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A B S T R A C T   

The doubly-fed induction generator (DFIG) has been widely used in the field of wind generation. However, due to 
the couplings on both dc-side and ac-side, the full-order small-signal impedance model of the DFIG system is hard 
to build. A conventional modeling method is assuming a constant dc-link voltage to ignore the dc-side coupling. 
However, the reasonability of this assumption has not been demonstrated sufficiently. Differently, this paper 
proposes a two-port-network-based impedance modeling method by decoupling the ac-side coupling. With this 
method, the total admittance of the DFIG system is decomposed into four admittance components listed in a two- 
by-two matrix, and each of them can be calculated independently. Then, a full-order small-signal admittance 
model can be obtained by adding these four admittance components. The main advantage of the proposed 
method is that the complexity of the modeling process can be degraded and the impact of the dc-link coupling on 
the whole DFIG system can be analyzed quantitatively. It is found that only when the magnitudes of the non- 
diagonal elements in the two-by-two admittance matrix are at least 10 dB lower than the magnitudes of the 
total admittance of the DFIG system, the dc-link coupling can be ignored. Otherwise, ignoring the dc-link 
coupling will make the model inaccurate. Admittance measurements in simulations validate the correctness of 
the proposed modeling method.   

1. Introduction 

In the past decades, due to the foreseen exhaustion of conventional 
fossil-based energies and their climate impact, many global efforts have 
been devoted to developing renewable energy sources [1]. Among 
numerous renewable energy sources, wind power plays an increasingly 
important role due to its high energy density and easy obtainment [2]. 
For example, the on-shore, near-shore, and off-shore wind power have 
already provided nearly 50 % of the total electricity consumption in 
Denmark [3]. However, as the penetration of wind power increases, the 
grid-connected system tends to be unstable [4]. Therefore, modeling and 
stability analysis for wind power generation systems becomes a hot 
topic, which attracts a lot of research attention [5–7]. 

Nowadays, the doubly-fed induction generators (DFIG) and the 
permanent magnet synchronous generators (PMSG) with back-to-back 
converters are two mainstream types of wind power generation sys-
tems [8,9]. For the PMSG-based wind generation system, the PMSG and 
the back-to-back converter are connected in series (i.e., linear connec-
tion), so that the output impedance model can be easily derived 

according to the output voltage and current of the grid-side converter 
(GSC) [10–12]. Differently, for the DFIG-based wind generation system, 
the DFIG and the back-to-back converter are connected on both rotor 
side and stator side (i.e., circular connection), so the DFIG stator cur-
rents and the GSC output currents are influenced by each other, which 
makes it difficult to derive the full-order impedance model of the DFIG 
system [13–15]. A conventional modeling method is assuming a con-
stant dc-link voltage to ignore the dc-link coupling, so that the rotor-side 
converter (RSC) and the GSC can be modeled separately [16–21]. 
However, the reasonability of this assumption has not been demon-
strated sufficiently. 

Moreover, in order to establish a full-order impedance model of the 
DFIG system, some improved modeling methods with consideration of 
the dc-link voltage dynamics have been proposed in [22–24]. In [22], 
both the GSC and RSC are represented by three-port modules. Then, the 
full-order impedance model on the ac side can be obtained by combining 
these two three-port modules, where the dc-side impedance is intro-
duced into the modeling process. However, introducing the dc-side 
impedance may increase the complexity of the modeling process 
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because the final form of the model is the ac impedance rather than the 
dc impedance. In [23], the dc-link voltage dynamics are described by an 
indicator function so that a full-order impedance model can be derived 
in a mathematical way. However, this indicator function may lack a 
clear physical meaning to show deeper insights. In [24], a detailed 
sequence impedance modeling method based on the voltage perturba-
tions and current responses is introduced. However, the impact of the 
dc-link coupling is not identified clearly. Moreover, the critical condi-
tion to ignore the dc-link coupling has not been revealed clearly in 
existing research [22–24]. Thus, when performing the model reduction 
or simplification in a larger-scale system, the reasonability of the 
reduced-order model is still questionable. 

To address the aforementioned problems, a novel two-port-network- 
based decoupled impedance modeling method for the DFIG system is 
proposed in this paper. With this method, the physically coupled DFIG 
system can be decomposed into four decoupled subsystems and it can be 
modeled by a 2 × 2 matrix. Thus, the admittance models of the RSC and 
the GSC can be represented by the diagonal elements of the matrix, 
while the dc-link coupling between the RSC and the GSC is able to be 
reflected by the non-diagonal elements of the matrix. Each of the four 
elements in the 2 × 2 matrix can be calculated independently. Then, a 
full-order small-signal admittance model can be obtained by adding 
these four elements. Overall, the main contribution of this paper is 
proposing a two-port-network-based decoupled admittance/impedance 
modeling method for the DFIG system. Besides, the advantages of the 
proposed modeling method can be summarized as follows:  

(1) The physically coupled DFIG system can be decomposed into four 
decoupled subsystems for modeling, so the complexity of the 
modeling process can be degraded.  

(2) The admittance models of the four subsystems not only can be 
calculated but also are able to be measured, so the “white-box” 
method (i.e., analytical expressions) and the “black-box” method 
(i.e., measurement) can be used for cross-validation to check the 
correctness of the four admittance models, as well as the total 
terminal admittance.  

(3) By comparing the admittance models of the GSC, RSC, and the dc- 
link coupling, it can be figured out which part of the DFIG system 
has a lower weight. Thus, the model reduction or simplification 
can be performed accordingly. 

Through the quantitative analysis, the critical condition for ignoring 
the dc-link voltage dynamics can be found, which is that the magnitudes 
of the admittance model of the dc-link coupling are at least 10 dB lower 
than the magnitudes of the total admittance of the DFIG system. 

The rest of this paper is organized as follows. Section 2 introduces the 
impedance models of the DFIG + RSC and the GSC respectively. Then, a 
two-port-network-based decoupled impedance modeling method is 
proposed in Section 3. After that, the impact of the dc-link coupling is 
analyzed quantitatively in Section 4. Afterward, comparative analyses 
based on time-domain simulation results are provided in Section 5. 
Finally, concluding remarks are drawn in Section 6. 

2. Typical impedance modeling of DFIG þ RSC and GSC 
separately 

2.1. Configuration of the study system 

Schematic diagram of the DFIG-based wind generation system with 
grid-following control is presented in Fig. 1. Fig. 1(a) shows the physical 
configuration of the DFIG system, where a DFIG and a back-to-back 
converter are connected to the grid at the point of common coupling 
(PCC). Cdc is a dc capacitor on the dc-side. Lf and Cf are the filter in-
ductors and capacitors on the ac-side. Lg represents the grid impedance, 
where the grid resistance is ignored. Considering the rotor speed 
changes in a slower time scale compared to the fundamental frequency 

of the ac voltages and currents, the rotor speed ωr is assumed to be 
constant in this paper. 

Fig. 1(b) shows the stator-voltage oriented control (SVOC) scheme of 
the RSC, which includes inner current control loops, outer power control 
loops and a phase-locked loop (PLL). The control system is performed in 
the rotating d-q frame. The active power is controlled on the d-axis. In 
this paper, a weak grid condition with SCR = 1.5 is chosen for study, so 
the stator voltage magnitude Vs is used for control on the q-axis rather 
than the reactive power Qs, which is the same as [25]. In Fig. 1(b), ω1 
represents the angular frequency of the stator voltage, while ωslip rep-
resents the slip angular frequency between the stator and the rotor, 
which is equal to (ω1-ωr). Notably, the measured value of dc-link voltage 
is used for modulation in this paper. 

Fig. 1(c) shows the control scheme of the GSC, which includes inner 
current control loops, an outer dc voltage control loop and a PLL. To 
differentiate two PLLs on the RSC and GSC, the PLL on the RSC is named 
“PLL-1”, while the PLL on the GSC is named “PLL-2”. The detailed small- 
signal models of DFIG, RSC and GSC will be provided in the following 

Fig. 1. Schematic diagram of DFIG-based wind generation system with grid- 
following control. (a) Physical configuration of DFIG system. (b) Control 
scheme of RSC. (c) Control scheme of GSC. 
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sections. Notably, the selected control schemes shown in Fig. 1(b) and 
(c) are just used as an example for analysis in this paper. In other words, 
the proposed decoupled impedance modeling method (see Section 3) in 
this paper is not limited to the selected control schemes, which can also 
be used to build the impedance model of the DFIG system with other 
control methods (e.g., P and Q control on the RSC [15,26], rotor speed 
and Q control on the RSC [14], and droop-based power control on the 
RSC [9]). 

2.2. Modeling of DFIG 

Same as [16,27], the stator/rotor voltage and flux equations of the 
DFIG in d-q frame are given by (1)–(4). 
⎧
⎪⎪⎨

⎪⎪⎩

vsd = Rsisd +
dψsd

dt
− ω1ψsq

vsq = Rsisq +
dψsq

dt
+ ω1ψsd

(1)  

⎧
⎪⎪⎨

⎪⎪⎩

vrd = Rrird +
dψrd

dt
− ωslipψrq

vrq = Rrirq +
dψrq

dt
+ ωslipψrd

(2)  

{
ψsd = Lsisd + Lmird
ψsq = Lsisq + Lmirq

(3)  

{
ψrd = Lrird + Lmisd
ψrq = Lrirq + Lmisq

(4) 

Substituting (3) and (4) into (2), it can be derived as: 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

vrd −
Lm

Ls

dψsd

dt
+

Lm

Ls
ωslipψsq = Rrird + σLr

dird

dt
− ωslipσLrirq

vrq −
Lm

Ls

dψsq

dt
−

Lm

Ls
ωslipψsd = Rrirq + σLr

dirq

dt
+ ωslipσLrird

(5)  

where σ = (LsLr-Lm
2)/(LsLr). 

Considering the stator resistance Rs in (1) is very small, it can be 
ignored approximately. Thus, when (1), (3) and (5) are transformed to 
the frequency domain by using the Laplace transform, the small-signal 
expressions can be derived as: 
[

Δisd
Δisq

]

=

[
sLs − ω1Ls

ω1Ls sLs

]− 1

⋅
[

Δvsd
Δvsq

]

−
Lm

Ls

[
Δird
Δirq

]

(6)  

[
Δird
Δirq

]

=

[
Rr + sσLr − ωslipσLr
ωslipσLr Rr + sσLr

]− 1

⋅(
[

Δvrd
Δvrq

]

−

[
sLm − ωslipLm

ωslipLm sLm

]

⋅
[

sLs − ω1Ls
ω1Ls sLs

]− 1

⋅
[

Δvsd
Δvsq

])

(7)  

where Δ represents the small-signal perturbations of variables. 
According to (6) and (7), the small-signal impedance model of the 

DFIG is shown in Fig. 2, where BLr, BLm, and BLs represent the 2 × 2 
matrixes in (7). 

2.3. Modeling of RSC 

According to the RSC control scheme in Fig. 1(b), the small-signal 
impedance model of the RSC is presented in Fig. 3. Notably, each sym-
bol B represents a 2 × 2 matrix. The detailed expressions of all the 
matrixes are provided in the Appendix. Same as [28], to differentiate the 
system d-q frame and the control d-q frame, a superscript ‘ctrl’ denotes 
the variables in the control d-q frame. 

2.4. Modeling of GSC 

Similarly, according to the GSC control scheme in Fig. 1(c), the 
small-signal impedance model of the GSC is presented in Fig. 4. The 
detailed expressions of all the matrixes are given in the Appendix. 

3. Proposed two-port-network-based decoupled impedance 
modeling method for DFIG system 

As aforementioned, due to the couplings between the RSC and the 
GSC, it is difficult to build the full-order impedance model of the DFIG 
system. In this section, a two-port-network-based decoupled impedance 
modeling method will be introduced to overcome this difficulty. 

At first, a conventional impedance modeling method by ignoring the 
dc-link coupling is discussed briefly. The structure of a real DFIG system 
is shown in Fig. 5(a), which can be treated as a two-port network. Due to 
the RSC and the GSC are coupled on both dc-side and ac-side, it is hard to 
build a full-order impedance model of the DFIG system. To address this 
difficulty, an approximate modeling method by ignoring the dc-link 
coupling is usually used, as shown in Fig. 5(b). Thus, the original two- 
port network can be simplified to be two one-port networks approxi-
mately. For the one-port network, it is easy to derive the output 
admittance according to the output voltages and currents. Thus, the 
output terminal admittance of the DFIG system can be derived by (8). 

YDFIG− SYS(s) ≈ Y ’

DFIG− SYS(s) =
− ΔiA(s)
ΔvA(s)

+
− ΔiB(s)
ΔvB(s)

(8) 

However, the modeling method by ignoring the dc-link coupling is 
just an approximate method. To obtain an accurate full-order imped-
ance/admittance model, the dc-link coupling should be considered. To 
describe the coupling between port A and port B, a 2 × 2 matrix is 
introduced in this paper. From the two-port network point of view, the 
relationship between voltages and currents at two ports can be described 
by a 2 × 2 admittance matrix, as expressed in (9). Thus, the admittance 
model of DFIG + RSC is represented by YAA, and the admittance model 
of the GSC is represented by YBB. Besides, the admittance model of the 
dc-link coupling between the GSC and RSC is represented by YAB and 
YBA. 

Fig. 2. Small-signal impedance model of DFIG in the d-q frame.  Fig. 3. Small-signal impedance model of DFIG + RSC in the d-q frame.  
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[
− ΔiA(s)
− ΔiB(s)

]

=

[
YAA(s) YAB(s)
YBA(s) YBB(s)

]

⋅
[

ΔvA(s)
ΔvB(s)

]

(9) 

According to Fig. 5(a), it is known that “Δipcc = ΔiA + ΔiB and Δvpcc 
= ΔvA = ΔvB”. Thus, the total output admittance of the DFIG system can 
be derived by (10), which is equal to the sum of four admittance com-
ponents. Thus, as long as the four admittance components can be 
calculated, the total output admittance YDFIG-SYS can be obtained 
accordingly. 

YDFIG− SYS(s) =
− Δipcc(s)
Δvpcc(s)

=
− [ΔiA(s) + ΔiB(s)]

Δvpcc(s)

=
[YAAΔvA(s) + YABΔvB(s)] + [YBAΔvA(s) + YBBΔvB(s)]

Δvpcc(s)

= YAA(s) + YAB(s) + YBA(s) + YBB(s)

(10) 

In order to calculate the four admittance components in (9), a two- 
port-network-based decoupled impedance modeling method is pro-
posed in this paper, which is shown in Fig. 6. The main idea of the 
proposed method is to decouple the ac-side connection of port A and 
port B. Namely, port A and port B are connected to two grids ideally with 
the same parameters. Thus, each admittance component can be calcu-
lated or measured independently. It is worth mentioning that as long as 
the two grid voltages at the PCC and PCC’ are the same, the modified 
DFIG system in Fig. 6 is equivalent to the original DFIG system in Fig. 5 

(a). The detailed admittance modeling process will be introduced in the 
following sections. 

3.1. Admittance modeling from port A to port A 

As shown in Fig. 6(a), when injecting a small-signal voltage pertur-
bation ΔvA into the two-port network from port A, there is a current 
response ΔiAA at port A. So, the admittance YAA can be expressed as: 

Ydq
AA(s) =

− Δidq
AA(s)

Δvdq
A (s)

=
Δisdq(s)
Δvsdq(s)

(11)  

where Δisdq and Δvsdq are the stator current and voltage. 
According to (11) and Fig. 3, the admittance YAA in Fig. 6(a) can be 

derived as: 

Fig. 4. Small-signal impedance model of GSC in the d-q frame.  

Fig. 5. Port network analysis of a normal DFIG system and an approximate 
DFIG system by ignoring the dc-link coupling. (a) A normal DFIG system; (b) An 
approximate DFIG system for modeling. 

Fig. 6. Proposed two-port-network-based decoupled impedance modeling 
method for the DFIG system. (a) Modeling from port A to port A. (b) Modeling 
from port A to port B. (c) Modeling from port B to port A. (d) Modeling from 
port B to port B. 

L. Huang et al.                                                                                                                                                                                                                                  



International Journal of Electrical Power and Energy Systems 157 (2024) 109878

5

Ydq
AA(s)=

[
Ls

Lm

(
BPI− I− 1 − Bdecpl− 1+BLr+BPI− I− 1BPI− PVBLPFBv− 1

)
]− 1

⋅[BLmB− 1
Ls

−
(
BPI− I− 1 − Bdecpl− 1

)
Bpll− 1− Ir − Bpll− 1− Vr+

Ls

Lm
⋅
(

BPI− I− 1 − Bdecpl− 1+BLr

)

B− 1
Ls

+
Ls

Lm
(BPI− I− 1BPI− PVBLPFBi− 1)

]

(12)  

3.2. Admittance modeling from port A to port B 

As shown in Fig. 6(b), when injecting a small-signal voltage pertur-
bation ΔvA into the two-port network from port A, there is a current 

response ΔiAB at port B due to the dc-link coupling. So, the admittance 
YAB can be expressed as: 

Ydq
AB(s) =

− Δidq
AB(s)

Δvdq
A (s)

=
− Δiodq(s)
Δvsdq(s)

(13)  

where Δiodq is the output current of the GSC and Δvsdq is the stator 
voltage of the DFIG. 

According to Fig. 4, assuming that the voltage Δvodq is equal to zero, 
the transfer function from ΔPrsc to Δiodq can be derived as: 

Δiodq(s) = −
(
BLf + BPI− I− 2 − Bdecpl− 2 − BPI− I− 2BPI− VdcGCdcBv− 2

)− 1⋅

(BPI− I− 2BPI− VdcGCdc)⋅
[ΔPrsc

0

]

(14) 

If the switching losses on the RSC are ignored, the output power of 
the RSC is the same as the output power of the DFIG on the rotor side. 
Thus, the small-signal expression of the power ΔPrsc is given by (15). 
[

ΔPrsc
0

]

= −
3
2
⋅{
[

ird0 irq0
0 0

]

⋅
[

Δvrd
Δvrq

]

+

[
vrd0 vrq0
0 0

]

⋅
[

Δird
Δirq

]}

(15)  

where the subscript ‘0’ denotes the steady-state operating points of 
variables. 

Substituting the small-signal expressions and the steady-state ex-
pressions of (1), (3) and (5) into (15), the power ΔPrsc can be deduced as: 
[

ΔPrsc

0

]

=−
3
2

⋅{[
(L2

m − LsLr)s− 2RrLs

Lm
⋅

[
ird0 irq0

0 0

]

−
ωslip

ω1
⋅

[
vsd0 vsq0

0 0

]]

⋅

[
Δisd

Δisq

]

+[
Lrs+2Rr

Lm
⋅

[
ird0 irq0

0 0

]

+ωslip⋅

[
− isq0 isd0

0 0

]]

⋅

[
s − ω1

ω1 s

]− 1

⋅

[
Δvsd

Δvsq

]

}

(16) 

According to (11), Δisdq can be expressed by “YAA•Δvsdq”. Thus, (16) 
can be deduced as (17). 

[
ΔPrsc

0

]

=−
3
2

⋅{

[(
L2

m − LsLr
)
s− 2RrLs

Lm
⋅

[
ird0 irq0

0 0

]

−
ωslip

ω1
⋅

[
vsd0 vsq0

0 0

]]

⋅Ydq
AA(s)

+

[
Lrs+2Rr

Lm
⋅

[
ird0 irq0

0 0

]

+ωslip⋅

[
− isq0 isd0

0 0

]]

⋅

[
s − ω1

ω1 s

]− 1

}⋅Δvsdq(s)

(17) 

Substituting (14) and (17) into (13), the admittance YAB can be 
derived as:   

3.3. Admittance modeling from port B to port A 

As shown in Fig. 6(c), when injecting a small-signal voltage pertur-
bation ΔvB into the two-port network from port B, there is a current 
response ΔiBA at port A. So, the admittance YBA can be expressed as: 

Ydq
BA(s) =

− Δidq
BA(s)

Δvdq
B (s)

=
− Δisdq(s)
Δvodq(s)

(19)  

where Δisdq is the stator current of the DFIG and Δvodq is the output 
voltage of the GSC. 

Notably, the dc-link voltage is controlled by the GSC and the 
measured value of dc-link voltage is used for the voltage modulation on 
the RSC, so the output voltage of the RSC is independent from the dc-link 
voltage [29]. Thus, the injected small-signal perturbation at port B is 
only able to be transferred to the dc-link, while it cannot be further 
transferred to port A. So, ΔiBA is equal to zero theoretically. Thus, the 
admittance YBA in (19) can be derived as: 

Ydq
BA(s) =

0
Δvdq

B (s)
= 0 (20)  

3.4. Admittance modeling from port B to port B 

As shown in Fig. 6(d), when injecting a small-signal voltage pertur-
bation ΔvB into the two-port network from port B, there is a current 
response ΔiBB at port B. So, the admittance YBB can be expressed as: 

Ydq
BB(s) =

− Δidq
BB(s)

Δvdq
B (s)

=
− Δiodq(s)
Δvodq(s)

(21)  

where Δiodq and Δvodq are the current and voltage of the GSC. 
According to the small-signal model in Fig. 4, when the power ΔPrsc 

is equal to zero, the expression of the current Δiodq can be derived as: 

Ydq
AB(s) =

− 3
2

⋅
(
BLf + BPI− I− 2 − Bdecpl− 2 − BPI− I− 2BPI− VdcGCdcBv− 2

)− 1⋅(BPI− I− 2BPI− VdcGCdc)⋅{[
(
L2

m − LsLr
)
s − 2RrLs

Lm

⋅

[
ird0 irq0

0 0

]

−
ωslip

ω1
⋅

[
vsd0 vsq0

0 0

]]

⋅Ydq
AA(s) +

[
Lrs + 2Rr

Lm
⋅

[
ird0 irq0

0 0

]

+ ωslip⋅

[
− isq0 isd0

0 0

]]

⋅

[
s − ω1

ω1 s

]− 1} (18)   
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Δiodq(s) = −
(
BLf + BPI− I− 2 − Bdecpl− 2 − BPI− I− 2BPI− VdcGCdcBv− 2

)− 1⋅ [I

−
(
BPI− I− 2 − Bdecpl− 2

)
Bpll− 1− Ic − Bpll− 1− Vc

− BPI− I− 2BPI− VdcGCdcBi− 2]⋅Δvodq(s) − BCf ⋅Δvodq(s)
(22) 

Substituting (22) into (21), the admittance YBB can be deduced as: 

Ydq
BB(s) =

(
BLf + BPI− I− 2 − Bdecpl− 2 − BPI− I− 2BPI− VdcGCdcBv− 2

)− 1⋅ [I

−
(
BPI− I− 2 − Bdecpl− 2

)
Bpll− 1− Ic − Bpll− 1− Vc − BPI− I− 2BPI− VdcGCdcBi− 2]+BCf

(23) 

Based on the above analysis, the four admittance components YAA, 
YAB, YBA, and YBB are obtained in (12), (18), (20), and (23). According 
to (10), the total admittance can also be obtained as “YDFIG-SYS = YAA +

YAB + YBA + YBB”. 

3.5. Validation by admittance measurement in the d-q frame 

To verify the correctness of the proposed impedance modeling 

method, a 2 MW grid-connected DFIG simulation model is built in 
Matlab/Simulink. Besides, a typical impedance/admittance measure-
ment method introduced in [30] is used in this paper, which is shown in 
Fig. 7. It can be seen from Fig. 7 that small-signal harmonic perturba-
tions vh(abc) are injected into the study system at the PCC. Meanwhile, the 
terminal voltage v(abc) and current i(abc) are measured by the voltage and 
current sensors. According to the measured voltage and current, the 
harmonic current and voltage components iH(d), iH(q), vH(d) and vH(q) 
can be extracted by using the fast Fourier transform (FFT) algorithm. 
Then, a 2 × 2 admittance matrix [Ydd, Ydq; Yqd, Yqq] can be calculated 
accordingly. Moreover, this admittance modeling system can be simply 
extended to be used for the proposed two-port network-based decoupled 
DFIG system by placing the “Voltage harmonic injection” block and the 
“Measurement of current” block at different positions (i.e., four cases 
shown in Fig. 6). 

The system and control parameters of the DFIG, RSC, and GSC are 
listed in Tables 1 and 2. The d-q admittance measurement results of the 
DFIG system under super-synchronous and sub-synchronous speed 
conditions are shown in Fig. 8, where the subscripts ‘calc’ and ‘meas’ of 
variables denote calculation and measurement respectively. 

In Fig. 8, the red, green, and blue curves show the d-q admittance 
characteristics of YAA, YAB, and YBB, which are calculated by (12), (18), 
and (23). Since YBA is equal to zero according to (20), it is omitted. 
Besides, the black curves show the admittance characteristics of YDFIG- 

SYS, which is equal to the sum of YAA, YAB, YBA, and YBB. It can be seen 
from Fig. 8 that the calculated d-q admittance curves of YAA, YAB, YBB 
and YDFIG-SYS agree well with the measurement results, which proves the 
proposed two-port-network-based decoupled modeling method is 
correct. 

As shown in Fig. 8, the impact of the dc-link coupling is more critical 
in the low-frequency range (e.g., lower than 100 Hz), because the 
magnitude of YAB relatively higher (closer to the magnitude of YDFIG- 

SYS). Besides, by comparing Fig. 8(a) and (b), it can be seen that the 
impact of the dc-link coupling under the super-synchronous speed 
condition is stronger than that under sub-synchronous speed condition 
due to a higher magnitude of YAB. 

4. Dc-link coupling analysis 

According to the admittance model of the DFIG system introduced in 
the previous section, it is known that the dc-link coupling can be re-
flected by the non-diagonal elements YAB and YBA. Moreover, since the 
admittance YBA is equal to zero, the dc-link coupling is only reflected by 
the admittance YAB. Hence, the impact of YAB will be mainly discussed in 
this section. 

Fig. 7. A typical d-q impedance/admittance modeling system.  

Table 1 
Parameters of DFIG and RSC.  

Parameters Values 

PN1 Rated active power (3 phase) 2 MW (1 p.u.) 
VN1 Rated phase voltage, peak value 563 V (1 p.u.) 
IN1 Rated phase current, peak value 2368 A (1 p.u.) 
f1 Fundamental frequency 50 Hz (1 p.u.) 
ω1 Fundamental angular frequency 2π•50 rad/s (1p.u.) 
ωr Rotor speed 40–60 Hz 
np Pole pairs 2 
Lσs Stator leakage inductance 0.038 mH (0.05 p.u.) 
Lσr Rotor leakage inductance 0.064 mH (0.08 p.u.) 
Lm Mutual inductance 2.9 mH (3.83 p.u.) 
Rs Stator resistance 1.7 mΩ (0.007 p.u.) 
Rr Rotor resistance 1.5 mΩ (0.006 p.u.) 
Ke Turns ratio 1/3 
ωi1 Designed current-loop bandwidth 2000 rad/s 
ωp Designed power-loop bandwidth 10 rad/s 
ωv Designed ac voltage-loop bandwidth 50 rad/s 
ωLPF Cut-off angular frequency of LPFs 300 rad/s 
ζ1 Damping ratio of PLL-1 1 
ωn1 Natural frequency of PLL-1 100 rad/s  

Table 2 
Parameters of GSC and Grid.  

Parameters Values 

PN2 Rated active power (3 phase) 667 kW (1/3 p.u.) 
VN2 Rated phase voltage, peak value 563 V (1 p.u.) 
IN2 Rated phase current, peak value 789 A (1/3 p.u.) 
Vdc Rated dc-link voltage 1.1 kV (1.95 p.u.) 
Cdc Dc-link capacitance 10 mF (2.25/3 p.u.) 
Lf Filter inductance 0.34 mH (0.15 × 3 p.u.) 
Rf Filter resistance 3.6 mΩ (0.005 × 3 p.u.) 
Cf Filter capacitance 75 μF (0.017/3 p.u.) 
ωi2 Designed current-loop bandwidth 2000 rad/s 
ζvdc Damping ratio of dc voltage loop 1 
ωnvdc Natural frequency of dc voltage loop 40 rad/s 
ζ2 Damping ratio of PLL-2 1 
ωn2 Natural frequency of PLL-2 200 rad/s 
SCR Short-circuit ratio 1.5–15 
Lg Grid inductance 0.5–0.05 mH  
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Fig. 8. Model validation by admittance measurement in the d-q frame. (a) Under super-synchronous speed condition with ωr = 60 Hz. (b) Under sub-synchronous 
speed condition with ωr = 40 Hz. 
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By substituting (A10)-(A15) into (18), the expression of YAB is able to 
be rewritten as (24).   

It can be seen from (24) that the magnitude of YAB is proportional to 
ωnvdc. Notably, since the dc voltage control loop is a second-order sys-
tem, when the damping ratio ζvdc is constant, the natural angular fre-
quency ωnvdc is proportional to the bandwidth [28]. Thus, the magnitude 
of YAB is also proportional to the bandwidth of the dc voltage control 
loop. Therefore, a higher bandwidth 100 rad/s and a lower bandwidth 
10 rad/s of the dc voltage control loop are chosen as examples for 
analyzing the impact of YAB, which are shown in Fig. 9(a), (b), and (c), 
(d) respectively. 

It can be seen from Fig. 9(a) and (b) that when the magnitude dif-
ference between YDFIG-SYS and YAB is lower than 5 dB, the approximate 
model Y’DFIG-SYS is inaccurate, because the measured results and the 

calculated results in Fig. 9(b) are not overlapped. Differently, it can be 
seen from Fig. 9(c) and (d) that when the magnitude difference between 
YDFIG-SYS and YAB is higher than 10 dB, the approximate model Y’DFIG- 

SYS is relatively accurate, because the measured results and the calcu-
lated results in Fig. 9(d) are almost overlapped. 

Moreover, to see whether the above conclusion is suitable for a low- 
power DFIG system, the admittance characteristics of a 30 kW DFIG 
system is presented in Fig. 10. 

It can be seen from Fig. 10(a) and (b) that when the magnitude 
difference between YDFIG-SYS and YAB is lower than 7 dB, the approxi-
mate model Y’DFIG-SYS is inaccurate, because the measured results and 
the calculated results in Fig. 10(b) are not overlapped. Differently, it can 
be seen from Fig. 10(c) and (d) that when the magnitude difference 
between YDFIG-SYS and YAB is higher than 10 dB, the approximate model 
Y’DFIG-SYS is relatively accurate, because the measured results and the 
calculated results in Fig. 10(d) are almost overlapped. 

Fig. 9. Evaluation of the accuracy of the approximate model in case of 2 MW 
DFIG system. (a) Full-order model with YDFIG-SYS = YAA + YAB + YBA + YBB. (b) 
Reduced-order model with Y’DFIG-SYS = YAA + YBB (dc voltage loop bandwidth 
is 100 rad/s). (c) Full-order model with YDFIG-SYS = YAA + YAB + YBA + YBB. (d) 
Reduced-order model with Y’DFIG-SYS = YAA + YBB (dc voltage loop bandwidth 
is 10 rad/s). 

Fig. 10. Evaluation of the accuracy of the approximate model in case of 30 kW 
DFIG system. (a) Full-order model with YDFIG-SYS = YAA + YAB + YBA + YBB. (b) 
Reduced-order model with Y’DFIG-SYS = YAA + YBB (dc voltage loop bandwidth 
is 100 rad/s). (c) Full-order model with YDFIG-SYS = YAA + YAB + YBA + YBB. (d) 
Reduced-order model with Y’DFIG-SYS = YAA + YBB (dc voltage loop bandwidth 
is 10 rad/s). 

Ydq
AB(s) =

ωi2

ωi2 + s
⋅
(
2ζvdcωnvdcs + ω2

nvdc

)

s2 +
ωi2

ωi2 + s
⋅
(
2ζvdcωnvdcs + ω2

nvdc

)⋅
1
Vo

⋅

[
1 0

0 0

]

⋅{[
(
L2

m − LsLr
)
s − 2RrLs

− Lm
⋅

[
ird0 irq0

0 0

]

+
ωslip

ω1
⋅

[
vsd0 vsq0

0 0

]]

⋅Ydq
AA(s) +

[
Lrs + 2Rr

Lm
⋅

[
ird0 irq0

0 0

]

+ ωslip⋅

[
− isq0 isd0

0 0

]]

⋅

[
s − ω1

ω1 s

]− 1}
(24)   
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Fig. 11. Simulation results in a strong grid case (SCR = 15). (a) Normal DFIG system in Fig. 5. (b) Proposed decoupled DFIG system in Fig. 6.  
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Based on the above analysis, the critical condition for ignoring the 
dc-link voltage dynamics (i.e., the magnitude difference is at least 10 dB) 
revealed in this manuscript is suitable for both the high-power (e.g., 2 
MW) DFIG system and the low-power (e.g., 30 kW) DFIG system. 

5. Time-domain simulation comparison 

In order to see the difference between the normal DFIG system and 
the proposed decoupled DFIG system, the time-domain simulation re-
sults will be compared in this section. 

A strong grid case with SCR = 15 is provided in Fig. 11, where Fig. 11 
(a) shows the simulation results of a normal DFIG system, while Fig. 11 
(b) shows the simulation results of the proposed decoupled DFIG system. 
At the instant of 3 s, the stator active power reference is increased from 
0 to 0.8 p.u. Then, the stator active power follows the reference to be 
increased to 0.8 p.u. During the time period 4 s–4.5 s, the rotor speed is 
increased from 0.8 p.u. to 1.2 p.u., and the active power of the GSC is 
changed from negative to positive. Afterward, during the time period 5 
s–5.5 s, the grid voltage magnitude is reduced from 1p.u. to 0.8p.u. The 
stator reactive power is increased to support the PCC voltage, but the 
PCC voltage can only be supported to be 0.85 p.u. in the strong grid case. 
Then, when the grid voltage returns to its nominal value after 6.5 s, all 
the variables go back to the original steady-state values. It can be seen 
from Fig. 11 that the simulation results of a normal DFIG system and the 
proposed decoupled DFIG system are highly identical. 

In addition, a weak grid case with SCR = 1.5 is provided in Fig. 12, 
where Fig. 12(a) presents the simulation results of a normal DFIG sys-
tem, while Fig. 12(b) presents the simulation results of the proposed 
decoupled DFIG system. At the moment of 3 s, the stator active power 
reference is rised from 0 to 0.8 p.u. Then, the stator active power follows 
the reference. During the time period 4 s–4.5 s, the rotor speed is 
changed from 0.8 p.u. to 1.2 p.u., and the active power of the GSC is 

changed from negative to positive. Afterward, during the time period 5 
s–5.5 s, the grid voltage magnitude is decreased from 1 p.u. to 0.8 p.u. 
The stator reactive power is increased to support the PCC voltage and 
the magnitude of the PCC voltage is supported to be 1 p.u. in the weak 
grid case. Then, when the grid voltage returns to its nominal value after 
6.5 s, all the variables go back to the original steady-state values. 
Overall, during the whole process, only the stator reactive powers in 
Fig. 12(a) and (b) are slightly different. Aside from that, other variables 
in Fig. 12(a) and (b) are basically identical. 

Based on the above analysis, the proposed decoupled DFIG system 
shown in Fig. 6 can be considered to be equivalent to the normal DFIG 
system shown in Fig. 5. 

Notably, since the research focus of this paper is the small-signal 
modeling, the transient performance under grid fault conditions is not 
considered in this paper, which will be studied further in our future 
work. 

6. Conclusion 

This paper introduces a two-port-network-based decoupled imped-
ance modeling method for the DFIG system. By using this method, the 
total admittance of the DFIG system is decomposed into four admittance 
components. Each of them can be modeled separately, so that the 
complexity of the modeling process is degraded. Besides, since the dc- 
link coupling can be modeled separately, its impact on the whole 
DFIG system is able to be analyzed quantitatively and intuitively. 
Through the quantitative analysis, it is found that when the bandwidth 
of the dc voltage control loop is low enough to make the magnitudes of 
the coupling admittance at least 10 dB lower than that of the total 
admittance, the coupling effect caused by the dc-link voltage dynamics 
can be ignored. Otherwise, the dc-link voltage dynamics should be 
considered. Thus, the precondition of ignoring the dc-link voltage 

Fig. 12. Simulation results in a weak grid case (SCR = 1.5). (a) Normal DFIG system in Fig. 5. (b) Proposed decoupled DFIG system in Fig. 6.  
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dynamics is found in this paper. All the theoretical analyses are verified 
by admittance measurements in simulations. 
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Appendix A 

The 2 × 2 matrixes in the RSC impedance model shown in Fig. 3 are given by (A1)-(A8). 

BPI− I− 1 =

⎡

⎢
⎢
⎣

Kp I rsc +
Ki I rsc

s
0

0 Kp I rsc +
Ki I rsc

s

⎤

⎥
⎥
⎦ (A1)  

where Kp_I_rsc + Ki_I_rsc/s = ωi1σLr + ωi1Rr/s. 

Bdecpl− 1 =

[
0 − ωslipσLr

ωslipσLr 0

]

(A2)  

BPI− PV =

⎡

⎢
⎢
⎣

Kp P rsc +
Ki P rsc

s
0

0 − Kp V rsc −
Ki V rsc

s

⎤

⎥
⎥
⎦ (A3)  

where Kp_P_rsc + Ki_P_rsc/s = ωp/1.5/VN1•(1/ωLPF + 1/s). 

BLPF =

⎡

⎢
⎢
⎣

ωLPF

s + ωLPF
0

0
ωLPF

s + ωLPF

⎤

⎥
⎥
⎦ (A4)  

Bv− 1 =

[
1.5vsd0 1.5vsq0

0 0

]

(A5)  

Bi− 1 =

[
− 1.5isd0 − 1.5isq0

1 0

]

(A6)  

Bpll− 1− Vr =

⎡

⎢
⎢
⎢
⎣

0 − vrq0⋅
Gpll− 1

Vs

0 vrd0⋅
Gpll− 1

Vs

⎤

⎥
⎥
⎥
⎦

(A7)  

where Gpll-1 = (2ζ1ωn1s + ωn1
2)/(s2 + 2ζ1ωn1s + ωn1

2). 

Bpll− 1− Ir =

⎡

⎢
⎢
⎢
⎣

0 − irq0⋅
Gpll− 1

Vs

0 ird0⋅
Gpll− 1

Vs

⎤

⎥
⎥
⎥
⎦

(A8) 

The 2 × 2 matrixes in the GSC impedance model shown in Fig. 4 are given by (A9)-(A18). 

BCf =

[
sCf − ω1Cf

ω1Cf sCf

]

(A9)  

BLf =

[
sLf + Rf − ω1Lf

ω1Lf sLf + Rf

]

(A10)  

BPI− I− 2 =

⎡

⎢
⎢
⎣

Kp I gsc +
Ki I gsc

s
0

0 Kp I gsc +
Ki I gsc

s

⎤

⎥
⎥
⎦ (A11) 
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where Kp_I_gsc + Ki_I_gsc/s = ωi2Lf + ωi2Rf/s. 

Bdecpl− 2 =

[
0 − ω1Lf

ω1Lf 0

]

(A12)  

BPI− Vdc =

⎡

⎣
− Kp Vdc gsc −

Ki Vdc gsc

s
0

0 0

⎤

⎦ (A13)  

where Kp_Vdc_gsc + Ki_Vdc_gsc/s = Cdc/2/1.5/VN2•(2ζvdcωnvdc + ωnvdc
2 /s). 

GCdc =
1

(Cdc/2)s
(A14)  

Bv− 2 =

[
1.5⋅vod0 1.5⋅voq0

0 0

]

(A15)  

Bi− 2 =

[
1.5⋅icd0 1.5⋅icq0

0 0

]

(A16)  

Bpll− 2− Vc =

⎡

⎢
⎢
⎢
⎣

0 − vcq0⋅
Gpll− 2

Vo

0 vcd0⋅
Gpll− 2

Vo

⎤

⎥
⎥
⎥
⎦

(A17)  

where Gpll-2 = (2ζ2ωn2s + ωn2
2) / (s2 + 2ζ2ωn2s + ωn2

2). 

Bpll− 2− Ic =

⎡

⎢
⎢
⎢
⎣

0 − icq0⋅
Gpll− 2

Vo

0 icd0⋅
Gpll− 2

Vo

⎤

⎥
⎥
⎥
⎦

(A18)  
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