2v^TQ_1x + v^T(D_1Q_1 + Q_2D_2)x + \eta^2v^TQ_1D_1x] dt \right]
\]

\[
\leq \int_0^b \left[ -\eta^2v^Tv - \eta^2v^TQ_1x] dt \right]
\]

\[
\leq \int_0^b \left[ -\eta^2v^Tv \right] dt
\]

\[
\leq \int_0^b (-\eta^2v^Tv) dt
\]

which reduces to

\[
\Gamma(x(\infty)) - \Gamma(x(0)) \leq \int_0^\infty (-\eta^2v^Tv) dt
\]

Moreover, note that \( x(\infty) = x(0) = 0 \). This can be concluded from the assumption on zero initial conditions, and from the fact that the system is asymptotically stable at origin (as demonstrated earlier in this proof). Consequently, we have

\[
0 \leq \int_0^\infty (-\eta^2v^Tv) dt
\]

which is equivalent to (18). This completes the proof.

**Appendix B. Generalization to piecewise affine systems**

It is worth noting that all results obtained for PWL systems with Filippov solutions can also be accommodated for PWA systems. However, the following modifications should be applied in advance.

Consider a PWA system with Filippov solutions \( \mathcal{S} = \{ \mathcal{X}_i, U, Y, \mathcal{F}, \Gamma \} \), where \( \mathcal{X} = \mathbb{R}^{n \times 1} \) is a polyhedral set representing the state space, \( \mathcal{X}_i = \{ \mathcal{X} \mid \mathcal{X} \cap I_i \} \) is the set containing the polytopes in \( \mathcal{X} \) with index set \( I = \{ 1, 2, \ldots, n \} \) (note that \( \cup_{i \in I} \mathcal{X}_i = \mathcal{X} \), \( \mathcal{F} = \{ F_i \}_{i \in I} \) and \( \Gamma = \{ \Gamma_i \}_{i \in I} \) are families of linear functions associated with the (augmented) system states \( \mathcal{X} = \{ \mathcal{X} \} \) \( \mathcal{F} \) and outputs \( y \). Each \( F_i \) consists of six elements (\( \mathcal{X}_i, \mathcal{F}_i, \mathcal{D}_i, \mathcal{A}_{\mathcal{X}i}, \mathcal{A}_{\mathcal{F}i}, \mathcal{A}_{\mathcal{D}i} \)) and each \( \mathcal{F}_i \) is composed of four elements (\( \mathcal{X}_i, \mathcal{G}_i, \mathcal{A}_{\mathcal{X}i}, \mathcal{A}_{\mathcal{G}i} \)).

The following augmented system matrices can be constructed

\[
\mathcal{X}_i = \begin{bmatrix} A_i & b_i \\ 0 & 0 \end{bmatrix}, \quad \mathcal{F}_i = \begin{bmatrix} B_i \\ 0 \end{bmatrix}, \quad \mathcal{D}_i = \begin{bmatrix} D_i \\ 0 \end{bmatrix}, \quad \Gamma_i = \{ C_i \} \quad \text{(B.1)}
\]

where \( a_i \) is the affine term associated with the dynamics in the polytope \( \mathcal{X}_i \), and correspondingly the augmented uncertain matrices

\[
\Delta \mathcal{X}_i = \begin{bmatrix} \Delta A_i & \Delta b_i \\ 0 & 0 \end{bmatrix}, \quad \Delta \mathcal{F}_i = \begin{bmatrix} \Delta B_i \\ 0 \end{bmatrix}, \quad \Delta \mathcal{D}_i = \begin{bmatrix} \Delta D_i \\ 0 \end{bmatrix}, \quad \Delta \Gamma_i = \{ \Delta C_i \} \quad \text{(B.2)}
\]

Besides, the matrices characterizing each polytope can also be modified as

\[
\mathcal{E}_i = [E_i, e_i] \quad \text{and} \quad \mathcal{F}_i = [F_i, f_i] \quad \text{(B.3)}
\]
Then, each polytope is defined as
\[ \mathcal{X}_i = \{ x \in \mathcal{X} | f_i^T x \succ 0 \} \]  
and for all \( x \in \mathcal{X}_i \cap \mathcal{X}_j \) and \((i,j) \in \mathcal{I}\) it holds that
\[ f_i^T x = f_j^T x \]  
Hence, the candidate Lyapunov function in effect in the polytope \( \mathcal{X}_i \) is formulated as
\[ V_i(x) = x^T f_i^T M f_i x = x^T Q_i x \]  
It is possible that the facets may not have intersections at the origin. Therefore, let
\[ N_y = \begin{bmatrix} N_y^T & n_y \end{bmatrix} \quad \text{and} \quad P_y = \begin{bmatrix} H_y & h_y \\ 0 & 0 \end{bmatrix} \]
and each boundary can be characterized as
\[ \mathcal{X}_i \cap \mathcal{X}_j = \{ x \in \mathcal{X} | N_y^T x \simeq 0, P_y x \succ 0, (i,j) \in \mathcal{I} \} \]  
With the above formulation at hand, one can utilize the results given in this paper for PWA matrices. This is simply accomplished by replacing the associated matrices for PWL systems by their PWA counterparts.

References