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MATRIX WEIGHTED MODULATION SPACES

MORTEN NIELSEN

Abstract. Given a matrix-weight W in the Muckenhoupt class Ap(R
n), 1 ≤ p < ∞,

we introduce corresponding vector-valued continuous and discrete α-modulation spaces
Ms,α

p,q (W ) and ms,α
p,q (W ) and prove their equivalence through the use of adapted tight

frames. Compatible notions of molecules and almost diagonal matrices are also intro-
duced, and an application to the study of pseudo-differential operators on vector valued
spaces is given.

1. Introduction

The matrix-weighted Lp-space Lp(W ), 1 ≤ p < ∞, are defined for W : Rn → C
N×N

a measurable matrix-valued weight function that is positive definite a.e., as the family of
measurable functions f : Rn → C

N satisfying

(1.1) ‖f‖Lp(W ) :=

(
ˆ

Rn

|W 1/p(x)f(x)|p dx
)1/p

<∞.

Factorizing over
{f : Rn → C

N ; ‖f‖Lp(W ) = 0},
turns Lp(W ) into a Banach space. These weighted spaces of vector-valued functions have
attracted a great deal of attention recently (see, e.g., [18, 19,23,25,26]) partly due to the
fact that the setup generates a number interesting mathematical questions related to vector
valued functions that is naturally connected to various classical results on Muckenhoupt
weights in harmonic analysis. A highlight in the matrix-weighted case is the formulation of
a suitable matrix Ap condition by Nazarov, Treil and Volberg that completely characterizes
boundedness of the Riesz-transform(s) on Lp(W ) for 1 < p <∞, see [29,31].

From a more applied point of view, the matrix weighted setup is also of interest due
to the fact that the inherent flexibility obtained by varying properties of the weight func-
tion, including adjustment of the size N , allows one to adapt the setup to be useful for
applications in a variety of mathematical modeling scenarios. One area where weighted
function spaces can be useful is in the study of partial differential equations with some
sort of degeneracy, e.g., ”perturbed” elliptic equations with various types of singularities
in the coefficients, where it is natural to look for solutions in weighted smoothness spaces,
see [8, 21] and references therein.

As is well-known, one can use Lp-spaces to build a variety of useful smoothness spaces by
imposing restrictions on suitable local components of functions measured by a (weighted)
Lp-norm. Roudenko was the first to apply such an approach in the matrix weighted setup,
based on Lp(W ) spaces as defined in Eq. (1.1), see [26], where she introduced a very
natural notion of matrix weighted Besov spaces Bs

p,q(W ). This work was later extended
by Frazier and Roudenko [14,15] to matrix-weighted Triebel-Lizorkin spaces.

Besov spaces are created by measuring Lp-norms of local components of functions cor-
responding to a dyadic decomposition of the frequency space. However, it was observed in
the scalar case by Triebel [30] that the same general decomposition approach, using other
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MATRIX WEIGHTED MODULATION SPACES 2

partitions of the frequency space, can yield other types of useful smoothness spaces such
as modulation spaces that are associated with a uniform decomposition of the frequency
space.

The main contribution of the present paper is to present a construction of matrix
weighted α-modulation space for weights that satisfy a certain matrix Muckenhoupt con-
dition. The scalar-value α-modulation spaces M s,α

p,q (Rn) are a family of smoothness spaces
based on polynomial type decompositions of the frequency space. The family contains
the Besov spaces, and the modulation spaces introduced by Feichtinger [10], as special
“endpoint” cases. The family offers the flexibility to tune general time-frequency proper-
ties measured by the smoothness norm by adjusting the parameter α as it determines the
structure of the polynomial decomposition of the frequency space R

n used to define the
corresponding smoothness space.

The (scalar) α-modulation spaces were introduced by Gröbner [17] using a general
framework of decomposition type Banach spaces introduced by Feichtinger and Gröbner
in [9, 11]. To the best of the author’s knowledge, α-modulation spaces have not yet been
considered with weights, so even in the scalar case (i.e., N = 1) the results presented in
the present paper are new.

Scalar (unweighted) α-modulation spaces have proven useful in the study of classes
of pseudo-differential equations with symbols in certain adapted Hörmander classes, see
[2,4,6,20], so there is ample reason to believe that weighted α-modulation spaces can play
a role in the study of, e.g., perturbed elliptic equations with singularities in the coefficients.

The structure of the paper is as follows. In Section 2, we first recall the time-frequency
structure of scalar-valued α-modulation spaces and proceed in Section 2.2 to extend the
definition to obtain (quasi-)Banach spaces in a certain matrix weighted vector-valued
setting. Section 3 is devoted to obtaining a full discrete characterisation of matrix weighted
α-modulation spaces using a simple adapted band-limited frame for the matrix weighted
α-modulation spaces. An algebra of discrete almost diagonal matrices adapted to the
matrix weighted α-modulation spaces is introduced in Section 4, which allows us to define a
natural notion of molecules for matrix weighted α-modulation spaces. The almost diagonal
matrices and molecules may be used to simplify the study of various operators on the
matrix weighted smoothness spaces, making it much easier to obtain various boundedness
results for, e.g., partial differential operators. As an example of the almost diagonal
approach, we conclude the paper in Section 5 with a study of Fourier multipliers on
matrix weighted α-modulation spaces.

2. Vector-valued smoothness spaces

In this section we extend the definition of α-modulation spaces to obtain (quasi-)Banach
spaces in a matrix weighted vector-valued setting in a way such that Roudenko’s matrix
weighted Besov spaces [26] becomes a special ”endpoint case” corresponding to α = 1. The
scalar α-modulation spaces form a family of smoothness spaces that contain modulation
and Besov spaces as special limit cases.

The spaces are defined by imposing restrictions on local components of functions de-
fined using from specific decompositions of the frequency space. Specifically, the general
structure of the local components is governed by a parameter α, belonging to the interval
[0, 1]. This parameter determines a segmentation of the frequency domain from which the
spaces are built. We will use the same type of decompositions in the vector-valued setting.

2.1. The family of α-coverings of the frequency domain. We first recall the notion
of an α-covering as introduced in [11,17].

Definition 2.1. A countable collection Q of measurable subsets Q ⊂ R
n is called an

admissible covering of Rn if
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i. Rn = ∪Q∈QQ
ii. There exists n0 <∞ such that #{Q′ ∈ Q : Q ∩Q′ 6= ∅} ≤ n0 for all Q ∈ Q.

An admissible covering is called an α-covering, 0 ≤ α ≤ 1, of Rn if

iii. |Q| ≍ 〈ξ〉αn (uniformly) for all ξ ∈ Q and for all Q ∈ Q,
iv. There exists a constant K <∞ such that

sup
Q∈Q

RQ

rQ
≤ K,

where rQ := sup{r ∈ [0,∞) : ∃cr ∈ R
n : B(cr, r) ⊆ Q} and RQ := inf{r ∈ (0,∞) :

∃cr ∈ R
n : B(cr, r) ⊇ Q}, where B(x, r) denotes the Euclidean ball in R

n centered
at x with radius r.

Remark 2.2. For a ∈ R
n and r0 > 0, we define the corresponding cube R[a, r0] as

(2.1) R[a, r0] := a+ r0[−1, 1]n.

We notice that for Q ∈ Q, condition iv. in Definition 2.1 ensures that we have the following
containment in cubes,

R[ξ1, rQ/(2
√
n)] ⊆ Q ⊆ R[ξ2, RQ],

for some ξ1, ξ2 ∈ Q.

The following example, which can be considered a “canonical” α-covering, was first
considered in [17], see also [1].

Example 2.3. For α ∈ [0, 1), there exists c0 > 0 such that for any c1 ≥ c0, the family of
sets

Bα
k := B

(
ξk, c1rk

)
, k ∈ Z

n,

with B(c, r) denoting the (open) Euclidean ball of radius r > 0 centered at c ∈ R
n, and

(2.2) rk := 〈k〉 α
1−α , ξk := krk, k ∈ Z

n,

with 〈ξ〉 := (1 + |ξ|2)1/2, ξ ∈ R
n, form an α-covering.

Remark 2.4. For the case α = 1, which is not part of the covering families considered
in Example 2.3, a dyadic Lizorkin-type covering of Rn form an example of a 1-covering
leading to the matrix-valued Besov spaces considered in [26]. We refer to [3] for addition
information on Lizorkin-type coverings.

It is known that any pair of α-coverings Q = {Q} and P = {P} satisfy the following
finite overlap condition, see [1, Lemma B.2],

(2.3) sup
Q∈Q

#AQ < +∞, where AQ := {P ∈ P : P ∩Q 6= ∅}.

We will need a so-called bounded admissible partition of unity adapted to α-coverings.
For f ∈ L1(R

n), we let

F(f)(ξ) := (2π)−n/2

ˆ

Rn

f(x)e−ix·ξ dx, ξ ∈ R
n,

denote the Fourier transform, and we use the standard notation f̂(ξ) = F(f)(ξ). With
this normalisation, the Fourier transform extends to a unitary transform on L2(Rn) and
we denote the inverse Fourier transform by F−1.

Definition 2.5. Let Q be an α-covering of R
n. A corresponding bounded admissible

partition of unity (BAPU) {ψQ}Q∈Q is a family of smooth functions satisfying

i. supp(ψQ) ⊂ Q
ii.
∑

Q∈Q ψQ(ξ) = 1
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iii. There exists a uniform constant C such that for Q ∈ Q and ξQ ∈ Q,

|F−1(ψQ)(x)| ≤ C|ξk|nα(1 + |ξQ|α|x|)−n−1, x ∈ R
n.

Remark 2.6. The assumption (iii) in Definition 2.5 is slightly modified compared to the
usual definition of a BAPU in the scalar case, cf. [1,11]. This is done in order to accomodate
the requirements of a matrix setup, where we will need the convolution result in Lemma
2.13 below to be applicable to the functions from any BAPU.

The results in Section 3, and the construction of a ϕ-transform, rely on the known
fact that it is possible to construct a smooth BAPU with additional structure. For a
straightforward construction of such a BAPU adapted to the α-covering considered in
Example 2.3, we may take ϕ ∈ C∞(Rn) to be non-negative with ϕ(ξ) = 1 when |ξ| ≤ 1
and ϕ(ξ) = 0 for |ξ| > 3

2 , and put

(2.4) ϕk(ξ) := ϕ

(
ξ − rkk

c0rk

)
, k ∈ Z

n,

where c0 is the constant from Example 2.3 and rk given in Eq. (2.2). We notice that
ϕk(ξ) = 1 on the sets Bα

k from Example 2.3 forming an α-cover, and, moreover, it can be
verified that

(2.5) ψk(ξ) :=
ϕk(ξ)∑

ℓ∈Zn ϕℓ(ξ)
.

forms a corresponding BAPU, which will be verified in Lemma 2.7 below. A ”square-root”
of this BAPU can be obtained by setting

(2.6) θαk (ξ) =
ϕk(ξ)√∑
ℓ∈Zn ϕ2

ℓ (ξ)

We then have ∑

ℓ∈Zn

[θαk (ξ)]
2 = 1, ξ ∈ R

n.

It is perhaps less obvious that the functions {F−1(ψk)}k are all well-localised as required
in Definition 2.5.(iii). We have the following result.

Lemma 2.7. The family of functions {ϕk}k defined in Eq. (2.4) satisfies Definition 2.5.

Proof. Property (i) and (ii) in Definition 2.5 are straightforward to verify. We turn to
property (iii). Let Bα

k be defined as in Example 2.3. For ηk ∈ Bα
k we define gk by ĝk :=

ψk(rk ·−ηk), where one can verify that there exist r > 0 and constants Cβ, β ∈ (N∪{0})n,
independent of k, such that

|(∂β ĝk)(ξ)| ≤ Cβ1B(0,r)(ξ),

see, e.g., [1, Proposition A.1]. It follows easily that |gk(x)| ≤ C(1 + |x|)−n−1 with C
independent of k. We also notice that

F−1(ψk)(x) = rnk e
iηk ·xgk(rkx).

Hence, we obtain the decay estimate

(2.7) |F−1(ψk)(x)| = rnk |eiηk ·xgk(rkx)| ≤ Crnk (1 + rk|x|)−n−1,

with C independent of k, and {ψk}k therefore satisfies Definition 2.5. �

Let us also recall the well-know application of BAPUs to an easy construction of tight
frames adapted to the α-decompositions, see, e.g., [3]. Put

Qk := Qα
k := R[rkk, ark], k ∈ Z

n,



MATRIX WEIGHTED MODULATION SPACES 5

be an α-cover of cubes with rk defined in (2.2) with a ≥ max{2c0, π
√
n/2}, and where c0

is the constant from Example 2.3. Consider the localized trigonometric system given by

ek,ℓ(ξ) := (2π)−n/2r
−n/2
k 1Q0(r

−1
k ξ − k)ei

π
a
ℓ·(r−1

k ξ−k), k, ℓ ∈ Z
n,

with rk defined in Eq. (2.2). Then we define the system Φ := {ϕk,ℓ}k,ℓ in the Fourier
domain by

(2.8) ϕ̂k,ℓ(ξ) = θαk (ξ)ek,ℓ(ξ),

where {θαk }k is the system given by Eq. (2.6). One can verify that

(2.9) ϕk,ℓ(x) = (2a)−n/2r
n/2
k eirkk·xµk

(
π

a
ℓ+ rkx

)
,

with the function µk given by µ̂k := ψk(rk ·+ξk). Using an argument similar to the proof
of Lemma 2.7, one may verify that {µk} are uniformly well-localised in the sense that for
every N ∈ N there exists CN <∞, independent of k, such that

(2.10) |µk(x)| ≤ CN

(
1 + |x|

)−N
, x ∈ R

n.

This in turn implies that

(2.11) |ϕk,ℓ(x)| ≤ CN (2a)−n/2r
n/2
k

(
1 + rk

∣∣x− xk,ℓ
∣∣)−N

, x ∈ R
n,

with

(2.12) xk,ℓ :=
π

a
r−1
k ℓ, k, ℓ ∈ Z

n.

In the frequency domain, we have supp(ϕ̂k,ℓ) ⊂ B(ξk, crk) for some c > 0 independent of
k, which implies that there exist constants KN such that the localisation

(2.13) |ϕ̂k,ℓ(ξ)| ≤ KNr
−n

2
k (1 + r−1

k |ξk − ξ|)−N , ξ ∈ R
n,

holds true for N ∈ N. It can easily be verified, see [3], that Φ := {ϕk,ℓ}k,ℓ forms a tight
frame for L2(Rn), i.e., we have the identity

(2.14) f =
∑

k,ℓ

〈f, ϕk,ℓ〉ϕk,ℓ, f ∈ L2(Rn),

where the sum converges unconditionally in L2(Rn).

2.2. Matrix-weighted Lp-spaces and Muckenhoupt weights. As mentioned in the
introduction, we will need weighted vector-valued Lp-spaces for the construction of smooth-
ness spaces considered below. For 1 ≤ p < ∞ and W : Rn → C

N×N a matrix-valued
function, which is measurable and positive definite a.e., let Lp(W ) denote the family of
measurable functions f : Rn → C

N satisfying Eq. (1.1) factorised over

{f : Rn → C
N ; ‖f‖Lp(W ) = 0}.

It can be verified that, for 1 < p < ∞, the dual space to Lp(W ) is Lp′(W−p′/p), where p′

is the dual exponent to p, i.e., 1/p + 1/p′ = 1, see [31] for further details.
An N×N matrix weight is a locally integrable and positive definite a.e. matrix function

W : Rn → C
N×N . It turns out that one needs certain additional properties of the matrix

weight in order to prove, e.g., completeness of the smoothness spaces introduced in the
sequel. The matrix Muckenhoupt condition will play an important role. We say that a
matrix weight W satisfied the matrix Ap condition, 1 < p <∞, provided

(2.15) [W ]Ap(Rn) := sup
Q∈Q

ˆ

Q

(
ˆ

Q

∥∥W 1/p(x)W−1/p(t)
∥∥p′ dt

|Q|

)p/p′ dx

|Q| <∞,

where Q is the collection of all cubes in R
n. The norm ‖·‖ appearing in the integral is any

matrix norm on the N ×N matrices. In case (2.15) is satisfied, we write W ∈ Ap(R
n).
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Remark 2.8. The matrix Ap-conditions were introduced and studied in [22, 29, 31] using
the notion of dual norms. The condition given in (2.15) was shown to be equivalent to the
original condition by Roudenko in [26], and (2.15) has the advantage of often being more
“operational”.

Similar to the scalar case, special care has to be taken to define a matrix Muckenhoupt
condition in the endpoint case p = 1. Following Frazier and Roudenko [14], we define the
matrix A1(R

n)-class as follows.

Definition 2.9. Let W : Ω → C
N×N be a matrix weight. We say that W ∈ A1(R

n)
provided that

(2.16) ‖W‖A1(Rn) := sup
Q∈Q

esssupy∈Q
1

|Q|

ˆ

Q
‖W (t)W−1(y)‖ dt < +∞.

Remark 2.10. It can be verified that in the scalar caseN = 1, the conditions given by (2.15)
and (2.16), respectively, reduce to the corresponding well-known scalar Ap conditions,
see [14,26] for further details.

2.3. Vector valued modulation spaces. Let m : Rd → C be a bounded measurable
function (a multiplier). We denote by m(D)f := F−1(mf̂), the corresponding Fourier
multiplier operator, i.e., the convolution of F−1(m) with f .

We denote by S = S(Rn) the Schwartz space of rapidly decreasing, infinitely differen-
tiable functions on R

n. A function ϕ ∈ C∞ belongs to S(Rn) when, for every k ∈ N0 with
N0 := N ∪ {0}, the semi-norms

(2.17) pk(ϕ) := max
α∈Nn

0 :|α|≤k
sup
x∈Rn

(1 + |x|)k|∂αϕ(x)|

are all finite, where we put |α| :=
∑n

j=1 αj for α ∈ N
n
0 . As is well-known, the semi-

norms {pk} turn S into a Fréchet space. The dual space S ′ = S ′(Rd) of S is the space
of tempered distributions. It will also be useful to consider the corresponding concepts in
a vector setup, where we consider the direct sum Fréchet space

⊕N
j=1 S(Rn), with dual

space
⊕N

j=1 S ′(Rn) consisting of N -tuples of tempered distributions.
We are now ready to give the definition of the vector-valued weighted α-modulation

spaces.

Definition 2.11. Let W : Rn → C
N×N be a matrix-weight, and let Q = {Q} be an α-

covering with associated BAPU {ψQ}Q∈Q of the type given in Definition 2.5. Let ξQ ∈ Q,
Q ∈ Q. For α ∈ [0, 1], s ∈ R, 1 ≤ p < ∞, and 0 < q ≤ ∞, we let Mα,s

p,q (W ) denote the

collection of all vector-valued distributions f = (f1, . . . , fN )T ∈⊕N
j=1 S ′(Rn), such that

‖f‖Mα,s
p,q (W ) :=

∥∥∥∥
{
|Q|s/n‖ψQ(D)f‖Lp(W )

}

Q

∥∥∥∥
ℓq

<∞,

with ψQ(D)f := (ψQ(D)f1, . . . , ψQ(D)fN )T acting coordinate-wise. For q = ∞, the ℓq-
norm is replaced by the supremum over Q.

Based on the corresponding definition of (un-weighted) scalar α-modulation, one may
hope that the familyMα,s

p,q (W ) is in fact a (quasi-)Banach space, at least for ”nice” matrix-
weights W . This turns out to hold for matrix weights in Ap(R

n), where we have the
following result, where it is also shown that up to equivalence of norms, Mα,s

p,q (W ) is
independent of the choice of BAPU whenever W ∈ Ap(R

n).

Proposition 2.12. Let 1 ≤ p <∞ and W ∈ Ap(R
n). For 0 < q ≤ ∞ and s ∈ R,

(a) We have continuous embeddings

N⊕

j=1

S(Rn) →֒Mα,s
p,q (W ) →֒

N⊕

j=1

S ′(Rn).
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(b) The space Mα,s
p,q (W ) is complete, i.e., Mα,s

p,q (W ) is a (quasi-)Banach space.
(c) The space Mα,s

p,q (W ) is independent of the choice of BAPU (up to equivalence of
norms).

We will postpone the proof of (a) and (b) until Appendix A as we first need to develop a
number of technical tools providing estimates to handle certain band-limited vector-valued
functions. To prove (c), we will need the following convolution lemma proven by Frazier
and Roudenko [15, Lemma 4.4]. The reader may also consult Goldberg’s result on general
singular integrals [16] for the range 1 < p <∞.

Lemma 2.13. Let 1 ≤ p < ∞ and W ∈ Ap. Suppose that g : Rn → C with |g(x)| ≤
C ′(1 + |x|)−n−1 for some constant C ′, and let gδ(x) = δng(δx) for δ > 0. If f ∈ Lp(W )
then gδ ∗ f ∈ Lp(W ) and

‖gδ ∗ f‖Lp(W ) ≤ C‖f‖Lp(W ),

for some constant C := C(W,C ′, p) independent of δ > 0.

Remark 2.14. The proof in [15] covers the discrete cases δ = 2j, j ∈ Z, but the reader can
easily verify that the same proof extends to cover any δ > 0.

Remark 2.15. Suppose W ∈ Ap for some 1 ≤ p < ∞. Consider a BAPU {ψQ} satisfying
Definition 2.5 associated with an α-covering Q of Rn. For ξQ ∈ Q ∈ Q, we may define a
well-localised function g by ĝ := ψQ(|ξQ|α · −ξQ). Similar to the estimate (2.7), one may
obtain the localisation

|F−1(ψQ)(x)| = |ξQ|nα|eiξQ·xg(|ξQ|αx)| ≤ C|ξQ|nα(1 + |ξQ|α|x|)−n−1,

with C independent of Q. Hence, by Lemma 2.13, we finally arrive at the uniform bound

‖ψQ(D)f‖Lp(W ) = ‖F−1(ψQ) ∗ f‖Lp(W ) ≤ C‖f‖Lp(W ),

with C := C(W,p) independent of Q.

We can now prove Proposition 2.12.(c).

Proof of Proposition 2.12.(c). Let Q = {Q} and P = {P} be two α-coverings with as-
sociated BAPUs Ψ = {ψQ}Q∈Q and Γ = {γP }P∈P , respectively. We first notice, using
uniformly bounded height of any α-covering, that for Q ∈ Q,

(2.18) ψQ(D)f = ψQ(D)
∑

P∈AQ

γP (D)f ,

with AQ = {P ∈ P : P ∩Q 6= ∅}, where we recall that #AQ is bounded by a constant n0
independent of Q, see Eq. (2.3). Hence, by Lemma 2.13 and Remark 2.15,

‖ψQ(D)f‖Lp(W ) ≤ C
∑

P∈AQ

‖γP (D)f‖Lp(W ).

By Definition 4.8.(iii), for Q ∈ Q and P ∈ P with P ∩Q 6= ∅, we have |Q| ≍ 〈ξ0〉αn ≍ |P |
uniformly for any ξ0 ∈ Q ∩ P . It follows from this observation that

|Q|s/n‖ψQ(D)f‖Lp(W ) ≤ C
∑

P∈AQ

|P |s/n‖γP (D)f‖Lp(W ).

Similarly, we obtain, for P ∈ P,

|P |s/n‖γP (D)f‖Lp(W ) ≤ C
∑

Q∈BP

|Q|s/n‖ψQ(D)f‖Lp(W ),
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with BP = {Q ∈ Q : Q∩P 6= ∅}. Using the uniform bounds on the cardinality of the sets
AQ and BP , it is then straightforward to verify that

‖f‖Mα,s
p,q (W ) =

∥∥∥∥
{
|Q|s/n‖ψQ(D)f‖Lp(W )

}

Q

∥∥∥∥
ℓq

≍
∥∥∥∥
{
|P |s/n‖γP (D)f‖Lp(W )

}

P

∥∥∥∥
ℓq

, f ∈Mα,s
p,q (W ).

�

The completion of the proof of Proposition 2.12 can be found in Appendix A. To simplify
the notation below, we will call on the equivalence provided by Proposition 2.12.(iii) and
for α ∈ [0, 1) always use the “canonical” BAPU {ψk}k∈Zn given in (2.5) associated with
the α-covering of Example 2.3. With this choice, for s ∈ R, 1 ≤ p < ∞, and 0 < q ≤ ∞,
we have

(2.19) ‖f‖Mα,s
p,q (W ) =

∥∥∥∥
{
rsk‖ψk(D)f‖Lp(W )

}

k

∥∥∥∥
ℓq

, f ∈Mα,s
p,q (W ).

Remark 2.16. One may use the same reasoning as used for the proof of Proposition 2.12.(c)
to verify that the “square root” system {θαk } defined in (2.6) also satisfies, for s ∈ R,
1 ≤ p <∞, and 0 < q ≤ ∞,

(2.20) ‖f‖Mα,s
p,q (W ) ≍

∥∥∥∥
{
rsk‖θαk (D)f‖Lp(W )

}

k

∥∥∥∥
ℓq

, f ∈Mα,s
p,q (W ).

The details are left for the reader.

3. Discrete vector valued modulation spaces and norm characterzations

Often the notion of smoothness can be linked to sparseness for suitable functions ex-
pansions. In this section we define discrete vector-valued weighted α-modulation space to-
gether with a simple construction of adapted tight frames that will support a ϕ-transform
in the spirit of the classical construction by Frazier and Jawerth [12,13].

Let k, ℓ ∈ Z
n, and let rk be as in Eq. (2.2). Using the notation introduced in (2.1), we

define for a constant a > max{2c1, π
√
n/2}, with c1 the constant from Example 2.3, the

sets

(3.1) Q(k, ℓ) := R

[
π

a
r−1
k ℓ,

π

a
r−1
k

]
=
π

a
r−1
k ℓ+

[
0,
π

a
r−1
k

)n

.

Clearly, for fixed k, Qk := ∪ℓQ(k, ℓ) forms a partition of Rn with |Q(k, ℓ)| =
(
π
a

)n
r−n
k .

The sets will play the role of a suitable substitute for the dyadic cubes, so we denote
Q = ∪kQk.

Let 1A denote the characteristic function of a measurable set A. We have the following
definition.

Definition 3.1. Let W : Rn → C
N×N be a matrix-weight, and suppose α ∈ [0, 1], s ∈ R,

1 ≤ p <∞, and 0 < q ≤ ∞. We let let Q = {Q(k, ℓ)}k,ℓ be the collection of sets defined in
(3.1). We let mα,s

p,q (W ) denote the collection of all vector-valued sequences s = {sQ}Q∈Q,

where sQ =
(
s
(1)
Q , . . . , s

(N)
Q

)T
, enumerated by the sets in Q, such that

‖{sQ}Q‖mα,s
p,q (W ) :=

∥∥∥∥
{
rsk

∥∥∥∥
∑

ℓ∈Zn

|Q(k, ℓ)|− 1
2 sQ(k,ℓ)1Q(k,ℓ)

∥∥∥∥
Lp(W )

}

k

∥∥∥∥
ℓq

=

( ∑

k∈Zn

∥∥∥∥rsk
∑

ℓ∈Zn

|Q(k, ℓ)|− 1
2

∥∥W 1/p(t)sQ(k,ℓ)

∥∥1Q(k,ℓ)(t)

∥∥∥∥
q

Lp(dt)

)1/q

.

For q = ∞, the ℓq-norm is replaced by the supremum over k.
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In order to make a connection between the discrete spaces mα,s
p,q (W ) and the continuous

setting, we will rely on a number of weighted sampling results for band-limited vector-
valued functions. The following Lemma provides a weighted Lp sampling result for band-
limited vector-valued functions that have their frequency support contained in sets that
are not ”centered”. Similar to the scalar case, it is possible to center the spectrum by
translation, which corresponds to applying a modulation to the function, which does not
affect the Lp-properties considered in the Lemma. We let

Ωk := {f : Rn → C
N |supp(f̂i) ⊆ Bα

k , i = 1, . . . , N},
where Bα

k are the sets considered in Example 2.3. We have the following lemma, which
provides an adapted version of the sampling result [26, Lemma 6.3] by Roudenko.

Lemma 3.2. Let 1 ≤ p <∞, W ∈ Ap, and suppose g ∈ Ωk. Then there exists a constant
cp,n, independent of g, such that

∑

ℓ∈Zn

ˆ

Q(k,ℓ)

∣∣∣∣W 1/p(x)g

(
π

a
r−1
k ℓ

)∣∣∣∣
p

dx ≤ cp,n‖g‖pLp(W ).

Proof. Recall that Bα
k := B(krk, c1rk), so for g ∈ Ωk, the modified function

g̃ := ei
π
a
k·g

(
π

a
r−1
k ·

)

satisfies supp(ˆ̃g) ⊆ B(0, c1
π
a ) ⊆ B(0, 2). Now, by a change of variable,

ˆ

Q(k,ℓ)

∣∣W 1/p(x)g̃
(
ℓ
)∣∣p dx ≍ r−n

k

ˆ

ℓ+[0,1)n

∣∣∣∣W 1/p

(
π

a
r−1
k x

)
g̃
(
ℓ
)∣∣∣∣

p

du

We now use the general sampling result [26, Lemma 6.3] to deduce that there exists a
constant cp,n, independent of g, such that

∑

ℓ∈Zn

ˆ

ℓ+[0,1)n

∣∣∣∣W 1/p

(
π

a
r−1
k x

)
g̃
(
ℓ
)∣∣∣∣

p

dx ≤ cp,n‖g̃‖pLp(W (π
a
r−1
k ·))

.

We apply another change of variable to obtain,

∑

ℓ∈Zn

ˆ

Q(k,ℓ)

∣∣∣∣W 1/p(x)g

(
π

a
r−1
k ℓ

)∣∣∣∣
p

dx ≍ r−n
k

∑

ℓ∈Zn

ˆ

ℓ+[0,1)n

∣∣∣∣W 1/p

(
π

a
r−1
k x

)
g̃
(
ℓ
)∣∣∣∣

p

dx

≤ cp,nr
−n
k ‖g̃‖p

Lp(W (π
a
r−1
k ·))

= cp,n‖g‖pLp(W ).

�

We can use Lemma 3.2 to obtain the following norm estimate for the canonical expansion
coefficients ck,ℓ := 〈f , ϕk,ℓ〉 associated with the tight frame defined in Eq. (2.8). The result
show that the natural analysis operator for this system is bounded from Mα,s

p,q (W ) to
mα,s

p,q (W ) – at least for ”nice” matrix weights W .

Proposition 3.3. Let α ∈ [0, 1], 1 ≤ p < ∞, and 0 < q < ∞. Suppose W ∈ Ap. Then
there exists a constant C := C(α, q,W ) such that for f ∈Mα,s

p,q (W ),

(3.2) ‖{ck,ℓ}k,ℓ‖mα,s
p,q (W ) ≤ C‖f‖Mα,s

p,q (W ),

with ck,ℓ := 〈f , ϕk,ℓ〉.



MATRIX WEIGHTED MODULATION SPACES 10

Proof. Recall that ϕk,ℓ ∈ Ωk with

ϕ̂k,ℓ(ξ) = (2a)−n/2e−iπ
a
ℓ·kr

−n/2
k θαk (ξ)e

iπ
a
ℓ·r−1

k ξ,

so, we have

〈f , ϕk,ℓ〉 = (2π)−n/2e−iπ
a
ℓ·k|Q(k, ℓ)|1/2θαk (D)f

(
π

a
r−1
k ℓ

)
.

Hence, using the observation in (2.20),

‖{〈f , ϕk,ℓ〉}k,ℓ‖mα,s
p,q (W ) =

∥∥∥∥
{
rsk

∥∥∥∥
∑

ℓ∈Zn

|Q(k, ℓ)|− 1
2 〈f , ϕk,ℓ〉1Q(k,ℓ)

∥∥∥∥
Lp(W )

}

k

∥∥∥∥
ℓq

≍
∥∥∥∥
{
rsk

∥∥∥∥
[ ∑

ℓ∈Zn

ˆ

Q(k,ℓ)

∥∥∥∥W 1/p(x)θαk (D)f

(
π

a
r−1
k ℓ

)∥∥∥∥
p

dx

]1/p}

k

∥∥∥∥
ℓq

≤ cp,q
∥∥{rsk‖θαk (D)f‖Lp(W )

}
k

∥∥
ℓq

≍ ‖f‖Mα,s
p,q (W ),

where we used the observation in Eq. (2.20) for the final estimate. �

We will now prove that the corresponding reconstruction operator for the tight frame
defined in Eq. (2.8) is bounded from mα,s

p,q (W ) to Mα,s
p,q (W ) for suitable weights W .

We will need the notion of a doubling matrix weight for the following result. Using the
notation introduced in (2.1), we have the following definition.

Definition 3.4. We say that the matrix weight W : Rn → C
N×N satisfies the doubling

condition of order 0 < p <∞ if there is a constant c such that for all x,y ∈ R
n and r > 0,

(3.3)

ˆ

R[x,2r]
‖W 1/p(t)y‖p dt ≤ c

ˆ

R[x,r]
‖W 1/p(t)y‖p dt.

Suppose c = 2β is the smallest constant for which (3.3) holds, then β is called the doubling
exponent of W .

Remark 3.5. Notice that (3.3) is stating the condition that the scalar measure wy(t) :=

‖W 1/p(t)y‖p is uniformly doubling and not identically zero (a.e.). It is known that when-
ever W ∈ Ap, then wy is a scalar Ap weight for any y ∈ R

n. Morevover, the Ap constant
is bounded by the Ap constant of W and thus independent of y, see, e.g., [16, Corollary
2.3]. This implies that wy is a scalar doubling measure, see [27], and the corresponding
doubling exponent β is also independent of y.

We have the following result that in particular applies to matrix weights in Ap, c.f.
Remark 3.5.

Proposition 3.6. Let α ∈ [0, 1], 1 ≤ p < ∞, 0 < q < ∞, and suppose W satisfies (3.3).
Then there exists a constant C such that for any finite vector-valued coefficient sequence
s := {cj,ℓ}(j,ℓ)∈F , F ⊂ Z

n × Z
n,

(3.4)

∥∥∥∥
∑

(j,ℓ)∈F

cj,ℓϕj,ℓ

∥∥∥∥
Mα,s

p,q (W )

≤ C‖{cj,ℓ}‖mα,s
p,q (W ).

Proof. We have, using the fact that supp(ψk) ⊆ Bα
k ,

∥∥∥∥
∑

(j,ℓ)∈F

cj,ℓϕj,ℓ

∥∥∥∥
Mα,s

p,q (W )

=

∥∥∥∥
{
rsk

∥∥∥∥ψk(D)
∑

(j,ℓ)∈F

cj,ℓϕj,ℓ

∥∥∥∥
Lp(W )

}

k

∥∥∥∥
ℓq

=

∥∥∥∥
{
rsk

∥∥∥∥ψk(D)
∑

j∈N(k)

∑

ℓ

cj,ℓϕj,ℓ

∥∥∥∥
Lp(W )

}

k

∥∥∥∥
ℓq

,
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where N(k) = {m ∈ Z
n : Bα

m ∩ Bα
k 6= ∅}. Now, rj ≍ rk (uniformly) for j ∈ N(k), so by

Remark 2.15,

rsk

∥∥∥∥ψk(D)
∑

j∈N(k)

∑

ℓ

cj,ℓϕj,ℓ

∥∥∥∥
Lp(W )

≤ Crsk

∥∥∥∥
∑

j∈N(k)

∑

ℓ

cj,ℓϕj,ℓ

∥∥∥∥
Lp(W )

≤ C ′
∑

j∈N(k)

∥∥∥∥rsj
∑

ℓ

cj,ℓϕj,ℓ

∥∥∥∥
Lp(W )

.

Recall that ϕj,ℓ satisfies the decay property (2.11) for any N > 0. We now use (2.11) to
obtain the estimate

∥∥∥∥
∑

ℓ

cj,ℓϕj,ℓ

∥∥∥∥
p

Lp(W )

≤
ˆ

Rn

(∑

ℓ

‖W 1/p(x)cj,ℓ‖ |ϕj,ℓ(x)|
)p

dx

≤ CN

ˆ

Rn

(
r
n/2
j

∑

ℓ

‖W 1/p(x)cj,ℓ‖
(
1 + rj|x− xj,ℓ|

)−N
)p

dx

≤ C ′
Nr

np/2
j

ˆ

Rn

∑

ℓ

‖W 1/p(x)cj,ℓ‖p
(
1 + rj

∣∣x− xj,ℓ
∣∣)−Np

2 dx,

where we used the discrete Hölder inequality for the last step in the case 1 < p <∞ with
N chosen large enough such that for the dual Hölder exponent p′ to p,

sup
u∈Rn

∑

ℓ

(
1 +

∣∣∣∣u− π

a
ℓ

∣∣∣∣
)−Np′

2

<∞.

For we p = 1 we obtain the estimate directly without using Hölder’s inequality. The
function wj,ℓ(x) := ‖W 1/p(x)cj,ℓ‖p is doubling with a doubling constant β > 0 independent
of j and ℓ. We can therefore use Lemma 3.8 below to obtain the following estimate,

∥∥∥∥
∑

ℓ

cj,ℓϕj,ℓ

∥∥∥∥
p

Lp(W )

≤ C ′
Nr

np/2
j

∑

ℓ

ˆ

Rn

‖W 1/p(x)cj,ℓ‖p
(
1 + rj

∣∣x− xj,ℓ
∣∣)−Np

2 dx

≤ C ′
Nr

np/2
j

∑

ℓ∈Zn

ˆ

Q(j,ℓ)
‖W 1/p(x)cj,ℓ‖p dx

≍
∥∥∥∥
∑

ℓ

|Q(j, ℓ)|−1/2cj,ℓ1Q(j,ℓ)

∥∥∥∥
p

Lp(W )

.

We may now conclude that
∥∥∥∥
∑

(j,ℓ)∈F

cj,ℓϕj,ℓ

∥∥∥∥
Mα,s

p,q (W )

≤ C

∥∥∥∥
{ ∑

j∈N(k)

∥∥∥∥rsj
∑

ℓ

cj,ℓϕj,ℓ

∥∥∥∥
Lp(W )

}

k

∥∥∥∥
ℓq

≤ C

∥∥∥∥
{ ∑

j∈N(k)

rsj

∥∥∥∥
∑

ℓ

|Q(j, ℓ)|−1/2cj,ℓ1Q(j,ℓ)

∥∥∥∥
Lp(W )

}

k

∥∥∥∥
ℓq

≤ C

∥∥∥∥
{∑

j

rsj

∥∥∥∥
∑

ℓ

|Q(j, ℓ)|−1/2cj,ℓ1Q(j,ℓ)

∥∥∥∥
Lp(W )

}

k

∥∥∥∥
ℓq

≤ ‖{cj,ℓ}‖mα,s
p,q (W ),(3.5)

where we used the uniform bound on the cardinality of N(k). This concludes the proof.
�



MATRIX WEIGHTED MODULATION SPACES 12

Remark 3.7. Since {ϕk,ℓ}k,ℓ ⊂ S(Rn), it follows easily from Proposition 3.3 and Propo-

sition 3.6, by standard arguments, that
⊕N

j=1 S(Rn) is dense in Mα,s
p,q (W ) whenever 1 ≤

p <∞, 0 < q <∞, and W ∈ Ap.

The following technical lemma was used in the proof of Proposition 3.6.

Lemma 3.8. Let w : Rn → (0,∞) be a function satisfying the doubling condition
ˆ

R[x,2r]
w(t) dt ≤ c

ˆ

R[x,r]
w(t) dt, x ∈ R

n, r > 0,

with doubling exponent β > 0 such that 2β = c. Let j, ℓ ∈ Z
n and let the quantities Q(j, ℓ),

rj, xj,ℓ be defined by Eqs. (3.1), (2.2) and (2.12), respectively. Then for L > β, we have
ˆ

Rn

w(x)
(
1 + rj

∣∣x− xj,ℓ
∣∣)−L

dx ≤ C

ˆ

Q(j,ℓ)
w(x) dx,

Proof. We make a partition R
n = ∪∞

m=0Rm, where R0 = Q(j, ℓ) and the rectangular
”annuli” Rm, m ≥ 1, is defined by

Rm :=

{
y ∈ R

n :
π

a
2m−1r−1

j ≤ |y − xj,ℓ|∞ <
π

a
2mr−1

j

}
.

Then
ˆ

Rn

w(x)
(
1 + rj

∣∣x− xj,ℓ
∣∣)−L

dx =
∞∑

m=0

ˆ

Rm

w(x)
(
1 + rj

∣∣x− xj,ℓ
∣∣)−L

dx

≤ C

∞∑

m=0

2−mL

ˆ

Rm

w(x) dx

However, by the doubling property of w(x), noting that Rm ⊆ {y : |y−xj,ℓ|∞ < 2mπ
ar

−1
j },

we have
ˆ

Rm

w(x) dx ≤ c2βm
ˆ

R0

w(x) dx,

so
ˆ

Rn

w(x)
(
1 + rj

∣∣x− xj,ℓ
∣∣)−L

dx ≤ C ′
∞∑

m=0

2(β−L)m

ˆ

R0

w(x) dx ≤ C ′′

ˆ

R0

w(x) dx,

provided that L > β. �

4. Stable expansions and almost diagonal matrices

The band-limited tight frame {ϕj,k} provides a nice stable decomposition system for
Mα,s

p,q (W ) whenever W ∈ Ap. It is, however, desirable to extend the stability results
to cover more general systems of localised “molecules” as this will allow us to study,
e.g., boundedness of various operators acting on Mα,s

p,q (W ). In this section, we will study
molecules in a discretised setting using an adapted notion of almost diagonal matrices.

4.1. Reducing operators and the connection to scalar spaces. It is known that for
any matrix weight W : Rn → C

N×N , 1 ≤ p < ∞, and Q = Q(k, ℓ) denoting the cubes
from (3.1), there exists a nonnegative-definite matrix AQ such that for x ∈ R

N ,

|AQx| ≍ ρp,Q(x) :=

(
1

|Q|

ˆ

Q
|W 1/p(t)x|p dt

)1/p

,

with equivalence constants independent of Q and x. AQ is referred to as a reducing

operator for the norm ρp,Q on R
N . Frazier and Roudenko, see [14, 15, 26], made the

important observation that reducing operators can be used to make certain connections
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between the matrix-weighted Besov space and the scalar ϕ-transform studied by Frazier
and Jawerth [12]. We will now use a similar approach to study the vector-valued α-
modulation spaces. We will need the following definition.

Definition 4.1. Let α ∈ [0, 1], s ∈ R, 1 ≤ p <∞, and 0 < q ≤ ∞, and let {AQ}Q∈Q be a
family of reducing operators associated with W . For any vector-valued sequence {sk,ℓ}k,ℓ,
we define

‖{sk,ℓ}k,ℓ‖mα,s
p,q ({AQ(k,ℓ)})

:=

∥∥∥∥
{
rsk

∥∥∥∥
∑

ℓ∈Zn

|Q(k, ℓ)|− 1
2 |AQ(k,ℓ)sk,ℓ|1Q(k,ℓ)

∥∥∥∥
Lp(dt)

}

k

∥∥∥∥
ℓq
.

We have the following observation.

Lemma 4.2. Let α ∈ [0, 1], s ∈ R, 1 ≤ p < ∞, and 0 < q ≤ ∞, and let {AQ}Q∈Q be
a family of reducing operators associated with W . For any finite vector-valued sequence
s = {sk,ℓ}k,ℓ, we have

‖{sk,ℓ}k,ℓ‖mα,s
p,q (W ) ≍ ‖{sk,ℓ}k,ℓ‖mα,s

p,q ({AQ(k,ℓ)})
,

with equivalence constants independent of s.

Proof.

‖{sk,ℓ}k,ℓ‖mα,s
p,q (W ) =

∥∥∥∥
{
rsk

∥∥∥∥
∑

ℓ∈Zn

|Q(k, ℓ)|− 1
2

∣∣W 1/p(t)sk,ℓ
∣∣1Q(k,ℓ)(t)

∥∥∥∥
Lp(dt)

}

k

∥∥∥∥
ℓq

=

∥∥∥∥
{
rsk

( ∑

ℓ∈Zn

|Q(k, ℓ)|− p
2 [ρp,Q(k,ℓ)(sk,ℓ)]

p|Q(k, ℓ)|
)1/p}

k

∥∥∥∥
ℓq

≍
∥∥∥∥
{
rsk

( ∑

ℓ∈Zn

|Q(k, ℓ)|− p
2 |AQ(k,ℓ)sk,ℓ|p

ˆ

Q
1Q(k,ℓ)(t) dt

)1/p}

k

∥∥∥∥
ℓq

=

∥∥∥∥
{
rsk

∥∥∥∥
∑

ℓ∈Zn

|Q(k, ℓ)|− 1
2 |AQ(k,ℓ)sk,ℓ|1Q(k,ℓ)

∥∥∥∥
Lp(dt)

}

k

∥∥∥∥
ℓq

= ‖{sk,ℓ}k,ℓ‖mα,s
p,q ({AQ(k,ℓ)})

.

�

There is a straightforward connection between the (quasi-)norm given by ‖ · ‖mα,s
p,q ({AQ(k,ℓ)})

and the scalar discrete α-modulation space norm ‖ · ‖mα,s
p,q

, defined for a scalar sequence

t := {tk,ℓ} by

(4.1) ‖t‖mα,s
p,q

:=

∥∥∥∥
{
rsk

∥∥∥∥
∑

ℓ∈Zn

|Q(k, ℓ)|− 1
2 tk,ℓ1Q(k,ℓ)

∥∥∥∥
Lp(dt)

}

k

∥∥∥∥
ℓq
,

where we refer to [3, 24] for further details on the scalar discrete α-modulation spaces.
Given a vector-valued sequence s := {sk,ℓ}k,ℓ, we define the scalar sequence t := {tQ(k,ℓ)}
by putting

tk,ℓ := |AQ(k,ℓ)sk,ℓ|.

Then we clearly have

(4.2) ‖s‖mα,s
p,q ({AQ(k,ℓ)})

= ‖t‖mα,s
p,q
.



MATRIX WEIGHTED MODULATION SPACES 14

4.2. Almost diagonal matrices. The identity provided by Eq. (4.2) combined with
Lemma 4.2 allows us to use operators on the scalar space mα,s

p,q to study the vector-valued
mα,s

p,q (W ). For this purpose, it will be useful to recall the following notion of almost diagonal
matrices for the scalar spaces mα,s

p,q introduced by Rasmussen and the author in [24].

Definition 4.3. Assume that α ∈ [0, 1], s ∈ R, 0 < q < ∞, and p ∈ [1,∞). A matrix
A := {a(j,m)(k,n)}j,m,k,ℓ∈Zd is called almost diagonal on ms,α

p,q if there exist J ≥ n
min(1,q) and

C, δ > 0 such that

|a(j,ℓ)(k,m)| ≤ Cωs
(j,ℓ)(k,m)(J), j,m, k, n ∈ Z

n,

where

ωs
(j,ℓ)(k,m)(J) :=

(
rk
rj

)s+n
2

min

((
rj
rk

)J+ δ
2

,

(
rk
rj

) δ
2
)
cδjk(J)

× (1 + min(rk, rj)|xk,m − xj,ℓ|)−J−δ,

with

cδjk(J) := min

((
rj
rk

)J+δ

,

(
rk
rj

)δ)
(1 + max(rk, rj)

−1|ξk − ξj|)−J−δ

with rk, ξk, and xk,n defined in Eqs. (2.2) and (2.12). We denote the set of almost diagonal
matrices on ms,α

p,q by ads,αp,q .

Remark 4.4. We mention that a more symmetric sufficient condition for the matrix A :=
{a(j,ℓ)(k,m)}j,m,k,ℓ∈Zd to be in ads,αp,q is obtained by requiring the existence of J > n

min(1,q)

and M > min{2J, |s| + n/2} such that,

|a(j,ℓ)(k,m)| ≤ Cmin

{(
rj
rk

)M

,

(
rk
rj

)M}
(1 + min(rk, rj)|xk,m − xj,ℓ|)−J

× (1 + max(rk, rj)
−1|ξk − ξj|)−J .(4.3)

Any matrix A = {a(j,ℓ)(k,m)}j,m,k,ℓ∈Zd in ads,αp,q induces a linear operator on mα,s
p,q by

calling on the usual matrix vector product. Specifically, let s ∈ mα,s
p,q be a finite sequence,

and put t = As, i.e.,

t(j,ℓ) :=
∑

(k,m)∈Zn×Zn

a(j,ℓ)(k,m)s(k,m), (j, ℓ) ∈ Z
n × Z

n.

It was proven in [24] that almost diagonal matrices are in fact bounded on the class mα,s
p,q .

Proposition 4.5. Suppose that A ∈ ads,αp,q . Then A is bounded on mα,s
p,q .

Next, we observe that the following elementary matrix estimate holds

|AQ(k,ℓ)c| = |AQ(k,ℓ)A
−1
Q(j,m)AQ(j,m)c| ≤ ‖AQ(k,ℓ)A

−1
Q(j,m)‖ · |AQ(j,m)c|.

It is therefore of interest to study families of reducing operators that are “compatible”
with the almost diagonal classes introduced. This leads to the following definition.

Definition 4.6. Let {AQ}Q∈Q be a sequence of nonnegative-definite matrices and let
β > 0, 1 ≤ p < ∞. We say that {AQ}Q∈Rn is strongly doubling of order (β, p) if there
exists c > 0 such that for P = Q(k,m) and Q = Q(j, ℓ),

(4.4) ‖AQA
−1
P ‖ ≤ cmax

{(
rj
rk

)n/p

,

(
rk
rj

)(β−n)/p }(
1 + min{rj , rk}|xj,ℓ − xk,m|

)β/p
.

We have the following lemma, where we recall that, as an important special case, any
W ∈ Ap is doubling of order p.
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Lemma 4.7. Let W be a doubling matrix weight of order p > 0 with doubling exponent β
as specified in Definition 3.4 and suppose {AQ}Q∈Q is a sequence of reducing operators of
order p for W . Then {AQ} is strongly doubling of order (β, p).

Proof. Let Q = Q(j, ℓ), P = Q(k,m) ∈ Q, and let α ≥ 1 be a minimal constant for which
Q ⊂ αP . By an elementary geometric estimate, we have

(4.5) α ≤ cmax

{
1,
rk
rj

}(
1 + min{rj , rk}|xj,ℓ − xk,m|

)
.

By the doubling property,

wy(Q) ≤ wy(αP ) ≤ cαβwy(P ).

Hence,

|AQy|p ≤
1

|Q|

ˆ

Q
|W 1/p(x)y|p dx =

1

|Q|wy(Q) ≤ c
1

|Q|α
βwy(P ) = c

|P |
|Q|α

β|APy|p.

Now we put y = A−1
P z for arbitrary z ∈ R

N , and recall that |P | ≍ r−n
k , |Q| = r−n

j . Using

estimate (4.5) we obtain,

|AQA
−1
P z|p ≤ c

(
rj
rk

)n

max

{
1,
rk
rj

}β(
1 + min{rj , rk}|xj,ℓ − xk,m|

)β|z|p,

and (4.4) follows. �

We can now define the class of almost diagonal matrices adapted to the vector-valued
sequence space ms,α

p,q (W ). According to Remark 3.5, the definition in particular applies to
the setup where the matrix weight is in Ap.

Definition 4.8. Let W be a doubling matrix weight of order p > 0 with doubling
exponent β as specified in Definition 3.4. Put K := max

{β
p ,

β−n
p

}
. A matrix A :=

{a(j,ℓ)(k,m)}j,m,k,ℓ∈Zd is called almost diagonal on ms,α
p,q (W ) if there exist J > n

min(1,q) ,

M > max{2J, |s| + n/2}, and C > 0 such that

|a(j,ℓ)(k,m)| ≤ Cmin

{(
rj
rk

)M+K

,

(
rk
rj

)M+K}
(1 + min(rk, rj)|xk,m − xj,ℓ|)−J−β

p

× (1 + max(rk, rj)
−1|ξk − ξj|)−J ,(4.6)

with rk, ξk, and xk,n defined in Eqs. (2.2) and (2.12). We denote the set of almost diagonal
matrices on ms,α

p,q (W) by adα,s
p,q (W ).

The following result provides a fundamental boundedness result for matrices in adα,s
p,q

on the vector-valued sequence space ms,α
p,q (W ).

Proposition 4.9. Let α ∈ [0, 1], s ∈ R, 1 ≤ p < ∞, and 0 < q ≤ ∞, and let W ∈ Ap

with order p doubling exponent β as specified in Definition 3.4. Let {AQ}Q∈Rn be a family
of reducing operators associated with W . Suppose B := {b(j,m)(k,n)}j,m,k,ℓ∈Zd is almost

diagonal with B ∈ ad
α,s
p,q (J). Then B is bounded on mα,s

p,q (W ).

Proof. Let s ∈ mα,s
p,q (W ) be a finite sequence, and put t = Bs, i.e.,

t(j,ℓ) :=
∑

(k,m)∈Zn×Zn

b(j,ℓ)(k,m)s(k,m), (j, ℓ) ∈ Z
n × Z

n.
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There are no convergence issues due to the fact that s is finite. Now we define an associated
scalar sequence t = (tQ)Q∈Rn by letting t(j,ℓ) = |AQ(j,ℓ)t(j,ℓ)|. Then we notice that

t(j,ℓ) = |AQ(j,ℓ)t(j,ℓ)|

=

∣∣∣∣AQ(j,ℓ)

∑

(k,m)∈Zn×Zn

b(j,ℓ)(k,m)s(k,m)

∣∣∣∣

≤
∑

(k,m)∈Zn×Zn

|b(j,ℓ)(k,m)| · |AQ(j,ℓ)s(k,m)|

≤
∑

(k,m)∈Zn×Zn

|b(j,ℓ)(k,m)| · ‖AQ(j,ℓ)A
−1
Q(k,m)‖|AQ(k,m)s(k,m)|

=
∑

(k,m)∈Zn×Zn

γ(j,ℓ)(k,m)s(k,m),

with s(k,m) := |AQ(k,m)s(k,m)| and γ(j,ℓ)(k,m) := |b(j,ℓ)(k,m)|‖AQ(j,ℓ)A
−1
Q(k,m)‖. Hence, using

the observation in Eq. (4.2), we have

‖{t(j,m)}(j,m)‖mα,s
p,q

= ‖{t(j,m)}(j,m)‖mα,s
p,q ({AQ}) ≍ ‖{t(j,m)}(j,m)‖mα,s

p,q (W ),

and
‖{s(j,m)}(j,m)‖mα,s

p,q
= ‖{s(j,m)}(j,m)‖mα,s

p,q ({AQ}) ≍ ‖{s(j,m)}(j,m)‖mα,s
p,q (W ),

where we have used Lemma 4.2 for the equivalence. Therefore, to prove the wanted
boundedness result, it suffice to verify that Γ := (γ(j,m)(k,ℓ)) ∈ adα,sp,q since, in the scalar

setting, an almost diagonal matrix for mα,s
p,q will map mα,s

p,q boundedly into mα,s
p,q according

to Proposition 4.5. We notice that the estimate by Lemma 4.7, and the almost diagonal
assumption on B given by (4.6), ensure that there exists some J > n

min(1,q) and M >

max{2J, |s| + n/2} such that,

|γ(j,m)(k,n)| ≤ Cmin

{(
rj
rk

)M

,

(
rk
rj

)M}
(1 + min(rk, rj)|xk,n − xj,m|)−J

× (1 + max(rk, rj)
−1|ξk − ξj|)−J ,

and as noticed in Remark 4.4, this implies that Γ ∈ adα,sp,q . �

Let us now turn to a first useful application of Proposition 4.9 to study “change of frame”
operators. As we will see in Corollaries 4.11 and 4.12 below, we can use the “change of
frame” operators to extend Propositions 3.3 and 3.6 to cover much more general expansion
system.

We take 0 ≤ α < 1 and let {ϕk,n}k,n∈Zn be the tight frame defined in (2.9) for the
chosen α ∈ [0, 1). It can easily be verified that for any fixed N,P,L > 0, ϕk,n has the
following decay in direct and frequency space,

|ϕk,m(x)| ≤ Cr
n
2
k (1 + rk|xk,m − x|)−2N ,(4.7)

|ϕ̂k,m(ξ)| ≤ Cr
−n

2
k (1 + r−1

k |ξk − ξ|)−2L−2
α

1−αP
,(4.8)

where C is independent of k and m, and as before,

(4.9) xk,m =
π

a
r−1
k m, k,m ∈ Z

n,

with rk defined in (2.2). Let {ψk,n}k,n∈Zd ⊂ L2(R
n) be another system with similar decay

properties,

|ψj,m(x)| ≤ Cr
n
2
j (1 + rj |xj,m − x|)−2N ,(4.10)

|ψ̂j,m(ξ)| ≤ Cr
−n

2
j (1 + r−1

j |ξj − ξ|)−2L−2
α

1−αP
.(4.11)
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The following lemma was proved in [24].

Lemma 4.10. Let 0 ≤ α < 1. Choose N,P,L > 0 such that 2N > n and 2L+2 α
1−α

P−n
2 >

n. If both systems {ηk,n}k,n∈Zn and {ψj,m}j,m∈Zn satisfy (4.10) and (4.11), we have

|〈ηk,n, ψj,m〉| ≤Cmin

(
rk
rj
,
rj
rk

)P

(1 + max(rk, rj)
−1|ξk − ξj|)−L

× (1 + min(rk, rj)|xk,n − xj,m|)−N .

The lemma can be applied to obtain the following result reconstruction bound for any
system of ”molecules” with the same general structure as the frame {ϕk,n}k,n∈Zn .

Corollary 4.11. Let α ∈ [0, 1), s ∈ R, 1 ≤ p <∞, and 0 < q ≤ ∞, and let W ∈ Ap with

order p doubling exponent β as specified in Definition 3.4. Put K := max
{β

p ,
β−n
p

}
and

choose N,P,L > 0 such that 2N > n and 2L+ 2 α
1−α

P−n
2 > n, and, additionally,

min{L,N} > n

min(1, q)
+
β

p
, P > K +max

{
2n

min(1, q)
, |s|+ n

2

}
.

If the system {ψj,m}j,m∈Zn ⊂ L2(R
n) satisfy (4.10) and (4.11) with parameters N,P,L as

specified, then there exists a constant C such that for any finite vector-valued coefficient
sequence s := {cj,ℓ}(j,ℓ)∈F , F ⊂ Z

n × Z
n,

(4.12)

∥∥∥∥
∑

(j,ℓ)∈F

cj,ℓψj,ℓ

∥∥∥∥
Mα,s

p,q (W )

≤ C‖{cj,ℓ}‖mα,s
p,q (W ).

Proof. We expand f :=
∑

(j,ℓ)∈F cj,ℓψj,ℓ in the canonical system {ϕj,ℓ}. This yields

f =
∑

(k,m)∈Zn×Zn

(Bs)(j,m)ϕk,m,

with

B = (〈ψj,ℓ, ϕk,n〉)(j,ℓ)(k,n).
By Proposition 4.9, ‖Bs‖mα,s

p,q (W ) ≤ C1‖s‖mα,s
p,q (W ), and it follows by Proposition 3.6 that

‖f‖Mα,s
p,q (W ) ≤ C2‖Bs‖mα,s

p,q (W ) ≤ C1C2‖s‖mα,s
p,q (W ).

�

Using a similar type of argument, we can also obtain an estimate for the analysis/coefficient
operator for any system with the same general structure as the frame {ϕk,n}k,n∈Zn .

Corollary 4.12. Let α ∈ [0, 1), s ∈ R, 1 ≤ p <∞, and 0 < q ≤ ∞, and let W ∈ Ap with

order p doubling exponent β as specified in Definition 3.4. Put K := max
{β

p ,
β−n
p

}
and

choose N,P,L > 0 such that 2N > n and 2L+ 2 α
1−α

P−n
2 > n, and, additionally,

min{L,N} > n

min(1, q)
+
β

p
, P > K +max

{
2n

min(1, q)
, |s|+ n

2

}
.

If the system {ψj,m}j,m∈Zn ⊂ L2(R
n) satisfy (4.10) and (4.11) with parameters N,P,L as

specified, then we have Then for f ∈Mα,s
p,q (W ),

(4.13) ‖{ck,ℓ}k,ℓ‖mα,s
p,q (W ) ≤ C‖f‖Mα,s

p,q (W ),

with ck,ℓ := 〈f , ψk,ℓ〉.
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Proof. By Proposition 3.3, there exists C1 such that for f ∈Mα,s
p,q (W ),

‖{sk,ℓ}k,ℓ‖mα,s
p,q (W ) ≤ C1‖f‖Mα,s

p,q (W ),

with sk,ℓ := 〈f , ϕk,ℓ〉. We also notice that

f =
∑

(j,m)∈Zn×Zn

sj,mϕj,m.

We use this representation of f to calculate

ck,ℓ := 〈f , ψk,ℓ〉,
where we obtain c = Bs, with

B = (〈ϕj,m, ψk,ℓ〉)(j,m)(k,ℓ).

Hence, by Proposition 4.9,

‖{ck,ℓ}k,ℓ‖mα,s
p,q (W ) ≤ C2‖{sk,ℓ}k,ℓ‖mα,s

p,q (W ) ≤ C1C2‖f‖Mα,s
p,q (W ).

�

5. An application to Fourier multipliers

One key selling point of Definition 4.8 is that new almost-diagonal class adα,s
p,q (W ) is fully

compatible with the already known scalar class adα,sp,q up to a simple W -dependent decay
modification specified by the doubling exponent β – at least if we rely on the symmetric
version of adα,sp,q discussed in Remark 4.4.

In particular, calling on Proposition 4.9, any scalar boundedness result relying on the
symmetric version of the almost diagonal class adα,sp,q will have a simple modification to
the matrix valued setting for weights in Ap. The specifics of the modification will depend
only on the doubling exponent β of the matrix-weight. Let us consider an application to
Fourier multipliers.

5.1. Fourier Multipliers. Let 1 ≤ p < ∞, 0 < q < ∞, and fix α ∈ [0, 1]. Suppose
that W ∈ Ap. For m a bounded measurable function on R

n, we can define the associated
Fourier multiplier as the operator

m(D)f = F−1(mf̂),

which is initially defined and bounded on L2(Rn). We may extend m(D) to the vector-
setup by letting m(D) act coordinate-wise. We also notice that m(D) is then defined on
a dense subset of Mα,s

p,q (W ), c.f. Remark 3.7. We have the following result.

Proposition 5.1. Let 1 ≤ p <∞, 0 < q <∞, α ∈ [0, 1), and suppose that W ∈ Ap. Fix
b ∈ R. Assume that the multiplier function m : Rn → C satisfies the smoothness condition

sup
ξ∈Rn

〈ξ〉α|η|−b|∂ηm(ξ)| <∞,

for every multi-index η ∈ (N ∪ {0})n. Then

(5.1) m(D) :Mα,s+b
p,q (W ) →Mα,s

p,q (W ).

Proof. Calling on Proposition 4.9 and Corollary 4.11, it is straightforward to verify that
it suffices to show that the matrix

(5.2)
{〈

〈ξk〉−bm(D)ϕk,ℓ, ϕj,m

〉}
∈ ads

p,q(W ).

Let Qk = Bα
k be the α-covering from Example 2.3. We first observe, using the compact

support properties of the system {ϕk,ℓ}, that 〈m(D)ϕk,ℓ, ϕj,m〉 = 0 whenever Qk∩Qj = ∅.
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Let us therefore focus on the case Qk ∩ Qj 6= ∅, where we have rk ≍ rj (with constants
independent of k and j). The equivalence rk ≍ rj in turn implies that we need to verify,

(5.3)
∣∣〈〈ξk〉−bm(D)ϕk,ℓ, ϕj,m

〉∣∣ ≍ (1− |ℓ−m|)−J−δ, Qk ∩Qj 6= ∅.
We have, using Eq. (2.8),

〈m(D)ϕk,ℓ, ϕj,m〉 =
ˆ

Rn

m(ξ)θαk (ξ)θ
α
j (ξ)ek,ℓ(ξ)ej,m(ξ) dξ,

and by the affine change of variable ξ := Tky := rky + ξk,

〈m(D)ϕk,ℓ, ϕj,m〉 = rnk

ˆ

Rn

m(Tky)θ
α
k (Tky)θ

α
j (Tky)ek,ℓ(Tky)ej,m(Tky) dy

= (2π)−n

ˆ

Rn

m(Tky)θ
α
k (Tky)θ

α
j (Tky)

× exp

[
i
π

a

((
ℓ− rk

rj
m
)
· y − rk

rj
m · k +m · j

)]
dy.

Hence, letting gk,j(y) := m(Tky)θ
α
k (Tky)θ

α
j (Tky), we obtain

|〈m(D)ϕk,ℓ, ϕj,m〉| ≤ C

∣∣∣∣F [gk,j ]

(
π

a

[
rk
rj
m− ℓ

])∣∣∣∣ .

Now we proceed to make a standard decay estimate for the Fourier transform of gk,j.
Notice that θαk (Tk·)θαj (Tk·) is C∞ with support contained in a compact set Ω that can be
chosen independent of k and j, which can be verified using the fact that rk ≍ rj. Hence,
by the Leibniz rule, one obtains for β ∈ (N ∪ {0})n,

|∂β [gk,j](ξ)| ≤ Cβ1Ω(ξ)
∑

η≤β

∂η[m(Tk·)](ξ), ξ ∈ R
n.

Then by the chain-rule, recalling that rk = 〈ξk〉α,
|∂β [gk,j](ξ)| ≤ Cβ1Ω(ξ)

∑

η≤β

r
|η|
k [(∂ηm)(Tk·)](ξ)

≤ C
∑

η≤β

r
|η|
k 1Ω(ξ)〈Tkξ〉b−α|η|

≤ C1Ω(ξ)
∑

η≤β

〈ξk〉α|η|〈ξk〉b−α|η|.

Standard estimates now show that for any N > 0, there exists CN <∞ such that

〈ξk〉−b|〈m(D)ϕk,ℓ, ϕj,m〉| ≤ CN (1 + |m− ℓ|)−N ,

whenever Qk ∩Qj 6= ∅. By the observation in Eq. (5.3), we may therefore conclude that
(5.2) holds, and consequently, that the multiplier result (5.1) also holds. �

It is well-know that for b ∈ R, the bracket-function 〈·〉b satisfies the estimate

|[∂β〈·〉b](ξ)| ≤ Cβ〈ξ〉b−|β|, ξ ∈ R
n.

for any multi-index β ∈ (N∪ {0})n. We therefore have the following easy corollary, where
we use 〈·〉b〈·〉−b ≡ 1 for the final norm-equivalence.

Corollary 5.2. Let 1 ≤ p < ∞, 0 < q < ∞, α ∈ [0, 1), and suppose that W ∈ Ap. Fix
b ∈ R. Then

(5.4) 〈D〉b :Mα,s+b
p,q (W ) →Mα,s

p,q (W ).

Moreover, we have the norm equivalence

‖g‖
Mα,s+b

p,q (W )
≍ ‖〈D〉bg‖Mα,s

p,q (W ),
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for g ∈Mα,s+b
p,q (W ).

Appendix A. Completeness of the α-modulation spaces

Here we complete the proof of Proposition 2.12. We recall that
⊕N

j=1 S(Rn) denotes

the family of vector functions f = (f1, . . . , fN )T with fi ∈ S(Rn), i = 1, . . . , N . We equip
the space with the induced semi-norms

p(f) :=

N∑

j=1

pd(fj), with pd(fi) := sup
ξ∈Rn

〈ξ〉d
∑

|η|≤d

|∂ηf̂i(ξ)|.

As before, we let
⊗N

j=1 S ′(Rn) denote the corresponding family of vector-valued tempered
distributions.

Completion of the proof of Proposition 2.12. We first show the embedding
⊕N

j=1 S(Rn) →֒
Mα,s

p,q (W ). Let f ∈ ⊕N
j=1 S(Rn), and put w(x) := ‖W 1/p(x)‖p. As W ∈ Ap, it is known

that w belongs to scalar Ap(R
n), see [16, Corollary 2.3]. We will need the fact that scalar

Ap-wights have moderate average growth in the sense that

(A.1)

ˆ

Rn

w(x)〈x〉−n(p+ε) dx < +∞,

for any ε > 0, see, e.g., [28, Chap. IX, Proposition 4.5].
Let L > 0. We have, for d > max{np, nα+ L},

ˆ

Rn

|W 1/p(x)θαk (D)f(x)|p dx ≤
ˆ

Rn

‖W 1/p(x)‖p|θαk (D)f(x)|p dx

=

ˆ

Rn

w(x)|θαk (D)f(x)|p dx

≤ ‖〈·〉dθαk (D)f‖p∞
ˆ

Rn

w(x)〈x〉−d dx

≤ C‖〈·〉dθαk (D)f‖p∞.(A.2)

For the scalar function fi ∈ S(Rn) it can be shown (see, e.g., [5, Prop. 4.3.(ii)]) that for
d > max{np, nα+ L},

(A.3) ‖〈·〉dθαk (D)fi‖∞ ≤ c〈k〉
−L
1−α pd(fi),

with c independent of fi. Hence, using (A.1) and (A.2), we obtain

‖θαk (D)f‖Lp(W ) ≤ cd〈k〉
−L
1−α pd(f) = cdr

−L/α
k pd(f).

Recall that we may choose L arbitrarily large, and for sufficiently large L, we obtain

‖f‖Mα,s
p,q (W ) = ‖{rsk‖θαk (D)f‖Lp(W )}k‖ℓq ≤ cdpd(f),

for d suitably large, but independent of f . This provides the wanted embedding.
We now turn to the embedding Mα,s

p,q (W ) →֒ ⊕N
j=1 S ′(Rn). Let us first consider the

case 1 < p < ∞, Take f ∈ Mα,s
p,q (W ), and let θ = (θ1, . . . , θN )T ∈ ⊕N

j=1 S(Rn). Then,

using the smooth resolution of the identity
∑

k θ
α
k (ξ)

2 = 1 from Eq. (2.6), we obtain

〈f ,θ〉CN =
∑

k∈Zn

〈θαk (D)f , θαk (D)θ〉CN

=
∑

k∈Zn

〈rskW 1/pθαk (D)f , r−s
k W−1/pθαk (D)θ〉CN .
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In the case 1 ≤ q <∞, we use Hölder’s inequality twice to obtain
ˆ

Rn

|〈f(x),θ(x)〉CN | dx ≤ ‖{rsk‖θαk (D)f‖Lp(W )}k‖ℓq‖{r−s
k ‖θαk (D)θ‖Lp′ (W−p′/p)}k‖ℓq′ ,

with q′ the dual Hölder exponent to q. It is known that W−p′/p ∈ Ap′ , see [26, Corollary
3.3]. Hence, we may use the embedding already obtained to conclude that, with d suitably
large,

‖{r−s
k ‖θαk (D)θ‖Lp′ (W−p′/p)}k‖ℓq′ ≤ cpd(θ),

so
ˆ

Rn

|〈f(x),θ(x)〉CN | dx ≤ c‖f‖Mα,s
p,q (W )pd(θ),

which proves the continuous embedding Mα,s
p,q (W ) →֒ ⊕N

j=1 S ′(Rn). For 0 < q < 1 the
proof is similar starting from the estimate

|〈f ,θ〉CN |q ≤
∑

k∈Zn

rsqk ‖θαk (D)f‖qLp(W )

[
sup
ℓ
r−s
ℓ ‖θαℓ (D)θ‖Lp′ (W−p′/p)

]q
.

In case p = 1, we may adapt the same proof relying on the estimates (A.3) and
ˆ

Rn

|〈f(x),θ(x)〉CN | dx ≤ ‖{rsk‖θαk (D)f‖L1(W )}k‖ℓq‖{r−s
k ‖θαk (D)θ‖∞}k‖ℓq′ .

Now we turn to the proof of part (b). Let {AQ}Q∈Rn be a sequence of reducing operators
associated with W , and suppose {fn}n is a Cauchy sequence in Mα,s

p,q (W ). The sequence

is also Cauchy in the complete space
⊕N

j=1 S ′(Rn) by part (a). Hence, the sequence has a

well-defined limit f ∈ ⊕N
j=1 S ′(Rn). By Proposition 3.3, cn = {〈fn, ϕj,ℓ〉j,ℓ} is Cauchy in

mα,s
p,q ({AQ}). In particular,

sup
k
rsk

∥∥∥∥
∑

ℓ∈Zn

|Q(k, ℓ)|− 1
2 ‖AQ(k,ℓ)(c

m
k,ℓ − cnk,ℓ)‖1Q(k,ℓ)

∥∥∥∥
Lp(dt)

≤
∥∥∥∥
{
rsk

∥∥∥∥
∑

ℓ∈Zn

|Q(k, ℓ)|− 1
2 ‖AQ(k,ℓ)(c

m
k,ℓ − cnk,ℓ)‖1Q(k,ℓ)

∥∥∥∥
Lp(dt)

}

k

∥∥∥∥
ℓq

−→ 0,(A.4)

as m,n → ∞, which shows that {AQ(k,ℓ)c
m
k,ℓ}m is Cauchy in C

N , and since AQ(k,ℓ) is

invertible, we have that {cmk,ℓ}m is Cauchy in C
N . Define ck,ℓ := limm→∞ cmk,ℓ, where we

have ck,ℓ = 〈f , ϕj,ℓ〉 since fn → f in
⊕N

j=1 S ′(Rn) and ϕj,k ∈ S(Rn). An application of
Fatou’s lemma shows that

‖{ck,ℓ}‖mα,s
p,q (W ) ≤ lim inf

n
‖{cnk,ℓ}‖mα,s

p,q (W ) < +∞.

We may write,

f =
∑

j∈Zn

∑

ℓ∈Zn

cj,ℓϕj,ℓ,

where we notice that the norm estimate from Eq. (3.5) can be used to verify that f is
a locally integrable vector function. We apply Fatou’s lemma to the right-hand side of
the estimate (A.4), and together with Proposition 3.6, to verify that fn → f in Mα,s

p,q (W ),
proving completeness of the space. �

References

[1] L. Borup and M. Nielsen. Banach frames for multivariate α-modulation spaces. J. Math. Anal. Appl.,
321(2):880–895, 2006.

[2] L. Borup and M. Nielsen. Boundedness for pseudodifferential operators on multivariate α-modulation
spaces. Ark. Mat., 44(2):241–259, 2006.

[3] L. Borup and M. Nielsen. Frame decomposition of decomposition spaces. J. Fourier Anal. Appl.,
13(1):39–70, 2007.



MATRIX WEIGHTED MODULATION SPACES 22

[4] L. Borup and M. Nielsen. On anisotropic Triebel-Lizorkin type spaces, with applications to the study
of pseudo-differential operators. J. Funct. Spaces Appl., 6(2):107–154, 2008.

[5] G. Cleanthous and A. G. Georgiadis. Mixed-norm α-modulation spaces. Trans. Amer. Math. Soc.,
373(5):3323–3356, 2020.

[6] E. Cordero, A. Tabacco, and P. Wahlberg. Schrödinger-type propagators, pseudodifferential operators
and modulation spaces. J. Lond. Math. Soc. (2), 88(2):375–395, 2013.

[7] D. Cruz-Uribe, K. Moen, and S. Rodney. Matrix Ap weights, degenerate Sobolev spaces, and mappings
of finite distortion. J. Geom. Anal., 26(4):2797–2830, 2016.

[8] D. E. Edmunds and H. Triebel. Function spaces, entropy numbers, differential operators, volume 120
of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 1996.

[9] H. G. Feichtinger. Banach spaces of distributions defined by decomposition methods. II. Math. Nachr.,
132:207–237, 1987.

[10] H. G. Feichtinger. Modulation spaces of locally compact abelian groups. In R. Radha, M. Krishna,
and S. Thangavelu, editors, Proc. Internat. Conf. on Wavelets and Applications, pages 1–56. Allied
Publishers, New Delhi, 2003.
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