The use of GPS and SMS data to investigate travel experiences

Reinau, Kristian Hegner; Harder, Henrik; Weber, Michael; Jensen, Anders Sorgenfri

Publication date: 2012

Downloaded from vbn.aau.dk on: December 17, 2018

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

General rights

Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

You may not further distribute the material or use it for any profit-making activity or commercial gain

You may freely distribute the URL identifying the publication in the public portal

Take down policy

If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the document immediately and investigate your claim.

Link to publication from Aalborg University

Early version, also known as pre-print

Document version

Publication date: 2012

The use of GPS and SMS data to investigate travel experiences: A Danish case study

Assistant Professor Kristian Hegner Reinau, Ph.D. M.Sc.
reinau@plan.aau.dk

Associate Professor Henrik Harder, Ph.D M.A. HDO
hhar@create.aau.dk

miwe@create.aau.dk

Aalborg University, Denmark
The ACTUM research project

- Funded with 21.6 million Dkr by the Danish Council for Strategic Research.
- “The objective of the project is to provide an activity-based framework that is able to capture and describe individual and household activity patterns within a multi-modal transport environment that is characterized by a diversity of travel mode combinations.” (ACTUM 2010, p.2)
- This GPS tracking project is funded by the ACTUM research project, and the overall objective is to deliver data for the estimation of the activity based models.

(ACTUM 2010, p.5)
Research Question

• Can GPS technology and SMS technology be combined into a method which makes it possible to capture trip data which cannot be captured by the conventional combination of GPS tracking and travel diaries?
The dawn of Activity Based Traffic models

- Need for calibration and validation data is growing
 - Trip identification
 - Trip mode
 - Trip purpose
 - (Trip decision-making-processes)*
 - (Trip experiences)*

- Mainstream data collection method: Travel diaries
Combining GPS and travel diaries

• Pure travel diaries
 • Detailed information on each trip and socio-economic background data
 • Missing trips (Forrest and Pearson 2005)
 • Bias toward well off respondents (Forrest and Pearson 2005)
 • Large burden placed on respondents (Ohmori et al. 2005)
 • Expensive method (Ohmori et al. 2005)

• Pure GPS tracking
 • Detailed data on geography of all trips
 • Detailed data on timing of all trips
 • Trips, mode and purpose can partially be calculated from combination of GPS tracks and other GIS data
 • No socio-economic background data
 • No data on home activities

• Prompted recall studies – “The best of both”, but only few studies so far.
Weaknesses of current combination of GPS and travel Diaries

• Memory bias and post-rationalization!

• Recalling information is as a reconstructive process, influenced by many factors, which limits people ability to give an precise description of past behavior or experience in recall-based self-report procedures (Barrett and Barrett 2001).

• Post-rationalization might also be an issue (Scollon, Kim-Prito, & Diener 2009).
A solution: Experience Sampling Methods

• “… experience sampling is best thought of as a procedure that allows participants to report the contents of awareness along with the situation in which that awareness takes place” (Barrett & Barrett 2001, p.176)

• Interval-contingent sampling

• Event-contingent sampling

• Signal-contingent sampling
Our SMS-GPS-Trip-Method

• A contingency based experience sampling setup relying on GPS and SMS technology. The respondents carry a GPS tracker and are asked to send a SMS to a server each time they:
 • Start a trip, containing a description of the purpose of the trip,
 • End a trip, containing a description of mode and a description of the decision-making processes or the experience of the trip.
• “Start SMS” and “Stop SMS” are then paired into pairs constituting a “SMS-trip”.
• Using the timing of the Start and Stop SMSes, GPS points tracked for the respondent in each trip is linked to the SMS-Trips resulting in SMS-GPS-Trips.
Capturing the experience with the SMS-GPS-Trip-Method

• Our method constitute an event-contingent experience sampling method setup.

• The large literature on the experience sampling method and its advantages documents that such a method is capable of capturing certain types of data, for example data on experiences, which tradition diary studies cannot capture.

• We can therefore conclude theoretically that our method is better suited for collecting certain types of data about trips, than the traditional combination of GPS tracking and travel diaries.
A casestudy in Copenhagen

- 50 Households (approximately 200 people)
 - 7 days of GPS tracking
 - Web-survey
 - SMS data about experiences of trips
 - Late September and early October 2011
 - Sample: Mother, father and one or more children over the age of 6.
An event contingent based study: Setup A (38 households)

- When you start the journey, for example when you exit your front door in the morning, you should send an SMS with the information "Work start" or "School Start" to number 40471443.

- When you arrive at your work/school, you should send an SMS to number 40471443 with the information "Work End" or "School End", as well as what transportation form you used in the journey, for example "Walk Bus" if you walked some of the way and took the bus some of the way.

- In addition we would like if you answer the following question:

 What three words will you use to describe the experience of the journey you have just been on?
An event contingent based study: Setup B (12 households)

- We would like if you, when you start the journey, will send us one word describing the objective of the journey to number 40471443, for example "Work" if you are heading for work, "School" if you are heading for school, "visit" if you are heading for a family visit, "exercise" if you are heading for exercise, "shopping" if you are going shopping etc.

- When you arrive at your destination, we would like that you send an SMS to number 40471443 with the answer to the following questions:

 What three words will you use to describe the experience of the journey you have just been on?
The GPS data
The SMS-GPS-Trips
Timing of 3,497 SMS’s received

- **Number of SMS**
 - Setup B
 - Setup A
- **Hour of the Day**

- **Percent of SMS in Setup**
 - Setup B
 - Setup A

- **Hour of the Day**

[Graphs showing distribution of SMS by hour and setup]
The 3.497 SMS’s received

All respondents are included in this analysis

<table>
<thead>
<tr>
<th>Populations</th>
<th>N pop. 1</th>
<th>Mean pop. 1</th>
<th>N pop. 2</th>
<th>Mean pop. 2</th>
<th>P value two-tail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparisons within Setups</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Setup A: Boy - Girl</td>
<td>30</td>
<td>13,67</td>
<td>31</td>
<td>12,52</td>
<td>0.749336856</td>
</tr>
<tr>
<td>Setup A: Men - Women</td>
<td>38</td>
<td>23,61</td>
<td>38</td>
<td>30,53</td>
<td>0.068035163</td>
</tr>
<tr>
<td>Setup A: Children - Adults</td>
<td>61</td>
<td>13,08</td>
<td>76</td>
<td>27,07</td>
<td>3,17687E-07*</td>
</tr>
<tr>
<td>Setup B: Boy - Girl</td>
<td>15</td>
<td>6,60</td>
<td>12</td>
<td>11,17</td>
<td>0.345478121</td>
</tr>
<tr>
<td>Setup B: Men - Women</td>
<td>12</td>
<td>14,92</td>
<td>12</td>
<td>19,17</td>
<td>0.301402552</td>
</tr>
<tr>
<td>Setup B: Children - Adults</td>
<td>27</td>
<td>8,63</td>
<td>24</td>
<td>17,04</td>
<td>0,006713303*</td>
</tr>
</tbody>
</table>

Comparisons between setups					
Setup A Children - Setup B Children	61	13,08	27	8,63	0,119590168
Setup A Adults - Setup B Adults	76	27,07	24	17,04	**0,000556638***
Setup A - Setup B	137	20,84	51	12,59	**0,000191436***

(two-sample t-test where we assume unequal variance)
1,306 SMS-Trips identified

All respondents are included in this analysis

<table>
<thead>
<tr>
<th>Comparisons within Setups</th>
<th>N pop. 1</th>
<th>Mean pop. 1</th>
<th>N pop. 1</th>
<th>Mean pop. 2</th>
<th>P value two-tail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setup A: Boy - Girl</td>
<td>30</td>
<td>4.93</td>
<td>31</td>
<td>5.16</td>
<td>0.886990427</td>
</tr>
<tr>
<td>Setup A: Dad - Mom</td>
<td>38</td>
<td>9.39</td>
<td>38</td>
<td>12.82</td>
<td>0.069131819</td>
</tr>
<tr>
<td>Setup A: Children - Parents</td>
<td>61</td>
<td>5.05</td>
<td>76</td>
<td>11.11</td>
<td>2.42038E-06***</td>
</tr>
<tr>
<td>Setup B: Boy - Girl</td>
<td>15</td>
<td>0.67</td>
<td>12</td>
<td>3.83</td>
<td>0.118630981</td>
</tr>
<tr>
<td>Setup B: Dad - Mom</td>
<td>12</td>
<td>2.92</td>
<td>12</td>
<td>5.25</td>
<td>0.24051792</td>
</tr>
<tr>
<td>Setup B: Children - Parents</td>
<td>27</td>
<td>2.07</td>
<td>24</td>
<td>4.08</td>
<td>0.130176832</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Comparisons between setups</th>
<th>N pop. 1</th>
<th>Mean pop. 1</th>
<th>N pop. 1</th>
<th>Mean pop. 2</th>
<th>P value two-tail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setup A Children - Setup B Children</td>
<td>61</td>
<td>5.05</td>
<td>27</td>
<td>2.07</td>
<td>0.014276233**</td>
</tr>
<tr>
<td>Setup A Parents - Setup B Parents</td>
<td>76</td>
<td>11.11</td>
<td>24</td>
<td>4.08</td>
<td>1.86293E-06***</td>
</tr>
<tr>
<td>Setup A - Setup B</td>
<td>137</td>
<td>8.41</td>
<td>51</td>
<td>3.02</td>
<td>6.21103E-08***</td>
</tr>
</tbody>
</table>

(two-sample t-test where we assume unequal variance)
Capturing mode: Setup A

<table>
<thead>
<tr>
<th>Mode</th>
<th>Number of SMS-trips</th>
<th>Percentage of SMS-trips with mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Car</td>
<td>238</td>
<td>25.48</td>
</tr>
<tr>
<td>Walk</td>
<td>262</td>
<td>28.05</td>
</tr>
<tr>
<td>Train</td>
<td>46</td>
<td>4.93</td>
</tr>
<tr>
<td>Bus</td>
<td>25</td>
<td>2.68</td>
</tr>
<tr>
<td>Metro</td>
<td>25</td>
<td>2.68</td>
</tr>
<tr>
<td>Bike</td>
<td>495</td>
<td>53.00</td>
</tr>
<tr>
<td>Taxi</td>
<td>8</td>
<td>0.86</td>
</tr>
<tr>
<td>Other (boat etc.)</td>
<td>7</td>
<td>0.75</td>
</tr>
</tbody>
</table>

- 934 of 1152 trips contained mode (81%)
- 136 of the 934 trips contained more than one mode (15%)
- The method is well suited for capturing mode information
Capturing purpose: Setup A and Setup B

<table>
<thead>
<tr>
<th></th>
<th>Setup A</th>
<th></th>
<th></th>
<th>Setup B</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SMS-trips</td>
<td>Percentage of trips</td>
<td>Trips pr. responent</td>
<td></td>
<td>SMS-trips</td>
<td>Percentage of trips</td>
</tr>
<tr>
<td>Work</td>
<td>379</td>
<td>32,90</td>
<td>2,77</td>
<td>Work</td>
<td>57</td>
<td>37,01</td>
</tr>
<tr>
<td>School</td>
<td>181</td>
<td>15,71</td>
<td>1,32</td>
<td>School</td>
<td>18</td>
<td>11,69</td>
</tr>
<tr>
<td>Leisure</td>
<td>592</td>
<td>51,39</td>
<td>4,32</td>
<td>Leisure</td>
<td>79</td>
<td>51,30</td>
</tr>
<tr>
<td>Total</td>
<td>1152</td>
<td>100</td>
<td>8,41</td>
<td>Total</td>
<td>154</td>
<td>100</td>
</tr>
</tbody>
</table>

- The method was capable of capturing purpose for all 1306 trips!
Capturing Experiences: Setup A and Setup B

<table>
<thead>
<tr>
<th>Setup A</th>
<th></th>
<th>Setup B</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Experience</td>
<td>SMS-trips</td>
<td>Percentage of trips</td>
</tr>
<tr>
<td></td>
<td>Experiences</td>
<td>trip</td>
<td></td>
</tr>
<tr>
<td>No Exp.</td>
<td>668</td>
<td>57.99</td>
<td>4.88</td>
</tr>
<tr>
<td>One Exp.</td>
<td>190</td>
<td>16.49</td>
<td>1.39</td>
</tr>
<tr>
<td>Two Exp.</td>
<td>110</td>
<td>9.55</td>
<td>0.80</td>
</tr>
<tr>
<td>Three or more Exp.</td>
<td>184</td>
<td>15.97</td>
<td>1.34</td>
</tr>
<tr>
<td>Exp. trips total</td>
<td>484</td>
<td>42.01</td>
<td>3.53</td>
</tr>
<tr>
<td>SMS trips total</td>
<td>1152</td>
<td>100.00</td>
<td>8.41</td>
</tr>
</tbody>
</table>

- A larger question, and thus bigger workload in each SMS-Trip, results in more SMS-Trips with experiences received on average (Setup A vs. Setup B)

- The simpler question in Setup B meant that slightly more trips on average pr. respondent with three experiences were reported in Setup B, but overall Setup A captured more experiences.
Identifying precise start and stop time of trips
Conclusions

- We are the first, as far as we know, to suggest theoretically and practically implement the use of SMS technology in such a combination with GPS technology, where the timing of SMS’s is used to define trips in the GPS data and the content of the SMS’s to capture data about the trips.

- The SMS-GPS-Trip-Method is well suited for collecting data on decision-making processes and experiences, which are difficult to capture using diaries and GPS tracking.

- Data collected with our method can be used as a basis for calibration and validation of algorithms for automated trip recognition, trip mode recognition and trip purpose recognition in GPS data, because the method makes it is possible to capture the start and stop times of trips precisely.

- The utilization of SMS technology means that this method can reach a wider group of respondents than is possible with specialized smart-phone apps, which demands that the respondents have smartphones and are willing to, and capable off, installing and using a specialized tracking app.
Acknowledgements

• We will like to thank the following people: Professor Otto Anker Nielsen and associate professor Christian Hansen Overgård from DTU for good discussions underway and good cooperation regarding the collection of ACTUM data. Professor Ole B. Jensen and associate professor Claus Lassen, from Aalborg University, professor John Polak and assistant professor Aruna Sivakumar from Imperial College London, professor Noam Shoval and Ph.d. candidate Amit Birenboim from The Hebrew University of Jerusalem. A thank you shall also go to the people who participated in the seminar at Centre for Transport Studies at Imperial College London where we presented a draft of this work, for good ideas and suggestions, as well as to the people in the session at the Association of American Geographers Annual Meeting 2012 conference in New York, where we also presented a draft. Finally we will also like to thank the people in the Danish Data Protection Agency, whose approval made our work possible.
Thank you for your attention!