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Abstract:

Water distribution networks with storage equalize the operating pressure in the system. Apart
from providing pressure, elevated reservoirs also allow for exploiting fluctuation in electricity
prices. In this work, we use an Economic Model Predictive Control scheme for planning the
filling times of storage in water distribution networks. This controller needs access to electricity
prices via an Information Technology (IT) connection to a power-trading system. Therefore, we
propose a control architecture, where a Global Controller is deployed on a cloud server, whereas
a locally placed data-acquisition and supervisory controller provide the safety guarantees in
terms of an Operational Technology (OT) layer. The approach is demonstrated numerically on
a real-world network architecture where real data is used to verify the robustness of the method.

Copyright © 2023 The Authors. This is an open access article under the CC BY-NC-ND license

(https://creativecommons.org/licenses/by-nc-nd/4.0/)
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1. INTRODUCTION

Electrical energy prices have dramatically increased and
become volatile (International Energy Agency (2022)) in
many parts of the world, and there is a general trend
of pushing towards the use of electrical power produced
from renewables. In fact, it is expected that the correlation
between the price and the availability of renewable energy
will increase in the coming decades. Energy systems with
some type of storage can harvest this price volatility, that
not only results in operational expenditure savings but also
cleaner energy use. Elevated reservoirs represent energy
storage in water distribution networks, having a good
foundation for exploiting energy price volatility.

Energy prices are negotiated on the day-ahead energy
market and are publicly available via Information Tech-
nology (IT) platforms in several countries around the
world (ENTSO (2022)). Access to these prices enables
optimizing pump operation in water networks. However,
this requires a control architecture that combines IT and
hardware needs regarding control, instrumentation, and
communication also called Operating Technology (OT). As
a consequence of integrating I'T and OT, the risk of phys-
ical harm due to cyber-attacks is increased significantly.
Nevertheless, the benefits of integrating IT/OT for water
networks are substantial and therefore should be pursued.

In this paper, the control of water distribution networks
with elevated reservoirs is considered. Scheduling storage
filling using optimal control methods has been investigated
extensively, e.g., in Cembrano et al. (2000), Trnka et al.
(2011), Ocampo-Martinez et al. (2013), Wang et al. (2017),

* This work was supported by the CRUCIAL project, funded by
Innovation Fund Denmark, grant number 1063-00001B.

whereas an early review is given in Corte and Sorensen
(2013). Cyber-security in water networks is considered
in Rao and Francis (2015) and possible ways improving
security in Rao and Francis (2015), Taormina et al. (2019)
and Douglas et al. (2019). Cyber-security has a great
impact in practice, yet it is an unresolved issue when it
comes to combining IT/OT for control of water networks.

The control architecture proposed in this work has the
optimization problem placed on a cloud server, where IT
access is provided to day-head electrical price data through
a third-party interface. Locally, at the pumping stations,
controllers are gathering data and executing control ac-
tions. The local controllers are developed as safety filters,
thereby protecting the system against different failures,
cyber-attacks, and unexpected network events. This split
between cloud and local control software is chosen to
lower the computational load at the local controllers, and
thereby enable to use less expensive controller hardware.
In Escudero et al. (2018) the idea of introducing safety fil-
ters for cyber-security is proposed in an industrial IT/OT
context. Safety filters are also used for safe Reinforcement
Learning control of water network in Val et al. (2021).

To justify the need for easy commissionable and cyber-
secure control architectures for water distribution net-
works, we introduce first the network dynamics in Section
2. Then, we present the proposed methods in Section
3. The benefits are exemplified in a numerical study in
Section 4. Finally, we provide some concluding remarks.

2. PRELIMINARIES - SYSTEM DESCRIPTION

We consider a water distribution network (or part of a
network) with a structure depicted in Fig. 1.

2405-8963 Copyright © 2023 The Authors. This is an open access article under the CC BY-NC-ND license.
Peer review under responsibility of International Federation of Automatic Control.
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Fig. 1. Layout of a water distribution network with ele-
vated tank and two pressure zones, where measured
variables are colored with red.

Pumping station 1 (PS1) feeds the water demand to
Pressure Zone 1 (PZ1) and the elevated reservoir provides
the pressure in the zone. Pressure Zone 2 (PZ2) is fed
directly by the elevated tank via Pumping station 2 (PS2).
The dominating dynamic is due to mass conservation of
water, and as such is dictated by the tank level h(t), i.e.,

Ah = u(t) — di(t) — da(2), (1)
where u(t) is the controlled flow at PS1, d;(¢) is the sum
of the consumption flows by the end-users in PZ1, and
similarly dy(t) is the summed flow into PZ2 (depicted
in Fig. 1). The surface area of the reservoir is denoted
by A. Furthermore, the consumption flows have a daily
periodicity, typically with high peaks in the morning and
evening hours with a small deviation between workdays
and weekends. An example of demand flows from a real-
world utility in Denmark is depicted in the two first plot of
Fig. 4. From these data, it is clear that the variance around
the moving mean is scaled with the mean consumption
at any given time, i.e., high flows yield high uncertainty
and visa versa. Consequently, the consumption flows for
pressure zone ¢ is well approximated with

di(t) = d;(t)(1 + e;(t)) + €(t) Vi, (2)
where e;(t) ~ N(0,02), €(t) ~ N(0,0%), and d;(t) is the
mean periodic demand flow. A flow consumption profile is
defined for each pressure zone, hence i € {1, 2}.

The pressure p; at PS1 depends on the level h in the tank,
the flow u from PS1, and the sum of consumption flows d;
to PZ1. In this work the pressure is approximated by

pi(t) =71 u(t)|u(t)+relu(t)—di()] (w(t)—di(t)+ah(t), (3)
where « is a scaling factor between level and pressure, ry is
the resistance term for the first part of the pipe from PS1
to the connection point to PZ1, and rs is the resistance
term from the connection point to the elevated reservoir.

The network control needs to fulfill certain operational
constraints. Firstly, overflow from the tank should be
avoided. Secondly, a minimum level must be kept in the
tank to ensure a safety volume, e.g., for firefighting. This
leads to the following physical constraint on the water level

hmin S h(t) S hmax vta (4)
where hpnin and hyax are the physical bounds for the
minimum and maximum tank levels, respectively. More-
over, the actuators are bounded by their physical capacity,
leading to the following operational constraint on the input

Umin S U(t) S Umax Vta (5)

where Ui, and umax are the physically possible minimum
and maximum pump flows, respectively. Finally, there are
also requirements for the exchange of water in the tank,
as water age degrades the stored water quality.

3. CONTROL ARCHITECTURE
We place a Global Controller (GC) on a server with IT
access, executed off-site from the pumping stations, and
local controllers at the pumping stations with access to
sensors and actuators. This architecture provides flexibil-
ity towards changing the objectives of the optimization
problem remotely and allows to access various 3"9-party
services, e.g., price of energy or even COs emission signals
in real time. The proposed architecture is shown in Fig. 2.

G

Local Safety

Operational
management
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Internet
Local Safety

Control (LSC)
Zone 2

Pump
flow 2

Fig. 2. Control architecture with the GC on the cloud and
the LSCs on edge devices.
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Water distribution networks are critical infrastructures
that require undisturbed and safe operation at all times
(Del Mar (2022)). To establish such safe operation, we
propose to place Local Safety Controllers (LSCs) by the
pumping stations. The LSCs are designed such that water
supply is provided even in the case of server malfunc-
tioning, errors in the GC, or communication breakdown.
Such events may occur for instance under cyberattacks or
communication breakdowns due to Distributed Denial of
Service (DDoS). Moreover, man-in-the-middle attacks may
manipulate the data from and to the GC-layer, leading to
corrupted reference signals to the LSC. Also, unexpected
operation may occur, e.g., abnormal flow due to firefight-
ing, which is not considered explicitly in the GC-algorithm.

The physical layer consists of actuators and sensors, among
which Variable Frequency Converters (VFCs) control the
speed of the pumps and sensors measure the pump pres-
sures (both inlet and outlet), the pump flows, and the level
in the elevated tank. The physical layer is connected with
the LSCs via a local field bus, which is assumed to be dis-
connected from the surroundings except through the LSC.
The LSCs initiate the communication to the GC. In case
of a communication request, the GC calculates the optimal
flow (volume) setpoint profiles over the prediction horizon
using Economic Model Predictive Control (EMPC) and
communicates the entire profile v* to the LSCs. The opti-
mal flow profile is recalculated and communicated with a
sample time AT, whereas the LSCs execute with a much
smaller sample time §t << AT, making the LSCs capable
of reacting to failures in almost real time.

3.1 Global Optimal Controller

The GC placed on the cloud is designed similarly to the
approach described in Kallesge et al. (2017). The method
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is an adaptive EMPC, which is designed for water distri-
bution networks with a structure shown in Fig. 1. The
internal and the disturbance model used in the EMPC
scheme is found by using standard identification methods,
making the approach plug-and-play. We extend the ap-
proach in Kallesge et al. (2017) with the robust handling of
the stochastic variations on end-user consumption, which
leads to more cautious control behaviour. Hence, the fre-
quency at which the LSCs intervenes is reduced, resulting
in smoother flow and pressure.

The mean consumption profiles at PZ1 and PZ2 are
approximated by

E[dy tr)] = d tr) =E[ultr) — A(hlty) —hltr — 6t)—

~g1(tr)
Eld2 ()] = datr) = g2 tr), (6)

where g1 (t;) and go(t) are Fourier series, that model the
mean consumption in PZ1 and PZ2, respectively.

da(t))],

Besides modelling the flow consumption in the network,
a model describing the flow and pressure relation at the
pumping stations is required. Using that dy(tx) =~ g1(tx),
the pressure losses in the supply line are approximated by

Elp1 (tk) — po(tr) — ah(ty)] = f(u(te), g1(tx)), (7)
where po(tx) and p1(t) are the inlet and outlet pressures
of the pumping station, respectively. The function f is
a parametrization of the pipe pressure drops and has a
structure similar to (3). Moreover, ah is the pressure at
the point where the reservoir is connected to the network.

The variance of the two models are estimated from data,
given that g1(tx) and go(tx) are known, i.e.,

E[(di(tx) — di(tr))*]  gi(te)ol; + 02, i€ {12} (8)
where the right hand side has the form of a regression
model, meaning that o2, and o2 are calculated using

standard optimization methods for both pressure zones.

The fact that consumptions have a stochastic behaviour
and that only the statistics of the consumption is known,
implies that (1) and (2) must be reformulated to a stochas-
tic differential equation, i.e.,

dh = - (u(t)—d ()~ dy

2
A Z Gezdﬂ‘}'aezdﬂ)

(9)
where [ is a standard Brownian motion. The flow planning
in the GC is done with sample time AT'. This means that
the evolution of the tank level between two samples is
found by integrating the stochastic differential equation
(9) over the time interval t to tx + AT. Here, i € {1,2}
denotes the consumption of PZ1 and PZ2, respectively,
and the control signal in terms of flow wu(tx) is constant

over the time interval. The average level at time #x4; is
given by (Arstom, 1970, p. 51-57)

hitr+1) =E[htr+1)] =htr) + % (ttr) 01 1) +02tr),

where v(tx)* = ATu(ty) is the sampled control signal in
terms of volume and 71 (t) and 92 (¢x) are found by solving
the stochastic integral

th+AT t+AT
Ti(ty) = E l/ di(T)dT] %/ gi(T)dr. (11)

tr ti

§> \

(10)

Note that the average consumption models g; are known
functions estimated by the Fourier series from past data.

The covariance of h(tgy1) is needed for calculating the
stochastic boundaries for constraining the evolution of the
level in the elevated tank. The covariances are found under
the assumption that the consumption flows d;(tg) are
constant and equal to the average consumptions over the
sample period AT. That is, the consumption is d;(t;) ~
”"A(g’f), where 7;(tr) is given by (11). Hence, due to (2) the
covariance is given by (Arstém, 1970, p. 51-57), i.e.,

S (9 ) 0o

With the above model we are ready to present the opti-
mization problem of the EMPC scheme that is to be solved
at the GC level, i.e.,

v _argmvmz< ‘Al

E[(A(tr+1) = h(te1))?]~

p<tk>+m<v<tk_1>>—v(tk»?)

(13a)

subject to ~
h(to) = h(tx) (13h)
AT umin < v(tg) < ATUmax (13c¢)
Bltis) = Flta) + 7 (0(0) = 21(0) — a(6)) (1)
antt) = 1 () ) +ah) (139

haninton (01,02 ) < hltr) < hmax—on (01 ()2 0) (13f)
N
V<33 (olt) - nn)l +ealt)) (13g)
k=1

forall kK = 1,---,N. Note that h(tp) and v*(tg) are
the actual level and control signals, forming the initial
conditions for the optimization problem, and Ap(ty) =
p1(tx) — po(tr). The first term in (13a) formulates the
cost of operation, where c(tx) is a known price signal
consisting of price values over the entire horizon N. The
second term penalizes the rate of change of the control
signal v(t;). The weight term ka is constant, and the
efficiency term 7 is constant as well. The constraint in
(13b) ensures equality between the initial tank level and
the level at the end of the horizon. (13c) is a constraint on
inputs, while (13d) is the dynamics, where ¥;(t) is given
by (11). The constraint in (13e) describes the pressure in
the network, where f(-) is defined in (7). Furthermore,
the constraints in (13f) ensure that the reservoir levels are
within the accepted boundaries given by (4). Lastly, (13g)
describes the turnover requirements of the tank ensuring
water quality (Kallesge et al. (2017)). Here, V is the
minimum volume that is exchanged in the tank.

Note that the state constraints in (13f) have been extended
with the tightening terms o (o1 (tx), v2(tx)), & = 1,--- N.
Since the evolution of the system states is stochastic, we
treat our state constraints as stochastic, and approximate
them using chance-constraints. The tightening terms are

i(t) 22 2
o2 ), (14
) Jozkaz) a9

o (01 (tr), 2(tr)) = (7)™} % ((
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where ¢(-) is the cumulative distribution function of the
standard Gaussian distribution evaluated at v probability
level. Hence, ]P’(hmin < h(tk)) > v and ]P’(h(tk) < hmax) >
~. Note that the tightening in (14) can be pre-computed
for the optimization problem in (13a).

Remark 1. In this work we adopt the naiive approach of
chance-constrainted MPC, where the variance of the states
are not predicted. Our argument is that the control effort u
(with Hmits wmin < v < Umax) is always strong enough (the
boundaries; umi, small enough and wupmax large enough)
to keep up with the uncertainties within each update
interval AT. With this assumption the uncertainty is only
important one-step ahead. This naiive approach leads to
computation loads similar to a deterministic case, as the
covariance is not propagated in time.

8.2 Local Safety Controller

The task of the LSC is two-fold. Firstly, to avoid pressure
shocks in the network, the LSC must ensure smooth flow
changes. Secondly, the controller has to ensure that the
level constraints are fulfilled independently on the hourly
volume inputs v*(¢x), communicated by the GC.

Addressing the first task, each hour the GC calculates a
new volume setpoint. This setpoint is translated to a flow
reference profile for the next hour corresponding to the
setpoint volume. Such a flow profile is shown in Fig. 3.

q
q*(tk)

A

7" (te—1)

123 thp1 T

Fig. 3. Translated flow reference profile from volume com-
municated by the global controller.
According to Fig. 3, the flow u*(¢;) of PS1 is

uj ) =min{ Kyt —tr), ¢" ) —q" tr-1)}+a" k-1 (15)
where k (with sample time AT) is the sampling index
of the GC and [ (with sample time §t) is the sam-

pling index of the LSC. In (15) q(tx)* = gﬁ(At"'T)* +
2q(te—1)* and K(ty) 2ate)”—a(te=1)")  Note that

q(tr)*, q(tk+1)*, -+ can be calculated recursively when
q(tx—1))* and o(tx)*, v(tkxs+1)*, -+ are known. Hence, it
is possible to calculate a desired control vector u* =
[u(t)* -+ u(tiyar)*]" using (15).

Addressing the second task of the LSC, the volume set-
point ¥(tg)* is calculated based on the predicted con-
sumption. The actual consumption might differ from the
expected, hence the level constraint might be violated
within the sample period. Such violations must be avoided
with the use of the LSCs. The consumption is described
by (2), where d; (ty) is the average daily consumption vari-
ations. The average consumption d; is typically changing
slowly, hence can be assumed to be constant over a short
time. Therefore, a short-term prediction of the sum of
consumptions in PZ1 and PZ2 is given by

d(tiy1) = d(tr) + e(tr), (16)

where e(t;) € N(0,03). Here, 04 describes how much the
demand is expected to change between samples. Based on

the short-term demand model in (16) and the discretized
tank model in (1), a stochastic model is obtained

x(tiy1) = Az(t;) + Bu(t;) + ez (t1), (17a)
y(t1) = Cx(t;) + ey(tr), (17b)

where z(t;) = [d(t;) v(t;)]" are the short-term consump-
tion and reservoir volumes, respectively. u(¢;) is the flow
delivered by PS1, and

L e[l el

With appropriate choices of the covariance matrices @
and R of e,(t;) and ey(t;) respectively, a Kalman filter
is designed for estimating the state vector #(t;). This
state vector hold a short-term estimate of the consumption
J(tl), that will follow unexpected consumption changes.
The estimated consumption will be used for correcting the
pump flow u(tg) to avoid violating the level constraints
formulated in (4). Based on d(t;) and the flow reference
u(t;)*, the actual flow that fulfills the level constraints is
found by solving the optimization problem

. 1
mmZ( luttrss) = utteey)'IP + w36 (150

subject to

hmin S y(tl+j) S hmax . (18b)
for j = 0,---, M, where k is a weighting term. The
corrected pump flow is then found by
u(ty) = u(t;—1) + du. (19)
Since the solution is aimed to solve on local edge devices,
e.g., on PLCs, solving the optimization problem in (18a)
numerically and online should be avoided. Hence, we seek
a closed form solutions for the problem. To this end, du
is chosen to be a scalar (Ju € R), meaning that we seek
a ramp function that fulfills the constraints over the time
horizon mdt almost all times. Predicting the deterministic
part of (17) leads to the following description of the level
predictions § = [y(t;) - y(tiym)]" (Maciejowski (2002)),

z=®0z(t;_1) +Tu (20a)
g=Az. (20Db)

where the corrected pump flows @ are given by
U= ]lu(tl_l) + S1du. (21)

Here, u(t;—1) is the actual flow and S is a lower diagonal
matrix with ones in the lower triangle. Furthermore, using
(20) in the constraints (18b) leads to the following set of
constraints on du, i.e.,

1hpin — A@x(tl 1) — AT'Tu(t;—1) < gdu (22a)

9ou < Mhpax — ADPE(6—1) — AT Tu(t;—1), (22b)

where g = AT'S1 is a vector. Hence each row of (22a) and
(22b) can be evaluated individually. In the following let
G = diag{g} such that g = G1.

The constrains (22a) and (22b) cannot be fulfilled for
any values of w(t;—1) and x(¢;—1). However, the upper
constraints (22b) have priority since violating these con-
straints can lead to reservoir overflows and potential dam-
ages to the surroundings. These upper constraints can
always be fulfilled by a proper choice of du for any x(t;_1)
and u(t;—1).
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In the following, we will use the projection method de-
scribed in Bertsekas (1976) to solve the constrained opti-
mization problem. Projections are particularly easy in R,
hence the formulation of the optimization problem. The
solution to the optimization problem is given by

0=17S"(1u(t;_) —a* + S1ou) + k1T 16u <
Su=1"STS14x171) T ST a 1" ST 1u(t; ). (23)
The solution must be projected onto the feasible region

defined by (22a) and (22b) with priority to (22b). Alg. 1
solves the LSC optimization problem (18) for each .

Algorithm 1 Local safety controller.
Require: Settings: Amax, Pmin, &, A.
for each sample time t; do
Predict control values 4* using (15).
Sample values u;_1, h;.
Update the Kalman filter to obtain ;.
Calculate optimal flow step using (23).
Project into the feasible region using:
if ou < max G~ (Lhpin — A®E;_1 — AT'ly;_1) then
0u < max Gil(ﬂhmin —AOT;_ — AF]lul_l).
end if
if min G (Lhmax — A®Z;—1 — AT'lu;—1) < du then
du + min G (T hpax — APZ; 1 — AT uy_q).
end if
Update the pump flow: u; < u;_1 + du.
end for

where the settings are only accessible from the local device.

4. NUMERICAL RESULTS

In the following, we test the proposed control architecture
in a simulation environment where a water distribution
network with a structure similar to the one shown in Fig.
1 is utilized. The parameters and consumption profiles
are from a small water utility in the city Bjerringbro,
Denmark. The parameters describing the network are A =
240[m?], 11 = 72 = 5 [m/(m3/h)?], and o = 1[mWec/m]. In
the following test results, the weight of the EMPC (13) is
ka = 100, found by trial-and-error. The prediction horizon
is N = 24 with a sample time AT = 1[hour]. The sample
time of the local control §¢ = 1[min] with a prediction
horizon M = 15 steps. For the tests, we define three failure
scenarios relevant for water systems, i.e.,

Event 1: Abnormal water consumption in PZ1 caused by,
e.g. fire fighting or pipe burst.

Event 2: Hacking of the GC algorithm, forcing a flow
reference to make the elevated reservoir overflow.

Event 3: Communication breakdown between the GC
and LSC controllers, caused by, e.g. network failures,
DDoS attacks, or breakdown of the cloud server.

The results are shown in Fig. 4, where (a) and (b) show
the measured and predicted consumption in PZ1 and
PZ2, respectively. Fig. 4(c) compares the actual and the
predicted water levels in the tank, whereas Fig. 4(d) shows
the pumped flow at PS1, along with the occasions where
the LSC overrules the GC flow setpoints. Finally, Fig. 4(e)
shows the electricity prices for the given period. The tests
are conducted with consumption profiles for PZ1 and PZ2
in the period from Jan 01 to Jan 10 in 2022, and historical

electricity price data! from the same period. Our aim is
to show that the failures do not affect the operation of the
water network, hence the proposed control architecture is
robust and safe.

Event 1 shows the first failure scenario, where a 50 [m?/h|
increase in consumption is introduced in PZ1 from Jan
02 02:00 to 10:00. From Fig. 4(c) it is evident that the
increased consumption empties the tank and the LSC
overrules the flow setpoint to avoid violating the level con-
straint. Shortly after, the EMPC algorithm placed on the
GC layer can handle the increased consumption and the
level is continued to be within the constrained levels. Due
to the continuous update of the consumption predictions,
the abnormal flow event is saved in the telemetry, hence
the EMPC over-predicts the consumption the following
day and the uncertainty increases significantly in both Fig.
4(a) and Fig. 4(c). Note that the incorrect prediction does
affect the control in a short period after the event, but not
to the degree that the LSC needs to intervene.

Event 2 shows the second failure scenario, where a cyber-
attack is simulated from Jan 05 00:00 to 14:00. It is
anticipated that a hacker manipulates the flow reference
calculated by the GC and overwrites it to the highest
possible flow setpoint to cause overflow. As seen in Fig.
4(c) and Fig. 4(d), when the level reaches the maximum
bound, the LSC activates and reduces the flow setpoint.
The activation keeps the water level at its maximum, but
not above. In Fig. 4(d), the red crosses indicate that the
LSC is active during the entire cyber-attack and it is clear
that the flow reference 80 [m3/h] dictated by the GC (red
line) is reduced by the LSC (blue line).

Event 3 imposes a scenario where a communication error is
introduced from Jan 08 00:00 to 18:00. During the failure,
the LSC continues the system operation with the latest
set of optimal reference points calculated and transmitted
from the GC. As seen in Fig. 4(c), the latest setpoints
are accurate enough to keep the water level within the
constraints almost at all times. From Fig. 4(d), it is evident
that the LSC is only activated when the water level hits
the upper level bound, meaning that the flow is reduced.

5. CONCLUSION

This paper investigated a control architecture that enables
an integrated I'T/OT setup to utilize fluctuating electricity
prices in economic predictive control for water distribution
networks. From an operation and implementation point of
view, it comes naturally to place the predictive control
algorithm on a cloud server, thereby having the possibility
for connectivity and access to third-party market prices
of electricity. However, proposing such architecture raises
cyber-security risks. The proposed control methods and
architecture mitigate this risk by introducing a local safety
controller. The robustness of the proposed methods is
tested numerically on a real-world network structure and
with real data provided by the utility in Bjerringbro,
Denmark. The numerical tests verifies the robustness to
different unanticipated events, such as abnormal flow,
cyber-attacks, and communication errors. Moreover, as

1 The historical electricity market data is obtained with Energinet’s
DataHub, accessed at https://www.energidataservice.dk/tso-
electricity /Elspotprices.
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Fig. 4. Test results over a 10-days period of operation, where the different failure scenarios are tested (shaded with red).

the EMPC is adaptive, the control adapts to changes in
consumption over the year.
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