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Abstract
The rate of perceived effort (RPE) is a subjective scale widely used for defining training loads. However, the subjective nature 
of the metric might lead to an inaccurate representation of the imposed metabolic/mechanical exercise demands. Therefore, 
this study aimed to predict the rate of perceived exertions during running using biomechanical parameters extracted from a 
commercially available running smartwatch. Forty-three recreational runners performed a simulated 5-km race on a track, 
providing their RPE from a Borg scale (6–20) every 400 m. Running distance, heart rate, foot contact time, cadence, stride 
length, and vertical oscillation were extracted from a running smartwatch (Garmin 735XT). Machine learning regression 
models were trained to predict the RPE at every 5 s of the 5-km race using subject-independent (leave-one-out), as well as a 
subject-dependent regression method. The subject-dependent method was tested using 5%, 10%, or 20% of the runner’s data 
in the training set while using the remaining data for testing. The average root-mean-square error (RMSE) in predicting the 
RPE using the subject-independent method was 1.8 ± 0.8 RPE points (range 0.6–4.1; relative RMSE ~ 12 ± 6%) across the 
entire 5-km race. However, the error from subject-dependent models was reduced to 1.00 ± 0.31, 0.66 ± 0.20 and 0.45 ± 0.13 
RPE points when using 5%, 10%, and 20% of data for training, respectively (average relative RMSE < 7%). All types of 
predictions underestimated the maximal RPE in ~ 1 RPE point. These results suggest that the data accessible from commer-
cial smartwatches can be used to predict perceived exertion, opening new venues to improve training workload monitoring.

Keywords  Running · Fatigue · RPE · Borg · Wearable sensors · Machine learning

Introduction

Endurance exercises such as cycling and running are widely 
practiced for leisure, health management, and improving ath-
letic performance (Grunseit et al. 2018). Running especially 
has grown in popularity and more recreational practition-
ers are increasingly participating in races ranging from 5 
to 21 km. Regardless of the fitness level, runners are sub-
jected to the effects of fatigue during their training sessions 
and races, reducing their performances due to metabolic 
and neuromuscular factors (Martin et al. 2010; Oliveira 

et al. 2013). Fatigue influences running mechanics, such as 
increasing the peak ground reaction forces and loading rates 
(Christina et al. 2001; Jafarnezhadgero et al. 2019; Luo et al. 
2019; Pirscoveanu et al. 2021), which may be linked to the 
increased accumulation of metabolites (blood lactate, inor-
ganic phosphates, K +) (Boyas and Guével 2011; Gholami 
et al. 2020). Moreover, heart rate is a relevant indicator of 
fatigue, as fatigue overloads the cardiovascular system due 
to the reduced efficiency in generating energy and metabolite 
removal (Schneider et al. 2018).

Fatigue progression has also been assessed through rat-
ings of perceived exertion (Jo and Bilodeau 2021), defined 
as a psycho-physiological marker of intensity that com-
bines subjective feelings of effort, strain, discomfort, and/
or fatigue experienced during exercise (Marotta et al. 2021; 
Cheval and Boisgontier 2021). Amongst the different types 
of RPEs, the 6–20 Borg scale, which ranges from 6 (no exer-
tion) to 20 (maximal exertion), is widely used in running 
exercises to indirectly measure fatigue levels (Borg 1970, 
1990). Previous studies using the 6–20 Borg scale set a “13” 
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RPE as a moderate intensity and a “17” RPE as exercise fail-
ure to terminate fatiguing protocols (Koblbauer et al. 2014; 
Jafarnezhadgero et al. 2019; Borgia et al. 2022). Moreover, 
RPE has shown promising results to define running training 
loads (Chai et al. 2019). Therefore, implementing RPE as 
an index of fatigue and/or marker for training loads is highly 
relevant.

RPE is becoming more relevant within the running com-
munity, but RPE is a subjective measure influenced by 
external factors other than the running exercise itself. Effort 
perceptions vary widely across individuals, and the real 
instantaneous exertion can be overestimated for women and 
underestimated for regular running practitioners (Skatrud-
Mickelson et al. 2011). Moreover, training status might 
affect RPE in older adults and lead to overestimated exertion 
in untrained individuals (Jabbour and Majed 2018). There-
fore, the use of RPEs to determine fatigue levels might be 
limited due to the subjective nature of the metric.

Since RPE is based on a physical exercise that generates 
measurable variables, it is plausible that a set of data from 
the exercise can provide objective information to predict the 
RPE itself. Machine learning is being increasingly used in 
sports, as sports performance is relying more on objective 
data within the last decades. There are several studies apply-
ing machine learning in running to predict impact loading/
ground reaction forces (Girka et al. 2020; Oliveira et al. 
2022), running velocity (Wiecha et al. 2022), and terrain 
types a runner is exposed to (Dixon et al. 2019). Moreover, 
fatigue during running has been investigated using metabolic 
(Bustos et al. 2022) and mechanical variables (Gholami 
et al. 2020; Marotta et al. 2021). However, assessing rel-
evant data for fatigue prediction during outdoor activities 
might demand users to use additional wearables, limiting 
the audience's interest in the technology. Interestingly, cur-
rent wearable technologies used for fitness tracking offer 
measurements of running biomechanical parameters such as 
running speed, stride length, foot contact time, and vertical 
oscillation with reasonable validity (Price et al. 2017; Støve 
et al. 2019; Evenson and Spade 2020; Carrier et al. 2020). 
Therefore, it may be possible to use post-processed running 
biomechanical parameters from commercial smartwatches 
to predict the fatigue state of a runner while performing the 
activity.

In this study, the aim is to create a regression model to 
accurately predict instantaneous 6–20 Borg scale using 
biomechanical data from runners performing a simulated 
5-km race. The biomechanical input data for the prediction 
is attained from a commercial smartwatch. We hypoth-
esized that it is possible to create regression models to 
predict RPE within ± 1 Borg point from a limited subset of 
features extracted from the smartwatch. The confirmation 
of our hypothesis is a strong contribution to the field of 
exercise sciences, as such types of prediction models can 

be incorporated into wearables to alert runners about their 
physical exertion while exercising.

Methods

Forty-three recreational runners (30 males, 13 females, 
age: 25 ± 3 years, height: 180 ± 16 cm, weight 82 ± 20 kg) 
volunteered to participate in the study. The sample size 
in this study is in accordance with current recommenda-
tions for the conduction of running biomechanics studies 
(Oliveira and Pirscoveanu 2021) and may provide suffi-
cient data for machine learning regression model predic-
tions. The group presented 8 ± 4 years of running experi-
ence and a weekly running volume of 24 ± 15 km. Their 
self-reported 5-km race pace was 4:40 ± 0:38 min/km. 
Inclusion criteria included the current practice of running 
training protocol and being injury-free for a minimum of 
6 months before the test. Participants were asked to avoid 
performing any strenuous exercise 24 h before the test, as 
well as avoid consuming caffeine and alcohol within the 
12 h preceding the experiment. Participants were verbally 
informed about the experimental procedure and provided 
verbal and written informed consent to participate in this 
study. The local ethical committee (Region Nordjylland, 
Denmark) approved the procedures applied in the study, 
and all methods were carried out in accordance with rel-
evant guidelines and regulations from the Declaration of 
Helsinki (2004).

Experimental design

In a single session, participants were initially provided with 
a 10-min warm-up consisting of 2 laps on a 400-m outdoor 
running track, walking lunges, running with high knees, and 
leg swings (Pirscoveanu et al. 2021). Subsequently, run-
ners were asked to perform a simulated running race until 
exhaustion on the running track using their preferred regular 
running shoes. Runners were asked to maintain a stable run-
ning speed based on the reported 5-km race pace through-
out the test. The running speed was measured continuously 
through the embedded GPS on the smartwatch. Moreover, 
the consistency of the running speed throughout the test was 
assured by the experimenters checking if the runner was 
within ± 3 s of the expected time at every 200. RPE was 
assessed at the end of every 400 m using the 6–20 Borg 
scale. The test was terminated when the runner could not 
maintain a constant speed in two consecutive speed checks. 
Therefore, some participants exceeded the 5 km distance 
requirement. Figure 1A illustrates the experimental design 
and the variables acquired during the experiments.



965European Journal of Applied Physiology (2024) 124:963–973	

1 3

Fi
g.

 1
  

D
at

a 
ac

qu
is

iti
on

 a
nd

 a
na

ly
si

s. 
In

 A
, t

he
 ra

tin
g 

of
 p

er
ce

iv
ed

 e
xe

rti
on

 (R
PE

) d
at

a 
fro

m
 5

 k
m

 s
im

ul
at

ed
 r

un
ni

ng
 w

as
 e

xt
ra

ct
ed

 a
t e

ve
ry

 4
00

 m
, b

ei
ng

 s
ub

se
qu

en
tly

 in
te

rp
ol

at
ed

 to
 m

at
ch

 
th

e 
sa

m
e 

nu
m

be
r o

f s
am

pl
es

 in
 th

e 
ru

nn
in

g 
bi

om
ec

ha
ni

ca
l v

ar
ia

bl
es

. B
ot

h 
R

PE
 a

nd
 r

un
ni

ng
 m

ec
ha

ni
cs

 d
at

a 
w

er
e 

re
du

ce
d 

to
 5

-s
 w

in
do

w
s 

fo
r m

ac
hi

ne
 le

ar
ni

ng
 p

re
di

ct
io

ns
. I

n 
B,

 th
e 

su
bj

ec
t-

in
de

pe
nd

en
t m

ac
hi

ne
 le

ar
ni

ng
 m

od
el

s 
w

er
e 

ap
pl

ie
d 

us
in

g 
a 

le
av

e-
on

e-
ou

t a
pp

ro
ac

h 
w

he
re

 a
ll 

ru
nn

er
s 

(m
ar

ke
d 

as
 “

R
”)

 b
ut

 o
ne

 w
er

e 
us

ed
 fo

r t
ra

in
in

g 
th

e 
m

od
el

. T
he

 e
xc

lu
de

d 
ru

nn
er

 w
as

 th
e 

te
st 

da
ta

se
t. 

In
 C

, t
he

 s
ub

je
ct

-d
ep

en
de

nt
 m

ac
hi

ne
 le

ar
ni

ng
 m

od
el

s 
w

er
e 

ap
pl

ie
d 

by
 s

pl
itt

in
g 

th
e 

da
ta

se
t o

f a
 g

iv
en

 s
ub

je
ct

 in
to

 a
 tr

ai
ni

ng
 s

et
 a

nd
 a

 te
st 

se
t. 

Th
e 

te
st 

se
t c

om
pr

is
ed

 5
%

, 1
0%

, o
r 

20
%

 o
f t

he
 to

ta
l a

m
ou

nt
 o

f d
at

a 
of

 th
e 

ru
nn

er
 (t

he
 fi

gu
re

 e
xe

m
pl

ifi
es

 1
0%

 o
f t

he
 to

ta
l d

at
a)

. A
 si

m
ila

r a
m

ou
nt

 o
f t

es
t d

at
a 

w
as

 e
xt

ra
ct

ed
 fr

om
 fo

ur
 d

iff
er

en
t s

pl
its

 o
f t

he
 d

at
as

et
 (0

–2
5%

, 2
6–

50
%

, 
51

–7
5%

, a
nd

 7
6–

10
0%

), 
as

su
rin

g 
ba

la
nc

ed
 e

xp
os

ur
e 

to
 b

io
m

ec
ha

ni
ca

l b
eh

av
io

r a
cr

os
s t

he
 e

nt
ire

 e
xe

rc
is

e



966	 European Journal of Applied Physiology (2024) 124:963–973

1 3

Data acquisition and analysis

A commercial smartwatch (Garmin Forerunner 735XT, 
Garmin International, Kansas City, MO) was used to assess 
running speed, heart rate, and running biomechanical param-
eters as described elsewhere (Pirscoveanu et al. 2023). A 
compatible chest strap containing heart rate sensors and a 
tri-axial accelerometer was used to acquire instantaneous 
heart rate and trunk accelerometry. The data from both heart 
rate sensors and accelerometry cannot be accessed for cus-
tomized data processing. However, the smartwatch utilizes 
data processing algorithms that outputs heart rate and run-
ning biomechanical parameters such as running cadence, 
running speed, vertical oscillation, stride length, foot contact 
time, and foot contact time symmetry. All smartwatch data 
were sampled at 1 Hz. The validity of this type of device 
has been previously verified for the assessment of heart 
rate (Price et al. 2017; Støve et al. 2019), as well as run-
ning cadence, ground contact time, and vertical oscillation 
(Adams et al. 2016; Carrier et al. 2020). The data processing 
was performed using custom-made scripts (Matlab 2020b, 
The Mathworks Inc., Natick, MA, USA). The RPE values 
were interpolated between laps with a 1 Hz frequency to 
match the number of samples extracted from the running 
parameters. The heart rate was normalized by the maximum 
expected heart rate using previous literature (Tanaka et al. 
2001). Subsequently, the biomechanical and RPE data from 
all runners were reduced to averaged points for every 5 s.

Machine learning—model validation

The regression learning app from Matlab (Matlab 2020b, 
The Mathworks Inc., Natick, MA, USA) was used to run 
several machine learning algorithms using a fivefold valida-
tion method. Feature scaling was applied to each feature to 
prevent the feature magnitude from affecting the learning 
process. Scaling of features to:

where x is the original value and xʹ is the scaled value.
We allocated the data from 26 runners (~ 60% of the sam-

ple) to validate machine learning models in the three differ-
ent datasets. We first trained and validated models to predict 
the RPE using the runner’s age, body mass, and body height, 
as well as the running biomechanical data (running distance, 
heart rate, cadence, vertical oscillation, stride frequency, 
ground contact time, and ground contact time symmetry). 
Running speed was excluded from the training models since 
it was set to be a constant value across the experiment. The 
training models using all ten variables presented the best 

[0, 1] ∶ x
� =

x − mean(x)

max(x) − min(x)
,

performance (Supplementary Fig. 1, white bars). However, 
the implementation of a leave-one-out design to predict the 
RPE from a single individual cannot include invariant fea-
tures such as age, body mass, and body height, since they 
have no variability across the running trial. Therefore, two 
other models were validated: a model with only biome-
chanical variables except for running speed (Supplemen-
tary Fig. 1, gray bars) and a model with only biomechanical 
variables except running speed and running distance (Sup-
plementary Fig. 1, black bars). This third model was tested 
since running distance is a cumulative variable that may 
highly correlate with RPE.

We found that the inclusion of all variables resulted in 
the lowest prediction errors, followed by the models using 
biomechanical data except running speed. As expected, 
removing the running distance from the training dataset 
substantially increased the prediction errors regardless of 
the applied algorithm. Moreover, classic linear models such 
as linear regression and linear support vector machine pre-
sented substantial errors > 1 RPE, whereas the best-perform-
ing model that included running distance (gray bars) was 
the Gaussian process regression (GPR, rational quadratic) 
with an error = 0.22. Therefore, further RPE predictions 
were conducted using the GPR rational quadratic algorithm, 
including all biomechanical variables except running speed. 
The GPR applies Bayesian non-parametric regressions to 
compute joint multivariate Gaussian posterior distributions 
of a test set when given a training set (Schulz et al. 2018). 
The GPR can be advantageous for its ability to make predic-
tions using fewer parameters.

Machine learning—subject‑independent model

Predictions of RPE over time were processed using a leave-
one-out approach (Fig. 1B), where the training dataset con-
sisted of all available data, except for the participant being 
tested (e.g., 42 participants in the training set, 1 participant 
in the testing set). The leave-one-out approach assures that 
no RPE information from the predicted participant was 
included in the training data (Derie et al. 2020).

Machine learning—subject‑dependent model

Subject-dependent models trained a personalized model for 
each runner, albeit only using data from that runner. Such 
type of model may be relevant for individualized predic-
tions in case generalized subject-independent models do not 
provide sufficient accuracy. The data from a given runner 
was split into four-time sectors (0–25%, 26–50%, 51–75%, 
and 76–100% of the total amount of data). The data split 
into four sectors assured a balanced amount of data points 
throughout the − 5-km simulated race (Fig. 1C). Three 
subject-dependent models were evaluated in this study, 
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allocating random samples of 5%, 10% or 20% of each data 
split into the model test set. Models that require only a frac-
tion of the data but still provide acceptable accuracy may 
be more relevant to implementing the technology in real-
time settings. The prediction of RPE was repeated ten times 
for each runner in each of the three test set dimensions to 
increase the variability of the test datasets. The final predic-
tion accuracy result was an average across the ten predic-
tions for each runner.

Model evaluation and statistical analysis

The prediction quality from the proposed models to predict 
RPE using running biomechanical data was tested using 
Pearson’s correlation coefficient (r), absolute root-mean-
square error (RMSE), and relative RMSE (rRMSE). The 
real and predicted RPE from the subject-independent 
models were averaged from five sequential measurements 
(~ 20 s of continuous recordings) at 25%, 50% 75%, and 
100% of the total running time from each runner. Sub-
sequently, the real and predicted RPEs in each running 
time percentage were compared using Bland–Altman plots 
displaying mean biases and the limits of agreement (e.g., 
95% confidence interval). Moreover, the two-tailed t Stu-
dent test and the respective Cohen’s D effect size (“small” 

values around 0.2, “medium” for 0.5, and “large” above 
0.8 (Durlak 2009) were computed for each pairwise com-
parison. Regarding the subject-dependent models, we 
assessed the effect of the RPE extraction method (real vs 
predicted with 5%, 10%, and 20% training data) on the 
RPE at 25%, 50%, 75%, and 100% of the total running 
time using a one-way ANOVA, with Bonferroni pairwise 
post hoc tests if necessary. Bland–Altman plots were also 
generated for the pairwise comparisons of the subject-
dependent models (shown in Supplementary Fig. 2 and 
Supplementary Table 1) The significance level for all sta-
tistical tests was set at p < 0.05.

Results

The average time to complete the 5-km simulated race 
was 24.5 ± 6.8 min, in which the total running distance 
was 5.3 ± 1.3 km. The average heart rate was 93 ± 4.9% 
max HR, while the peak heart rate was 97.7 ± 4.7% max 
HR. Regarding RPE, the average perceived exertion was 
15.2 ± 1.2, whereas the peak RPE was 19.6 ± 0.58. Moreo-
ver, a final dataset consisting of 12,514 samples from the 
43 runners was used for machine learning predictions.

Fig. 2   Real (black lines) and predicted rating of perceived exertion (RPE, red lines) during a 5-km simulated race from the four best predictions 
(top row) and the four worst predictions (bottom row)
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Subject independent model

Figure 2 illustrates some examples of RPE predictions. Pre-
dictions with low error throughout the exercise (< 1 a.u.) are 
presented in the top row, demonstrating high-quality predic-
tion. For high-quality predictions, both real and predicted 
RPE present similar growing patterns over time. On the 
other hand, low-quality predictions may reach high errors 
(> 3 a.u.), for which a lack of similarity in the RPE patterns 
is noticeable due to extended periods of identical RPE val-
ues during real measurements. In addition, a general offset 
between real and predicted RPEs is noticeable in some run-
ners, being predominantly an underestimation of the RPE 
(see R12, R7, and R13 in Fig. 2). The steady RPE values 
were presented either at the start or the end of the 5-km race.

In general, the association between real and predicted 
RPE was excellent (mean r > 0.9, Table 1), with an average 
RMSE < 2 RPE points, but with high inter-subject variability 
as the RMSE ranges from 0.63 to > 4 RPE points. The rela-
tive RMSE was on average < 12%, but it also reached > 30% 
for one runner.

When the real and predicted RPE data were compared 
across 25%, 50%, 75%, and 100% of the running distance, 
it was found that the mean bias was nearly zero for 25% 
(Fig. 3A), 50% (Fig. 3B) and 75% of the running distance 
(Fig. 3C). These three percentages of running distances pre-
sented low effect sizes (~ 0.2) and no significant differences 
in the t Student pairwise comparisons (p < 0.05). However, 
the mean bias was increased to 0.96 for the 100% running 
distance (Fig. 3D), showing a large effect size (0.87) and a 

significant statistical difference between real and predicted 
RPE revealed by the t Student test. The last reported RPE 
was 19.7 ± 0.5, and ~ 80% of runners (34 out of 43) reported 
20 on the RPE scale. Regarding the predicted RPE, the aver-
age RPE at the end of the exercise was 18.7 ± 1.3 and the 
RPE reached 20 for 34% of runners (15 out of 43).

Subject‑dependent models

The training of the subject-dependent model with only 5% 
of the total dataset required 1.2 ± 0.3 min of data, whereas 
this time increased to 2.4 ± 0.6 and 4.8 ± 1.2 min when using 
10% and 20% of the total time, respectively. Since we used 
a balanced amount of data from each 25% of the total dura-
tion, it is required approximately 18 s of data from each of 
these 25% sectors when using only 5% of the total data. 
Figure 4 illustrates examples of RPE predictions using the 
three different subject-dependent models. The quality of the 
prediction when comparing the best (Fig. 4A) and worse 
predictions (Fig. 4B) is more similar when compared to the 
subject-independent models in Fig. 2. The subject-dependent 
models using only 5% of the data for training presented an 
average RMSE of 1.00 ± 0.31 (Table 1), whereas the average 
RMSE from the subject-independent model was 1.80 ± 0.81 
(Table 1). Moreover, increasing the size of the training 
dataset from 5 to 10% or 20% of the total time increases 
the model performance for both Pearson correlations and 
RMSE parameters (Table 1). The coefficient of variation 
of the RMSE across the 10 different models applied with 
each amount of data was 3.2 ± 1.29%, 2.43 ± 0.94%, and 
1.85 ± 0.73% when the model was applied with 5%, 10%, or 
20% of the total data, respectively.

Similarly to the subject-independent models, the mean 
bias was nearly zero and the effect size of comparisons was 
low when comparing the real and predicted RPE from 25%, 
50% and 75% of the running distance, regardless of the 
amount of training data used (see Supplementary Fig. 2). 
However, the mean bias was greater than 0.5 and the effect 
sizes were larger than predictions at 100% of the running 
distance (see Supplementary Table 1). The statistical analy-
sis using a two-way repeated measures ANOVA corrobo-
rated such results, demonstrating no differences between real 
and the three prediction methods at 25%, 50%, and 75% of 
the total running distance (Fig. 5, p > 0.05). However, there 
was a significant effect of the extraction method at 100% 
of the total running distance (F(3,168) = 24.2, p < 0.0001, 
effect size = 0.30), where the real RPE was significantly 
higher when compared to the predictions using 5%, 10% 
and 20% training data (p < 0.001). In addition, the predicted 
RPE using 5% training data was significantly lower when 
compared to the predictions with 10% (p < 0.01) and 20% 
training data (p < 0.001).

Table 1   Pearson’s correlation coefficient, root-mean-square error 
(RMSE) and relative RMSE (rRMSE) from the prediction of ratings 
of perceived exertion (RPE) using biomechanical parameters during 
running using subject-independent and subject-dependent models

Median Average ± SD Min Max

Subject independent model (leave-one-out)
Pearson’s correlation (r) 0.92 0.91 ± 0.05 0.71 0.97
RMSE (a.u.) 1.54 1.80 ± 0.81 0.63 4.10
rRMSE (%) 9.8 11.97 ± 5.89 4.11 31.42
Subject-dependent model (5% training data)
Pearson’s correlation (r) 0.91 0.90 ± 0.04 0.74 0.95
RMSE (a.u.) 0.90 1.00 ± 0.31 0.53 1.74
rRMSE (%) 5.64 6.62 ± 2.39 3.28 12.53
Subject-dependent model (10% training data)
Pearson’s correlation (r) 0.95 0.95 ± 0.01 0.89 0.94
RMSE (a.u.) 0.58 0.66 ± 0.20 0.41 1.20
rRMSE (%) 3.87 4.38 ± 1.56 2.59 8.43
Subject-dependent model (20% training data)
Pearson’s correlation (r) 0.97 0.97 ± 0.01 0.94 0.99
RMSE (a.u.) 0.39 0.45 ± 0.13 0.29 0.76
rRMSE (%) 2.62 2.98 ± 1.03 1.80 5.86



969European Journal of Applied Physiology (2024) 124:963–973	

1 3

Discussion

The main finding of the present study was that running bio-
mechanical variables extracted from a commercially avail-
able smartwatch paired with a chest strap allows the pre-
diction of perceived exertion within an average of 1.8 RPE 
points error (median = 1.5 RPE points) when using subject-
independent machine learning models. Moreover, the predic-
tion error reached an average of ~ 1 RPE point when using 
only 5% of the data for training the model to predict the RPE 
of a runner (~ 80 s running at different fatigue levels), while 
the prediction error was on average below 0.5 RPE point 
when using 20% of the data for training. However, there was 
a predominant underestimation of the RPE at the end of the 
exercise, regardless of the type of machine learning model 
applied. These results suggest that running biomechanical 
data that are highly accessible through commercial smart-
watches can be used to provide external feedback regarding 
subjective fatigue levels to running practitioners. Therefore, 

future products targeting running practitioners may imple-
ment fatigue tracking throughout running workouts to assist 
runners to dose their efforts, both to improve performance 
and potentially reduce injury risks.

A previous study (De Beéck et al. 2018) explored the 
prediction of RPE during outdoor running at various run-
ning speeds using machine learning models based on iner-
tial measurement units (IMUs) data from the wrist, arm, 
and tibia. The study evaluated both subject-independent 
and dependent models using gradient-boosted regression 
trees, artificial neural networks, and linear regressions. 
The authors extracted 200 features per IMU and predicted 
RPE using single IMUs or combinations of two or three 
IMUs, reaching predominantly high accuracy in predicting 
RPE (mean absolute error < 2.5, no variability reported). 
In comparison, the mean absolute error from our subject-
independent prediction was 10.5 ± 6, and our greater error 
may be related to the use of only six features extracted 
from a single accelerometer. Nonetheless, the purpose of 

Fig. 3   Bland–Altman plots for the predictions of ratings of perceived 
exertion (RPE) at 25% (A), 50% (B), 75% (C) and 100% of the dura-
tion of a 5-km simulated running race. The horizontal solid lines rep-
resent the mean bias, whereas the dashed lines represent the upper 

and lower limits of agreement (95% confidence intervals). The effect 
size (ES) and pairwise statistical difference (p) between real and pre-
dicted RPE are shown for each subplot
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our study was to demonstrate the feasibility of using data 
from a commercially available wearable sensor to predict 
RPEs, while requiring no preprocessing other than feature 
scaling and a 5-s window average. From a practical point 
of view, the present study provides a highly accessible 
method to implement feedback in running workouts.

In another study (Gholami et al. 2020), machine learning 
was used to predict RPEs during treadmill running using 
mechanical strain data from a textile wearable trouser. The 
study used a 2-step random forest regressor algorithm with 
100 ensemble trees and 24 features. The results showed high 
correlation (r2 = 0.96) and low absolute error (RMSE = 0.06 
RPE points) across five female runners. As a comparison, 
our RMSE was 0.39 RPE points when using 20% training 
data across 43 runners. It is noteworthy that the study from 
Gholami and co-workers (Gholami et al. 2020) evaluated a 
homogeneous sample of only five female runners with simi-
lar performance during a 10-km race that could fit the pro-
totype garment. Conversely, our sample consisted of a more 
heterogeneous sample in terms of gender, training status, 
and anthropometric characteristics. Nonetheless, their find-
ings are encouraging for the use of objective measurement 
of fatigue through wearable technology.

Regarding longer distance running, Marotta and co-
workers used a machine learning three-level classifier to 
predict fatigue levels from eight healthy runners during a 
4000-m run (Marotta et al. 2021). A total of 157 features 
were extracted from 8 IMUs located on the sternum, pelvis, 
right and left thigh, tibia, and leg. The authors explored dif-
ferent IMU combinations from single sensors to all sensors, 
and the single-sensor prediction may be comparable to our 
setup. The single-sensor prediction used a sensor on the 
tibia and extracted 12 features to classify the effort as mini-
mal, mild, or maximum. The classification accuracies were 

Fig. 4   Real (black lines) and predicted rating of perceived exertion 
(RPE, red lines) during a 5-km simulated race from the best (A, left 
panel) and worse prediction performance (B, right panel) based on 
the root-mean-square error (RMSE). The columns represent the same 

runner (indicated as ‘R’ in the subplot titles), whereas the rows repre-
sent the predictions using 5% (top row), 10% (middle row), and 20% 
of the data for model training (bottom row)

Fig. 5   Real (black color) and predicted rating of perceived exertion 
(RPE) using 5% (blue color), 10% (green color), and 20% of training 
data (red color) at different stages of a 5-km simulated race. Boxplots 
represent 25th and 75th percentiles, and data range (dash vertical 
lines). Open circles represent individual runners from the sample. * 
denotes a significant difference in relation to the real RPE (p < 0.001). 
† denotes a significant difference in relation to the predicted RPE 
using 5% training data (p < 0.01)
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76.5%, 65.4%, and 86.3% for minimal, mild, and maximum 
efforts, respectively. Our results cannot be directly compared 
to those from Marotta and co-workers since we investigated 
regression models. However, both studies demonstrate that 
data from wearable sensors such as IMUs allow for moder-
ately accurate fatigue predictions and may be a step toward 
using IMU data to determine training loads.

During steady-state exercises, it is expected that RPE 
steadily increases, whereas neuromuscular fatigue compro-
mises motor performance concomitantly (Skatrud-Mickel-
son et al. 2011). In our study, the exercise intensity (e.g., 
running speed) was constant throughout the experiment, but 
fatigue steadily increased due to the long exposure to the 
same exercise intensity. The exercise was terminated when 
the runner could not maintain the proposed pace, reaching 
exercise failure that may correspond to the maximum exer-
tion for the running intensity. Interestingly, the real RPE 
progression pattern varied widely across runners, with some 
runners presenting steady periods with the same RPE at the 
beginning and/or at the end of the exercise. If one considers 
that fatigue is an incremental process at a constant exercise 
intensity, the reporting of invariant RPE throughout several 
minutes seems controversial despite being a subjective met-
ric. The use of machine learning to predict RPE revealed that 
runners presenting extended periods of constant RPE pre-
sented worse predictions (see Fig. 2). The inferior prediction 
quality may be related to a constant impairment of motor 
performance captured by the biomechanical data, whereas 
the runner did not “feel” the performance decay and reported 
identical numbers within the same period. Therefore, the 
biomechanical dataset can detect fatigue-related changes in 
motor behavior while the subjective RPE may not be appro-
priate to represent the fatigue progression.

The feeling/sensation experienced during strenuous exer-
cise may induce a greater perception of fatigue. It is known 
that metabolite accumulation during fatiguing exercises 
induces generalized acidosis that might cause waves of nau-
sea and other symptoms (Samborski et al. 2013), especially 
in recreational runners. Therefore, the perception of general 
discomfort can be extreme, and the overall perceived exer-
tion is at the maximum. In addition to extreme discomfort, it 
is plausible that the motor system can still deliver running-
like motion patterns despite substantial peripheral fatigue, 
preventing predictions based on running biomechanical data 
to reach RPE closer to 20 for the majority of runners. There-
fore, it is plausible that RPE predictions based on biome-
chanical features will underestimate extreme fatigue since 
the running biomechanical features will capture the objec-
tive motor performance rather than the subjective exertion 
experienced.

As expected, subject-dependent models reached higher 
accuracy in predicting RPE when compared to the subject-
independent model, and the prediction quality was directly 

related to the amount of data allocated to train the models. 
The average root-mean-square error using only 5% of data 
for training was 1.00 ± 0.31 (relative error ~ 6%). The supe-
rior performance of subject-dependent models is related to 
the RPE predictions being based on a sub-sample of run-
ning biomechanical data from the same runner, drastically 
reducing the dataset variability. Nonetheless, the subject-
independent models reached relative errors below 12% on 
average. The results of our study may indicate that the imple-
mentation of automatic predictions of perceived exertion 
may be more reliable when using subject-dependent models. 
Moreover, it is possible to reach prediction accuracy within 
1 RPE point with the use of a few minutes of running data. 
In practice, a calibration session may be required to provide 
fresh and fatigued running mechanics data into a predic-
tion algorithm, while the runner only needs to keep different 
fatigue stages for ~ 20 s. Future studies evaluating different 
running intensities, as well as exercises with varying run-
ning speeds are necessary to further develop models that can 
adapt to runner’s training routines and physical capabilities.

Previous studies have been exploring RPE predic-
tions during running using machine learning techniques, 
although with major differences when compared to our 
study. In particular, the number of features used in previous 
studies is substantially larger, ranging from 24 (Gholami 
et al. 2020) to > 100 features (De Beéck et al. 2018; Marotta 
et al. 2021). A greater number of features may be advanta-
geous to improve model accuracy, but our study focused on 
the use of a handful of features highly accessible through 
a fitness smartwatch. Despite a lower accuracy was seen 
compared to the previously mentioned studies, our results 
are a remarkable step toward true implementation of fatigue 
prediction using wearable sensors. Although accessing run-
ning biomechanical features is currently dependent on the 
use of chest straps the field may highly benefit from further 
research using data from the accelerometer located in the 
smartwatch itself. The accelerometer fixation on the wrist or 
waist can cause discrepancies in step count in both labora-
tory and free-living conditions (Tudor-Locke et al. 2015). 
However, its future studies should explore the creation of 
similar prediction models for fatigue using the wrist accel-
erometer sensor and machine learning.

Conclusion

In summary, the present study demonstrated the feasibil-
ity of predicting a runner’s RPE from only six running 
biomechanical data features extracted from a commer-
cially available smartwatch/chest strap. RPE predictions 
based on other runner’s data (subject-independent models) 
reached accuracies below 2 RPE points, whereas predic-
tions based on the same runner’s data (subject-dependent 
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models) reached accuracies at ~ 1 RPE point using less 
than 90 s of running data to predict RPE throughout more 
than 20 min. In-built algorithms to provide fatigue status 
during running workouts seem possible using both types 
of prediction, but there are underestimations of the RPE 
values closer to or at the maximum exertion (RPE = 20).
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