

Aalborg Universitet

Usage-and Risk-Aware Falsification Testing for Cyber-Physical Systems

Kiviriga, Andrej; Larsen, Kim Guldstrand; Nickovic, Dejan; Nyman, Ulrik

Published in:
Formal Modeling and Analysis of Timed Systems

DOI (link to publication from Publisher):
10.1007/978-3-031-42626-1_9

Creative Commons License
Unspecified

Publication date:
2023

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Kiviriga, A., Larsen, K. G., Nickovic, D., & Nyman, U. (2023). Usage-and Risk-Aware Falsification Testing
for Cyber-Physical Systems. In L. Petrucci, & J. Sproston (Eds.), Formal Modeling and Analysis of Timed
Systems: 21st International Conference, FORMATS 2023, Antwerp, Belgium, September 19–21, 2023,
Proceedings (pp. 141-157). Springer. https://doi.org/10.1007/978-3-031-42626-1_9

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: May 02, 2024

https://doi.org/10.1007/978-3-031-42626-1_9
https://vbn.aau.dk/en/publications/27ff9e04-87a6-457b-90a3-51c8211fb7c8
https://doi.org/10.1007/978-3-031-42626-1_9

Usage-aware Falsification Testing for CPS

Andrej Kiviriga,1 Kim Guldstrand Larsen,1 Dejan Nickovic,2 Ulrik Nyman1

1 Aalborg University, Denmark
{kiviriga,kgl,ulrik}@cs.aau.dk

2 AIT Austrian Institute of Technology, Austria
Dejan.Nickovic@ait.ac.at

Abstract. Verification of cyber-physical systems (CPS) is a challeng-
ing task. A considerable effort has been invested to develop pragmatic
methods, such as falsification testing, which facilitate generation of in-
puts that lead to the violation of the CPS requirements. The resulting
counterexamples are used to locate and explain faults and debug the sys-
tem. However, CPS rarely operate in fully unconstrained environments
and not all counterexamples have the same value – a fault resulting
from a common usage of the system has more impact than a fault that
is triggered by an esoteric input sequence. This aspect is neglected by
the existing falsification testing techniques. We propose a new falsifica-
tion testing methodology that is aware of the system’s expected usage.
Given a user profile model in the form of a stochastic hybrid automaton,
an executable black-box implementation of the CPS and its formalized
requirements, we provide a test generation method that (1) uses effi-
cient randomized methods to generate multiple violating traces, and (2)
estimates the probability of each counterexample, thus providing their
ranking to the engineer.

Keywords: Cyber-physical systems · counterexample · black-box test-
ing · randomized testing · falsification-based testing.

1 Introduction

Correctness is a crucial requirement during the design of safety-critical cyber-
physical systems (CPS) such as smart homes, autonomous driving and intelligent
medical devices. The interplay between computational (digital controllers, em-
bedded software) and physical components (sensors and actuators), the increas-
ing use of machine learning-based data-driven modules and the sophisticated
interactions with unpredictable environments make the problem of correct and
safe CPS design hard and challenging. Despite tremendous recent progress, for-
mal verification does not scale yet to the size of realistic CPS applications. As a
consequence, today’s state-of-the-practice relies mainly on the more pragmatic
simulation-based testing approaches.

The CPS community has invested in the recent past significant effort to
improve the testing activities. Falsification-based testing (FBT) [15] is a popular
method that renders the test generation process more systematic. FBT uses

2 A. Kiviriga et al.

formal specifications with quantitative semantics to guide the system-under-test
(SUT) to the violation of its requirements, whenever possible. It follows that
FBT provides effective means to systematically detect a fault in the system.
The resulting witness of the requirement violation is used to locate and explain
the fault and hence to facilitate the system debugging task.

The classical FBT has a limitation – the test generation method focuses on
finding one counterexample among possibly many of them. However, CPS often
operate in partially constrained environments with certain assumptions on their
usage in which not all counterexamples have the same value. For example, a fault
triggered by a common usage of the system has much more impact then another
fault resulting from some rare and esoteric input sequence. This is an important
aspect for prioritizing debugging tasks under time and budget constraints and
that is completely neglected by the existing FBT techniques.

We introduce in this paper a new methodology for usage-aware FBT to rem-
edy the above situation. In our approach, we assume that: (1) a user profile model
that describes the system’s intended usage is given in the form of a stochastic hy-
brid automaton, (2) the SUT is provided in the form of an executable black-box
implementation, and (3) the requirements are formalized using temporal logic.

We first use a randomized accelerator procedure to generate test inputs from
the user profile model. We then feed the input vector to the SUT and execute
it. We use the temporal logic monitor to detect potential violation of require-
ments. Whenever we find a counterexample, we use statistical model checking
(SMC) [21, 18, 7], and more specifically importance splitting (IS) [11], to estimate
the likelihood of the counterexample. The estimated probability of counterex-
amples enables us to rank them according to their likelihood, thus facilitating
prioritization of the debugging tasks.

We instantiated our usage-aware FBT methodology (described in Section 2)
with concrete methods and tools and implemented it in a prototype framework.
We adopted UPPAAL SMC [5] to model stochastic hybrid automata (Section 3),
MATLAB Simulink [6] to implement black-box SUTs and signal temporal logic
(STL) [14] to formalize CPS requirements (Section 3). We developed a mod-
ified variant of the randomized reachability analysis (RRA) [12] procedure as
our randomized accelerator for efficiently finding counterexamples (Section 4)
and adapted a version of the IS algorithm to estimate counterexample proba-
bilities (Section 5), integrating both methods to the UPPAAL SMC engine. We
used MATLAB Simulink’s simulation environment to execute generated input
sequences and the RTAMT [16] runtime verification library to monitor the re-
sulting simulation traces against STL requirements. We used a thermal model
of a house as our case study (Section 6) to evaluate our approach (Section 7).

Related Work

Falsification-based testing Falsification-based testing (FBT) [15] is a test
generation method that uses formal specifications equipped with quantitative
semantics to guide the search for behaviors that violate the formalized require-
ments. In that work, the authors propose to use deterministic assumptions for

Usage-aware Falsification Testing for CPS 3

restricting the test search space. The test search space can be additionally re-
stricted using symbolic reachability methods [4]. The classical FBT approaches
also stop the generation of tests after finding the first violation of a requirement.
The adaptive FBT method [3] remedies this situation by introducing the notion
of specification coverage and providing means to generate multiple qualitatively
different counterexamples. None of these works allow one to compare violation
witnesses according to their likelihood to happen. To contrast, we introduce
probabilistic user profile models of the SUT to enable ranking counterexamples.

Probabilistic Model Checking Counterexamples play an important role in
probabilistic model checking and have received considerable attention in the last
two decades, see [1] for a survey on methods for generating probabilistic coun-
terexamples. We mention the early work from Han and Katoen [10], who orig-
inally propose a method for finding the strongest evidence, i.e. the most likely
counterexample violating an until-specification as a hop-constrained shortest
path problem. The tool DiPro [2] allows generating probabilistic counterexam-
ples discrete time Markov chains, continuous time Markov chains and Markov
decision processes. In the work on probabilistic model checking, the model of
the SUT is available as a white-box, which allows precise computation of coun-
terexample probabilities but limits the scalability of the approach to the systems
of small size and complexity. In our approach, we consider black-box SUTs of
arbitrary size and complexity, and use simulation-based methods to detect coun-
terexamples and estimate their probabilities.

Statistical and Randomized Testing Statistical model checking (SMC) is
a Monte Carlo simulation method used to estimate the probability of violating
formal requirements. Reliable estimation of rare events remains difficult and is
typically addressed by the importance splitting (IS) [17, 13]. IS divides the goal
with small probability into a sequence of intermediate goals that are easier to
reach. An alternative way to address the problem of rare-event simulation is to
use randomized reachability analysis (RRA) [12]. RRA discards the stochastic
semantics of the model to increase the chance of exercising a rare event. While
RRA can efficiently find a counterexample, it cannot be used alone to estimate
its probability. On the other hand, SMC and IS can reason about the probability
that a given SUT violates a property, but are less appropriate to estimate the
probability of a single counterexample. In our work, we use the synergies between
SMC, IS and RRA to achieve efficient falsification while enabling the likelihood
estimation of counterexamples.

2 Methodology

In this section, we describe our user-aware falsification-based testing method-
ology. The input to our approach are three artefacts: the user profile model,
the black-box implementation of the system-under-test (SUT), and a formal-
ized requirement. The output of our approach is a list of input sequences (test

4 A. Kiviriga et al.

φ = □[0,20](T ≤ 75)

Fig. 1: Running example. User pro-
file model (top left), the heater con-
troller (top right), and the formal-
ized requirement (bottom).

cases) that lead to the falsification of the
requirement ranked according to their es-
timated probability of happening.

The user profile is a stochastic hybrid
automaton that models the expected use
of the SUT. It allows for rich and complex
dynamics as well as stochastic behavior.
Straightforward simulations of the user
profile can be performed to generate in-
puts for the SUT. Generated simulations
follow the underlying stochastic semantics
of the model, which allows them to mimic
the behavior of the real user and supports reasoning about the probability of
generating a particular input sequence.

The SUT is a reactive dynamic system, which consumes an input sequence
to generate another sequence of observable output quantities. We assume an
executable black-box implementation of the SUT, whose behavior can be only
observed at its input/output interface.

The formalized requirement is given in the form of a temporal logic specifi-
cation. It defines the expected temporal and timing relations between input and
output quantities and is used as an oracle to discriminate behaviors that satisfy
the requirement from those that violate it.

To illustrate the different steps of the methodology, we use a simplified heat
controller, depicted in Figure 1. The simplified heat controller follows a de-
terministic implementation (Figure 1 top right) has a single continuous state
variable, the temperature T and consists of two discrete modes, Off and On. In
the Off mode, the temperature decreases according to the differential equation
T ′ = − T

10 . Conversely, the temperature increases in the On mode according to

the differential equation T ′ = 10− T
10 . The temperature range is limited to the

interval between 0 and 100 degrees (not shown in the figure). The change be-
tween the two heater’s modes is triggered by actions on and off provided by
an external environment. We note that while the implementation is given in the
form of a hybrid automaton for illustration purposes, we assume that it is seen
as a black box to the tester, i.e. the tester can only provide the actions off and
on and observe the temperature T . The stochastic user profile (Figure 1 top left)
models the expected generation of the off and on actions. The clock x measures
the time between two consecutive actions. After an action happens, x is reset
to 0 and a time delay between 0 and 5 is sampled according to the uniform
distribution. If the time delay is in the interval [0, 3) no action is enabled and an
additional time delay must be taken. If it is in the interval [3, 4), the action off
is taken with probability 1. If the time delay is in the interval [4, 5), the actions
off and on are triggered, each with probability 0.5. It follows that the action
off is likely to happen three times more often then the action on. Finally, the
formalized requirement φ (Figure 1 bottom) states that within 20 time units,
the temperature T must continuously remain within 75 degrees.

Usage-aware Falsification Testing for CPS 5

(a) Baseline solution (b) Usage-aware falsification

Fig. 2: Methodology workflow for falsification of black-box CPS.

Baseline Solution We first propose a straightforward baseline solution to es-
timate the probability of an error in the system is by using SMC [19, 20]. The
core idea of SMC is to generate simulations of a stochastic model and then
statistically analyze them to estimate the probability of the system to violate
requirements with some degree of confidence. Figure 2 (a) shows the workflow
of the SMC application to our case – the input sequences are generated by the
user profile and the outputs from SUT are analyzed by SMC to conclude on
probability estimate of an error.

Discovery of the most stubborn bugs in the CPS often requires generation of
“exotic” input sequences. In non-trivial stochastic models, generating an “exotic”
input can often be considered an extremely rare event, i.e. its probability being
in range [0; 10−100]. Therefore, we anticipate methods like SMC, which exercises
the most likely behavior of the system, to be impractical due to the time required
to generate enough simulations to achieve a reasonable statistical confidence.

In most real applications there is either a limit of resources for system veri-
fication or a requirement on the system being fail-proof up to a certain degree,
as further bugs are more costly to fix than to replace a system. In both cases, it
is crucial to focus resources on eliminating the most probable bugs first. While
SMC estimates the overall existence of the bug, it cannot reason about a prob-
ability of any individual concrete input sequence. Hence, SMC does not help to
conclude if a particular counterexample is of any concern in practice.

Efficient Solution We recall that our proposed methodology not only (1) al-
lows us to identify violations efficiently but also (2) estimates the probability for
each discovered counterexample. It utilizes the Randomized Accelerator (RA)
which is a modified version of the randomized reachability analysis algorithm,
initially proposed by [12] as an efficient error detection method for timed and
stopwatch automata models. Among the modifications, we extend the algorithm
to support the rich dynamics of hybrid automaton models to allow simulation
of the user profile. In contrast to SMC, RA discards the underlying stochastic
semantics to favor exploration of otherwise unlikely to reach parts of the model.
As a consequence, RA cannot reason about the probability of its generated simu-

6 A. Kiviriga et al.

lations, but excels at finding “exotic” traces fast. In their study, [12] have shown
their randomized reachability analysis to be up to three orders of magnitude
faster than SMC at discovering bugs.

The workflow for a single iteration of our methodology is shown in Figure 2
(b). The process starts by applying RA on the user profile to generate input
sequences for SUT. The latter is simulated with the given input and its output
is monitored w.r.t. to the property of interest. The process is repeated until the
counterexample input sequence that violates the property is discovered. More-
over, RA exploits the information from previous runs to favor “more promising”
parts of the user profile that are deemed to have affected the monitored property
towards being violated.

The counterexample contains the information about the execution of the user
profile – transitions taken in the hybrid automaton and the outputted dynamics.
To reason about the probability of counterexamples we use the Importance Split-
ting (IS) from [13]. IS allows one to estimate probability of rare events which
SMC cannot do reliably or quickly. We use IS to estimate the probability of
following the qualitative trace from the user profile, i.e. focusing on executing
transitions of the user profile model in the sequence commanded by the trace.
Additionally, a run of IS generates a number of traces with different timing be-
haviors w.r.t to the stochastic semantics. Since the timing behavior might have
a crucial impact on the property satisfaction, we check all the traces generated
by IS against SUT to estimate the ratio of traces violating the property.

The counterexample and its estimated probability becomes the result of a
single iteration of our proposed methodology. Each counterexample is ranked
according to its estimated probability to occur in practice. The search can then
continue in a similar fashion to discover more bugs.

3 Stochastic Hybrid Systems

In this section, we recall the definition of hybrid automata with stochastic seman-
tics [8] that we use to model the user profiles. Let X be a finite set of continuous
variables. A variable valuation over X is a mapping v : X → R. We write RX for
the set of valuations over X. Valuations over X evolve over time according to a
delay function F : R≥0×RX → RX , where for a delay d and valuation v, F (d, v)
provides the new valuation after a delay of d. As is the case for delays in timed
automata, delay functions are assumed to be time additive in the sense that
F (d1, F (d2, v)) = F (d1 + d2, v). To allow for communication between different
hybrid automata we assume a set of actions Σ, which is partitioned into disjoint
sets of input and output actions, i.e. Σ = Σi ⊎Σo.

Definition 1. A Hybrid Automaton (HA) H is a tuple H = (L, l0, X,Σ,E, F, I),
where (1) L is a finite set of locations, (2) l0 is an initial location s.t. l0 ∈ L,
(3) X is a finite set of continuous variables, (4) Σ is a finite set of actions
partitioned into inputs (Σi) and outputs (Σo) s.t. Σ = Σi ⊎Σo, (5) E is a finite
set of edges of the form (l, g, σ, r, l′) where l, l′ ∈ L, g is a predicate on RX which

Usage-aware Falsification Testing for CPS 7

acts as a guard that must be satisfied, a ∈ Σ is an action label and u is a binary
relation on RX which acts as an update, (6) F (l) is a delay function for each
location l ∈ L, and (7) I assigns invariant predicates I(l) to any location l ∈ L.

The semantics of a HA H is a timed labeled transition system, whose states
are pairs (l, v) ∈ L × RX with v |= I(l), and whose transitions are either delay

transitions (l, v)
d−→ (l, v′) with d ∈ R≥0 and v′ = F (d, v), or discrete transitions

(l, v)
a−→ (l′, v′) if there is an edge (l, g, a, u, l′) such that v |= g and u(v, v′). The

effect of the delay function F may be specified by a set of ODEs that need to
be solved and govern the evolution of the continuous variables in time.

We denote ω = s0d1a1s1d2a2 . . . to be a timed word where for all i, si ∈ S,

ai ∈ Σ, si
di+1−−−→ ai+1−−−→ si+1 and di ∈ R≥0. If ω is a finite timed word, we write

|ω| = n to denote the length. We write ω[i] to denote a prefix run of ω up to
i such that w[i] = sd1a1s1 . . . diaisi. Last, we denote by Ω(H) the entire set of
timed words over H.

Figure 3 (a) shows the resulting evolution of the continuous temperature
variable from the SUT from Figure 1 induced by the example input sequence
(timed word) 3.7 · off · 4.1 · on · 3.1 · off · 4.5 · off · 4 · off. The property φ is
satisfied as the temperature stays under 75 degrees for the 20 time units of the
simulation.

Hybrid Automata may be given a stochastic semantics by refining the non-
deterministic choices of transitions and delays by probabilistic and stochastic
distributions. For each state s = (l, v) of HA H there exists:

– the delay density function µs gives a probability distribution over delays in
R≥0 that can be taken by a component, such that

∫
µs(t)dt = 1,

– the output probability function γs gives a probability of taking an output
o ∈ Σj

o such that
∑

o γs(0) = 1, and
– the next-state density function ηas gives a probability distribution on the next

state s′ = (l′, v′) ∈ RX given an action a such that
∫
s′
ηas (s

′) = 1.

Consider H to be a stochastic HA. For s ∈ S and a1a2 . . . ak ∈ Σ∗ we
denote a timed cylinder π(s, a1a2 . . . ak) to be the set of all timed words from s
with a prefix t1a1t2a2 . . . tkak for some t1, . . . , tn ∈ R≥0. An infinite timed word
ω = s0d1a

ω
1 s1d2a

ω
2 . . . dka

ω
k sk . . . belongs to the timed cylinder, written as ω ∈

π(s, a1, a2, . . . , ak), if a
ω
i = ai for all i up to k and s0 = s. Figure 3 (b) shows two

timed words belonging to the same timed cylinder π(s, off, off, on, off, off),
where s = (S, x=0) is the initial state.

Providing the basic elements of a Sigma-algebra we now recall from [8] the
inductively defined measure for such timed cylinders:

PH(π(s, a1a2 . . . ak)) =

∫
t≥0

µs(t) · γst (a1) ·
∫
s′

(
η
a1
st

(s
′
) · PH(π(s

′
, a2 . . . ak))ds

′
)
dt (1)

The probability of following a timed cylinder π is computed by integrating
over the initial delays t in the outermost level. Next, we take the probability of

8 A. Kiviriga et al.

(a) Timed word example (b) Two timed words in the same cylinder

Fig. 3: A timed word with on and off actions represented by green and red ver-
tical dashes lines, respectively. The temperature dynamics of SUT (blue line(s))
and φ threshold of 75 degrees (red line) is shown.

outputting ai. The last part integrates over all successors s
′ and takes a product

of probabilities for stochastic state changed after taking the delay t and output
a1, and the probability of following the remainder of the timed cylinder.

A general system can represented as a network of HA. Under the assumption
of input-enabledness, an arbitrary number of HA can be composed into a network
where the individual components communicate with each other and all together
act as a single system. A race-based stochastic semantics determines which of
the components in the network gets to perform an output such that the winning
component is the one with the smallest chosen delay. Here we skip the definition
of networks of HA and their stochastic semantics, and refer the interested reader
to [8] for in-depth details. We now proceed with formalized requirements for HA.

Let F(ω↓) = y be a function representing a black-box nonlinear hybrid sys-
tem that gives a real-valued output y on the given projection of a timed word
ω ∈ Ω(H) of a stochastic HA H, denoted as ω↓. which represents a simulation
output of the model H w.r.t. to the stochastic semantics.

Our formal property φ is expressed in a Signal Temporal Logic (STL) lan-
guage [14]. A recap of STL is provided in Appendix A. STL supports quantitative
semantics [9] with the help of function ρ(φ, y, t) which gives robustness, i.e. de-
gree of satisfaction of the formula φ for the input y at time t. The formula is
satisfied if the robustness is positive and vice versa. Given a robustness function
ρ, when ρ(φ, y) is positive it indicates that y satisfies φ, written as y |= φ.

Let Error ∈ S be a set of error states of HA H. An infinite timed run

ω = s0
d1−→ a1−→ s1

d2−→ a2−→ . . . is an error run if ∃i.∃τ ≤ di. s
τ
i−1 ∈ Error, where

τ ∈ R≥0 and sτi−1 is the state such that si−1
τ−→ sτi−1. We say that ω has an error

at i’th transition and show it as F(ω[i]↓) ̸|= φ. In this case, clearly any ω′ such
that ω′ = ω[i]ωn is also an error run. We now proceed to explain the next step
– generation of violating traces.

4 Falsification Testing with Randomized Accelerator

Usage-aware Falsification Testing for CPS 9

Fig. 4: A violating timed word (counterex-
ample).

In this section, we describe our
FBT approach for discovery of
traces that violate requirements. In
order to efficiently find counterex-
amples, we use the modified ver-
sion of the randomized reachability
analysis (RRA) initially proposed
by [12] as a lightweight, quick and
efficient error detection technique
for timed systems. The core idea of RRA is to discard the underlying stochastic
semantics of the model in an attempt to exercise an “exotic” behavior faster than
with Uppaal SMC. The method is based on exploring the model by means of
repeated random walks that operate on concrete states and delays, and avoid ex-
pensive computations of symbolic, zone-based abstractions. More formal details
about RRA, including the algorithm, are given in Appendix B.

The result of RRA simulation is a finite timed word w ∈ Σ of HA H where
the last state satisfies some simulation termination condition (e.g. time bound).
For our running example, Figure 4 shows a RRA generated timed word that
violates the requirement φ. In this study we use RRA as our RA (randomized
accelerator from Section 2) as a mean of accelerating discovery of rare events in
the user profile model. In the remainder of this section, we discuss improvements
over the vanilla version of the RRA algorithm.

The RA from our methodology is applied for a number of iterations until
a violating trace (counterexample) ω is discovered, i.e. until the robustness of
the formula becomes negative ρ(φ, ω↓) < 0. Clearly, in practice not all of the
RA generated traces will violate the property, but some of them are likely to be
close. Since evaluation of the generated input against SUT is expensive, we are
interested in minimizing the number of RA iterations. Thus, we guide our RA
towards the areas of the state space of HA which are deemed to be “promising”
according to the previous runs. More specifically, for non-violating runs we ana-
lyze the robustness of the output and search for robustness that lays outside its
standard deviation and towards a violation. The corresponding actions of HA are
then identified and prioritized over other actions in the following RA iteration.
To avoid actions that lead to robustness local minima, the “promising” actions
are used only for a single iteration of our methodology and are discarded if the
property is not violated. Afterwards, an unguided run of RA is carried out and
new promising transitions are recorded for the next RA iteration in the similar
fashion. Hence, only every even non-violating run of RA is guided.

Short counterexamples are not only more probable to occur in practice but
also easier to debug. For those reasons, we employ an adaptive simulation dura-
tion (ASD) that may change with each discovered counterexample. First, a user
profile is simulated for an initial duration. When a counterexample is found, we
detect the time of first violation. In the next iteration the simulation duration
is limited to that time. Intuitively, this is similar to the search for the shortest
trace. However, at some point we may end up reducing the simulation time to

10 A. Kiviriga et al.

a point where no counterexamples exist. Hence, we increase the current simula-
tion time by 10% after a certain number of iterations is spent without finding
a violation. We define that number of iterations to be the average number of
iterations among so far discovered counterexamples plus a constant to ensure
“enough” effort is spent before increasing the simulation duration.

5 Estimating Counterexample Probability

The probability of a timed cylinder is given by Equation 1. Unfortunately, it
is a theoretical construct that we cannot compute efficiently in practice. Alter-
natively, we can use simulation-based methods, such as SMC, to estimate the
probability of following a timed cylinder. However, for rare events, SMC cannot
estimate such probability reliably as simply too many simulations would be re-
quired to achieve a reasonable confidence. As a solution to this problem we use
a rare event simulating technique known as importance splitting (IS).

The idea of IS is to split the final reachability goal δf into a number of
intermediate sub-goals δ1, δ2, . . . , δn that eventually lead to the main goal, i.e.
δn = δf . The sub-goals are called levels that each get closer to the goal which
naturally can be ensured by a score function. The score of each subsequent goal
is required to be larger than that of a previous one. In our case a score function
is binary function that helps to ensure that the timed cylinder is followed, i.e.
the action transitions are taken strictly in a sequence defined by π.

The probability estimate of reaching the level i from level i − 1 is then
Successorsi

m , where Successorsi are successors of level i obtained from level i− 1
by following action ai from the timed cylinder, and m is a fixed number of sim-
ulations performed at each level. Repeating this process for all levels n allows to
estimate a probability of a timed cylinder of a HA H as follows:

PH(π(s, a1a2 . . . an)) ≃
n∏

i=1

|Successorsi|
m

(2)

With the help of IS, we can now estimate the probability of the timed cylinder
P(π(s, a1, a2, . . . , an)) which was generated by our RA. To ease the notation we
sometimes write (πn) instead of π(s, a1, a2, . . . , an). A run of IS also produces
a number of concrete simulations that all follow the timed cylinder and are
generated according to the stochastic semantics of the underlying HA. During
a run of IS, each successor has its predecessor recorded together with the delay
and broadcast action that lead to that successor. The concrete simulations are
obtained by back-tracing from the successors that made it to the very last level
and back to the starting state. We define a finite set of timed words (traces) w
generated by IS from a timed cylinder πn as Γπn

⊆ πn such that |Γπn
| ≤ m,

where m is the effort allocated per level of IS fixed effort scheme.
Even though all traces in Γπn

follow the same timed cylinder, the differences
in the timing behavior (chosen delays) may influence the dynamics of the user
profile to a large degree. Violation (or satisfaction) of the property monitored

Usage-aware Falsification Testing for CPS 11

for SUT - as well as the level at which a violation appear - is therefore not
guaranteed to be identical for all traces Γπn

reported by IS.
We first estimate the probability of violating the STL property with a timed

cylinder πn, i.e. P(ω ∈ πn ∧F(ω↓) ̸|= φ) . In the following let m be a number of
IS simulation per level and let Successorsi be the successors of each level i in
IS. Considering the IS sampled traces Γπn and their (varying) violation of the
monitored property, we may estimate this probability as follows:

P(ω ∈ πn ∧ F(ω↓) ̸|= φ) = P(πn) · P(ω ∈ πn ∧ F(ω↓) ̸|= φ | πn) ≃
n∏

i=1

(
|Successorsi|

m

)
·
(∑

ω∈Γπn

F(ω↓) ̸|= φ

)
· 1

|Γπn |
(3)

However, the above equation does not take into account that for a given
trace ω, the property can be violated earlier than at the very last step n, i.e.
F(ω′

↓) ̸|= φ, where ω′ ⊂ ω and |ω′| < |ω|. Furthermore, performing IS on the
timed cylinder of length n may lose information about timed sub-cylinders of
shorter length k, |πk| < |πn|. We will write Fk(ω↓) ̸|= φ if k is the minimal index
such that F(ω[k]↓) ̸|= φ and F(ω[k − 1]↓) |= φ. Also let Θ be the function that
given a finite set of traces Γ , a property φ and an index i returns only prefix
words ω[i] such that the first violation occurs at step i, formally defined as:

Θ(Γ, φ, i) = {ω[i] | ω ∈ Γ ∧ Fi(ω↓) ̸|= φ ∧ Fi−1(ω↓) |= φ)} (4)

Now taking the level of occurrence of property violation into account leads to
a higher error probability that may be estimated as follows:

P(ω ∈ πk ∧ Fk(ω↓) ̸|= φ ∧ k ≤ n) =
n∑

k=1

(
P(πk) · P(ω ∈ πk ∧ Fk(ω↓) ̸|= φ | πk)

)
≃

n∑
k=1

((k∏
i=1

|Successorsi|
m

)
· |Θ(Γπk , φ, k)|
|Successorsk|

) (5)

The key idea of this approach is to separate a timed cylinder of length n into
sub-cylinders of length k such that |πk| ≤ |πn|. Summing up the probabilities
of sub-cylinders πk and violation occurring at the very last step k gives an
upper bound of the probability estimate for the timed cylinder to violate the
property. However, this formula requires not only to compute the set of traces
Γπk

for each k, but to also check each of the traces ω ∈ Γπk
against the Simulink

model. With latter of the steps being the most computationally demanding in
our proposed methodology, we believe that equation 5 will be too expensive in
practice. Instead, we use another lower bound probability estimate:

n∑
k=1

((k∏
i=1

|Successorsi|
m

)
· |Θ(Γπn , k, φ)|
|Successorsk|

)
(6)

12 A. Kiviriga et al.

Fig. 5: One hundred traces generated by
IS. Blue line traces satisfy the property
and purple line ones violate.

It requires computing only the
traces Γπn

for the main cylinder.
This approach gives a smaller, lower
bound probability estimate, but it is
much cheaper to compute in practice.

For our running example, we con-
sider 100 traces generated by IS (Fig-
ure 5) for a timed cylinder with
on, on, on, off, on action sequence.
Violation of 75 degrees threshold is
observed in 9 (out of 100), all at step 4. The probability estimate of Equation 6
is then

(
23
100 ·

27
100 ·

25
100 ·

77
100

)
· 9
100 ≈ 0.001, where the parenthesis give IS probability

estimate of the cylinder with 4 steps.

6 Case Study

We use a Thermal Model of a House3 as our black-box SUT. The model, shown
in Figure 6 accounts for the heating system, thermal dynamics of the house,
the outdoor environment and a number of associated properties such as house
geometry, materials’ thermal resistance, heater flow rate and hot air temperature.
The heating of the house is controlled by the thermostat that turns on/off the
heater once the temperature is below/above specified thresholds. The inside
temperature is calculated by considering the heat flow from the heater and the
heat losses to the environment through the insulation of the house.

To simulate the outdoor environment for the thermal house system, we use
the HA weather model which provides “realistic” complex dynamics of the po-
tential temperature. The model is shown in Figure 7. The daily and yearly
temperature fluctuations are modelled by sinusoidal waves with varying phase,
amplitude and biases. In our experiments we simulate the weather model for a
period of 1 year while the starting period of the simulation being January 1st;
therefore, the waves are adjusted accordingly and depend on an elapsing, ob-
serving clock x that we use to model the time in hours. In addition to daily and
yearly temperature changes the model supports small and large “anomalous”
temperature fluctuations that are enforced to occur at least every so often by

Fig. 6: Simulink Thermal Model of a House.

3https://se.mathworks.com/help/simulink/slref/thermal-model-of-a-house.html

Usage-aware Falsification Testing for CPS 13

Fig. 7: Weather profile hybrid automaton model.

Fig. 8: Simulink Thermal House indoor (red) and outdoor (blue) temperatures
simulated for 1 year (8736 hours).

guards and invariants on edges and locations, respectively. Each fluctuation
results in a temperature change of the magnitude and dynamics governed by
ODEs. A number of large fluctuations can happen sequentially, representing e.g.
a heat wave or a sudden temperature drop. The type of a fluctuation, as well
as its duration, which largely affects the dynamics, is decided during the simu-
lation and in accordance with the stochastic semantics described in Section 3.
The likelihood of an additional large fluctuation taking place right after a pre-
vious one is defined by discrete probabilities 8 and 2 on the outgoing transition
from the Large_Fluct location. Even though no restrictions are made on the
maximal number of large fluctuations happening sequentially, the probability of
additional n sequential large fluctuations (after the initial one) is (2

8+2)
n = 0.2n.

Finally, as a property monitor we use python library RTAMT [16] which
supports both offline and online monitoring of STL properties. The inside tem-
perature of the house is monitored in an offline setting to measure the property
robustness. We monitor the property □(T ≤ 16 → ♢[0,24](T ≥ 18)), i.e. it is
required that the temperature, if it drops below 16 degrees, always recovers to
at least 18 degrees within 24 hours.

7 Experiments

We use SMC as a baseline and compare it to the performance of our falsification
methodology. The two approaches are rather different as SMC cannot reason

14 A. Kiviriga et al.

Fig. 9: Number of simulations required to produce
an approximation interval [p− ϵ, p+ ϵ] with confi-
dence 1− α using Chernoff–Hoeffding inequality.

Confidence
α

Probability uncertainty ϵ

0.05 5× 10−3 5× 10−4 5× 10−5

0.1 600 59,915 5,991,465 599,146,455
0.05 738 73,778 7,377,759 737,775,891
0.01 1,060 105,967 10,596,635 1,059,663,474

about probability of each
individual violating trace.
Rather, SMC estimates an
overall property violation
probability which lays within
some approximation inter-
val p ± ϵ with a confidence
1 − α. The amount of sim-
ulations N required to pro-
duce an approximation in-
terval given ϵ and α can be computed using Chernoff–Hoeffding inequality with

N ≥ log(2/α)
2ϵ2 . To accurately estimate a very improbable error in the system, the

probability uncertainty ϵ must be sufficiently small. As can be seen in Table 9,
the growth of the required simulations is logarithmic and exponential in relation
to α and ϵ, respectively. However, in practice this approach is too conservative.
As an alternative, Uppaal SMC uses a sequential approach of Clopper-Pearson
that computes the approximation interval with each iteration (for given α) and
until the target ϵ is reached. Moreover, the further away a true probability is
from 1

2 , the fewer simulations are needed. Empirical evidence4 suggests that
a true probability in range [0, 10−5] in practice requires roughly around 10%
simulations (depending on α) of what Chernoff–Hoeffding inequality suggests.
Nonetheless, for α = 0.01 and ϵ = 5× 10−4 around as many as 106 simulations
would be required.

In our experiments we only give an estimate of the time required by SMC to
derive approximation intervals for a sufficiently small ϵ and α as each simulation
is costly due to the execution of the Simulink model. To estimate the time of one
iteration of the workflow from Figure 2a we ran 20,000 SMC simulations with
220 of them violating the property. With the total time of 17h 36m 20s, a single
iteration in average takes 3.169 seconds. Figure 8 gives black-box SUT dynamics
of one such iteration that includes outdoor ambient temperature (input) and
a resulting indoor temperature (output) obtained after execution of SUT. As
Uppaal SMC primarily exercises common behavior of the weather profile, we
observe no requirement violation in the output from SUT.

In addition to IS that is used to estimate the probability to follow a timed
cylinder, we implement an exact method for probability computation. This
method supports only a subset of HA models where all clocks are reset in every
transition (this is the case for our weather profile). It enables us to compare how
far the estimated probability is away from the true one.

We perform an experiment to determine to which degree the variance in the
probability estimates produced by IS is affected by the number of simulations
m performed per level by IS. The results are reported in Appendix D and do
not show any clear pattern indicating the amount of IS simulations per level to
significantly affect the variance of the probability estimates. Since the execution

4https://docs.uppaal.org/language-reference/requirements-
specification/ci estimation/

Usage-aware Falsification Testing for CPS 15

Table 1: Falsification of the case study model following the workflow from Section
2. Given are 20 counterexamples ranked according to the “Complex” probability
from Equation 6. Time is given in HH:MM:SS. DO is Discovery Order, RE is
Risk Estimate, Tr. is transitions, and RAIt is RA iteration.

DO
Exact

cylinder pr.
IS pr. mean

Trace ratio
(TR)

IS pr. · TR
(Equation 3)

Complex pr.
(Equation 6)

Expected
Severity

Risk
Estimate

#
Tr.

#
RAIt

Execution
time

2 1.7778e-03 2.4578e-03 49/84 1.4337e-03 1.4337e-03 0.568 8.1505e-04 4 13 00:02:14
4 1.9753e-04 2.6430e-04 15/19 2.0866e-04 2.0866e-04 0.761 1.5882e-04 6 50 00:01:21
5 3.5556e-04 1.2879e-03 100/100 1.2879e-03 5.7907e-04 0.253 1.4648e-04 9 17 00:00:59
17 1.9753e-04 1.8976e-04 14/19 1.3982e-04 1.3983e-04 0.709 9.9173e-05 6 13 00:00:41
3 8.8889e-05 4.0117e-05 18/18 4.0117e-05 7.5893e-05 0.918 6.9685e-05 5 12 00:00:37
19 3.5117e-04 1.6867e-04 42/78 9.0821e-05 9.0821e-05 0.513 4.6573e-05 8 74 00:03:09
8 3.1605e-05 7.7357e-05 70/70 7.7357e-05 1.6036e-04 0.275 4.4050e-05 8 19 00:00:46
6 7.9012e-05 1.0264e-04 49/86 5.8480e-05 5.8480e-05 0.543 3.1783e-05 7 84 00:03:27
9 1.7558e-05 2.3601e-05 24/24 2.3601e-05 3.0574e-05 0.948 2.8976e-05 9 27 00:01:09
7 8.7791e-05 7.9734e-05 11/22 3.9867e-05 3.9867e-05 0.475 1.8933e-05 8 35 00:01:16
11 3.1215e-05 1.5124e-05 100/100 1.5124e-05 8.9287e-06 0.345 3.0768e-06 13 11 00:01:06
16 6.3210e-06 2.4243e-06 77/77 2.4243e-06 2.0218e-05 0.125 2.5244e-06 9 191 00:03:43
10 1.5607e-06 7.8735e-07 24/24 7.8735e-07 4.0096e-06 0.623 2.4987e-06 12 11 00:00:35
15 6.3210e-06 3.9281e-06 100/100 3.9281e-06 1.9927e-05 0.096 1.9126e-06 13 18 00:00:32
20 6.2430e-06 4.6763e-06 100/100 4.6763e-06 8.0270e-06 0.150 1.2076e-06 13 130 00:02:53
13 3.5117e-06 5.0046e-06 40/82 2.4413e-06 2.4413e-06 0.455 1.1116e-06 10 9 00:02:09
12 7.9012e-07 1.0644e-06 20/20 1.0644e-06 1.0644e-06 0.945 1.0058e-06 10 10 00:00:41
18 1.9753e-05 2.1648e-06 8/16 1.0824e-06 1.0824e-06 0.477 5.1650e-07 7 21 00:00:48
14 1.7558e-07 4.4243e-07 12/25 2.1237e-07 2.1237e-07 0.444 9.4344e-08 12 2 00:00:39
1 1.5247e-55 1.4746e-56 100/100 1.4746e-56 5.4000e-06 0.010 5.2683e-08 151 1 00:00:28

Total: 3.2603e-03 4.7276e-03 - 3.4321e-03 2.8886e-03 - 1.4735e-03 - 748 00:29:23

Time estimate for SMC (α = 0.01, ϵ = 5× 10−3) 104 iterations (based on Table 9). 08:48:00

time taken is roughly proportional to the number of IS simulations, in further
experiments we fix the number of IS simulations per level to 100.

Finally, we evaluate our FBT methodology on the proposed case study and
report the results in Table 1. Due to ASD, the quality of discovered errors tends
to increase over time as the length (# transitions) of the counterexample de-
creases. The probability estimate of Equation 6 (E9) tends to be smaller for
longer traces than that of Equation 3 (E6); however, for short traces E9 and E6
are equal as the error occurs at the very last transition of the trace. Discovery,
evaluation and ranking of 20 bugs with our falsification methodology is an order
of magnitude faster than an estimated performance of SMC to conclude on the
overall likelihood of a bug in SUT.

8 Conclusion and Future Work

We introduced in this paper a new methodology for usage-aware FBT of CPS.
It combines stochastic HA modeling, randomized reachability analysis, statisti-
cal model checking, importance splitting and runtime verification to efficiently
generate input sequences that lead to the violation of the requirements, while
estimating their probability of happening in the real usage of the system. We be-
lieve that the proposed methodology can significantly help the debugging effort
by enabling to prioritize bugs with higher impact.

16 A. Kiviriga et al.

Fig. 10: Expected severity against probability plotted for each of the 20 coun-
terexamples from Table 1. Plotted as linear scale (left) and logarithmic scale
(right).

As future work, we plan to 1) develop more sophisticated guiding for our
randomized accelerator, 2) introduce a state coverage metric, and 3) explore
symbolic reachability techniques for HA.

References

1. Ábrahám, E., Becker, B., Dehnert, C., Jansen, N., Katoen, J., Wimmer, R.: Coun-
terexample generation for discrete-time markov models: An introductory survey.
In: Formal Methods for Executable Software Models - 14th International School
on Formal Methods for the Design of Computer, Communication, and Software
Systems, SFM 2014, Bertinoro, Italy, June 16-20, 2014, Advanced Lectures. pp.
65–121 (2014)

2. Aljazzar, H., Leitner-Fischer, F., Leue, S., Simeonov, D.: Dipro - A tool for prob-
abilistic counterexample generation. In: Model Checking Software - 18th Interna-
tional SPIN Workshop, Snowbird, UT, USA, July 14-15, 2011. Proceedings. pp.
183–187 (2011)

3. Bartocci, E., Bloem, R., Maderbacher, B., Manjunath, N., Nickovic, D.: Adaptive
testing for specification coverage in CPS models. In: 7th IFAC Conference on Anal-
ysis and Design of Hybrid Systems, ADHS 2021, Brussels, Belgium, July 7-9, 2021.
pp. 229–234 (2021)

4. Bogomolov, S., Frehse, G., Gurung, A., Li, D., Martius, G., Ray, R.: Falsification of
hybrid systems using symbolic reachability and trajectory splicing. In: Proceedings
of the 22nd ACM International Conference on Hybrid Systems: Computation and
Control, HSCC 2019, Montreal, QC, Canada, April 16-18, 2019. pp. 1–10 (2019)

5. Bulychev, P.E., David, A., Larsen, K.G., Mikucionis, M., Poulsen, D.B., Legay, A.,
Wang, Z.: UPPAAL-SMC: statistical model checking for priced timed automata. In:
Proceedings 10th Workshop on Quantitative Aspects of Programming Languages
and Systems, QAPL 2012, Tallinn, Estonia, 31 March and 1 April 2012. pp. 1–16
(2012)

6. Chaturvedi, D.K.: Modeling and simulation of systems using MATLAB® and
Simulink®. CRC press (2017)

7. Clarke, E.M., Zuliani, P.: Statistical model checking for cyber-physical systems.
In: Automated Technology for Verification and Analysis, 9th International Sym-

Usage-aware Falsification Testing for CPS 17

posium, ATVA 2011, Taipei, Taiwan, October 11-14, 2011. Proceedings. pp. 1–12
(2011)

8. David, A., Du, D., Larsen, K.G., Legay, A., Mikuč ionis, M., Poulsen, D.B.,
Sedwards, S.: Statistical model checking for stochastic hybrid systems. Elec-
tronic Proceedings in Theoretical Computer Science 92, 122–136 (aug 2012).
https://doi.org/10.4204/eptcs.92.9

9. Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued signals.
In: Chatterjee, K., Henzinger, T.A. (eds.) Formal Modeling and Analysis of Timed
Systems. pp. 92–106. Springer Berlin Heidelberg, Berlin, Heidelberg (2010)

10. Han, T., Katoen, J.: Counterexamples in probabilistic model checking. In: Tools
and Algorithms for the Construction and Analysis of Systems, 13th International
Conference, TACAS 2007, Held as Part of the Joint European Conferences on
Theory and Practice of Software, ETAPS 2007 Braga, Portugal, March 24 - April
1, 2007, Proceedings. pp. 72–86 (2007)

11. Jégourel, C., Legay, A., Sedwards, S.: Importance splitting for statistical model
checking rare properties. In: Computer Aided Verification - 25th International Con-
ference, CAV 2013, Saint Petersburg, Russia, July 13-19, 2013. Proceedings. pp.
576–591 (2013)

12. Kiviriga, A., Larsen, K.G., Nyman, U.: Randomized reachability analysis in up-
paal: Fast error detection in timed systems. In: Lluch Lafuente, A., Mavridou,
A. (eds.) Formal Methods for Industrial Critical Systems. pp. 149–166. Springer
International Publishing, Cham (2021)

13. Larsen, K.G., Legay, A., Mikucionis, M., Poulsen, D.B.: Importance split-
ting in uppaal. In: Margaria, T., Steffen, B. (eds.) Leveraging Applications
of Formal Methods, Verification and Validation. Adaptation and Learning
- 11th International Symposium, ISoLA 2022, Rhodes, Greece, October 22-
30, 2022, Proceedings, Part III. Lecture Notes in Computer Science, vol.
13703, pp. 433–447. Springer (2022). https://doi.org/10.1007/978-3-031-19759-
8 26, https://doi.org/10.1007/978-3-031-19759-8 26

14. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals.
In: Lakhnech, Y., Yovine, S. (eds.) Formal Techniques, Modelling and Analysis
of Timed and Fault-Tolerant Systems. pp. 152–166. Springer Berlin Heidelberg,
Berlin, Heidelberg (2004)

15. Nghiem, T., Sankaranarayanan, S., Fainekos, G., Ivancic, F., Gupta, A., Pappas,
G.J.: Monte-carlo techniques for falsification of temporal properties of non-linear
hybrid systems. In: Proceedings of the 13th ACM International Conference on
Hybrid Systems: Computation and Control, HSCC 2010, Stockholm, Sweden, April
12-15, 2010. pp. 211–220 (2010)

16. Ničković, D., Yamaguchi, T.: Rtamt: Online robustness monitors from stl. In: Hung,
D.V., Sokolsky, O. (eds.) Automated Technology for Verification and Analysis. pp.
564–571. Springer International Publishing, Cham (2020)

17. Rubino, G., Tuffin, B.: Rare event simulation using Monte Carlo methods. John
Wiley & Sons (2009)

18. Sen, K., Viswanathan, M., Agha, G.: Statistical model checking of black-box prob-
abilistic systems. In: Computer Aided Verification, 16th International Conference,
CAV 2004, Boston, MA, USA, July 13-17, 2004, Proceedings. pp. 202–215 (2004)

19. Sen, K., Viswanathan, M., Agha, G.: Statistical model checking of black-box prob-
abilistic systems. In: Alur, R., Peled, D.A. (eds.) Computer Aided Verification. pp.
202–215. Springer Berlin Heidelberg, Berlin, Heidelberg (2004)

20. Younes, H.L.S.: Verification and Planning for Stochastic Processes with Asyn-
chronous Events. Ph.D. thesis (2004)

18 A. Kiviriga et al.

21. Younes, H.L.S., Simmons, R.G.: Probabilistic verification of discrete event systems
using acceptance sampling. In: Computer Aided Verification, 14th International
Conference, CAV 2002,Copenhagen, Denmark, July 27-31, 2002, Proceedings. pp.
223–235 (2002)

Appendix A Signal Temporal Logic

An STL formula φ consists of atomic predicates together with Boolean and
temporal operators. The temporal operators include always (□), eventually (♢)
and until (U) and are restricted to intervals of form [a, b], where 0 ≤ a < b and
a, b ∈ R≥0. Now let ∼∈ {≤, <,>,≥=, ̸=} be the set of relational operators. The
atomic predicates are defined over a scalar-valued function f(y(t)) ∼ c evaluated
over an input y at time t and where n ∈ N. The grammar of STL language is
then given as:

φ := T | f(y(t)) ∼ c | ¬φ | φ1 ∨ φ2 | φ1UIφ2 (7)

where I is a non-empty interval defined over extended reals.
The temporal operators can be defined in terms of Boolean and logic op-

erators such that ♢[a,b]φ ≡ TU[a,b]φ and □[a,b]φ = ¬♢[a,b]¬φ. If the interval is
omitted, it is assumed to be [0,∞). Furthermore, the quantitative semantics is
defined for STL by [9] with the help of function ρ(φ, y, t) which gives robustness,
i.e. degree of satisfaction of the formula φ by (y, t). The formula is satisfied if the
robustness is positive and the other way around. Given a robustness function ρ,
when ρ(φ, y) is positive it indicates that y satisfies φ, written as y |= φ. In this
paper, we restrict our attention to the bounded fragment of STL.

Appendix B Randomized Reachability Analysis

Algorithm 1 shows an adapted version of RRA for simulation purposes. The
random walks are issued until a state satisfying the property ψt is discovered. In
the simulation setting, the property ψt is a simulation termination condition (e.g.
time bound, step bound, etc.) and therefore the algorithm always terminates. In
our case ψt is an integer constraint that requires the global (observing) clock to
have elapsed until a specified value.

Once the simulation is completed, a finite timed word ω[n], that consists of
the starting state and all delays and actions taken along the way, is returned
(line 6).

In the random walks (line 11), different heuristics can be used for SelectOutput
and SelectDelay functions. Among a number of heuristics presented by [12], we
use the random enabled transition (RET) heuristic. RET chooses an eventually
enabled transition uniformly at random, i.e. a transition that is either currently
enabled or can become such after a delay.

More formally, consider H to be HA. Let TB : S × Σ → P(R≥0) give the
lower and the upper bound of the transition’s availability range over the actions

Usage-aware Falsification Testing for CPS 19

Algorithm 1 Randomized Reachability Simulation

1: procedure RRA Simulate(s0, ψt,maxSteps)
2: steps← 24

3: while true do
4: ω ← RandomWalk(s0)
5: if ω |= ψt then
6: return ω = s0, d1a1s1, . . . , dnansn
7: end if
8: steps←min(steps · 2,maxSteps)
9: end while
10: end procedure

11: procedure RandomWalk(s, steps)
12: i← 0
13: ω ← s
14: while s ̸|= ψt and i < steps do
15: a← SelectOutput(s)
16: d← SelectDelay(a)

17: s← s′ such that s
d−→ a−→ s′

18: ω ← ωdas
19: i← i+ 1
20: end while
21: return ω
22: end procedure

20 A. Kiviriga et al.

of a given HA. Simply put, TB gives both the smallest and the largest delay
after which a certain action can be taken. Formally:

TB(s) = {arg min
d∈R≥0

s
d−→ a−→ s′} ∪ {arg max

d∈R≥0

s
d−→ a−→ s′} (8)

RRA simulation generates timed words w ∈ Σ of HA H s.t.:

w = s0
d1−→ a1−→ s1

d2−→ a2−→ s2
d3−→ a3−→ . . .

dn−→ an−−→ sn (9)

where sn |= ψt, and ai is drawn uniformly at random from the set {a | si−1
d−→ a−→

.d ∈ R≥0} for all i, and d is also drawn uniformly at random from TB(sj , aj+1)
for all j.

Appendix C Importance Splitting Algorithm

The procedure of our IS is shown in Algorithm 2 which is an adapted version of
Algorithm 2 from [13] with the fixed effort scheme that we explain later. For each
level n we perform a fixed number m of simulations. A state is chosen from the
set of previous Successorsi−1(line 6) uniformly at random and a successor is
generated randomly according to the stochastic semantics (line 7). The generated
successor is recorded in the set of Successorsi, but only if it was obtained by
following a corresponding action ai from the timed cylinder.

Algorithm 2 Importance Splitting algorithm

1: procedure Importance Split(π(s, a1, a2, . . . , an))
2: Successors0 = {s}
3: for i← 1 . . . n do
4: Successorsi ← ∅
5: for j ← 1 . . .m do
6: s ∈ Successorsi−1 ▷ uniformly at random

7: Let s
d−→ a−→ s′ ▷ w.r.t. to the stochastic semantics

8: if a = ai then
9: Successorsi ← Successorsi ∪ {s′}
10: end if
11: end for
12: pi ← |Successorsi|

m

13: end for
14: return

∏n
i=1 pi

15: end procedure

Appendix D Simulation sensitivity

We perform an experiment to determine to which degree the variance in the
probability estimates produced by IS is affected by the number m of IS simula-

Usage-aware Falsification Testing for CPS 21

tions performed per level by IS Algorithm 2. We vary the number of simulations
per level and the total amount of levels, reporting the results in Table 2. As
anticipated, in cases with a small number of 50 simulation per level, a consid-
erable amount of IS attempts (up to 50%) have failed to follow an entire timed
cylinder (Fails

Successes column). That is due to the IS algorithm being unable (“un-
lucky”) to get through one of the “difficult” levels with only 50 attempts per
level. However, to our surprise we have not been able to see a clear pattern indi-
cating the amount of IS simulations per level to significantly affect the variance
of the probability estimates. To confirm this, we performed several additional
experiments both with the same parameters and with different ones, but the ob-
servation remained the same. In the light of this and the fact that the execution
time taken is roughly proportional to the number of IS simulations per level, in
further experiments we fix the number of IS simulation per level to 100.

Table 2: IS fixed effort scheme sensitivity to the estimated probability variance
w.r.t. number of simulation m per level. Each row represents 100 IS runs and a
single exact probability calculation. Time is given in HH:MM:SS.

IS pr. stdev IS pr. mean Exact pr. IS pr. mean
Exact pr.

Simulations
per level

levels
(# trans.)

Fails
Successes

Total time

4.4554e-16 1.9357e-16 1.2628e-16 +53.3% 50 42 21/79 00:03:41
2.6050e-16 1.4082e-16 1.2628e-16 +11.5% 100 42 2/98 00:08:00
7.6806e-17 9.9405e-17 1.2628e-16 -21.3% 200 42 0/100 00:16:21
6.6849e-17 1.2627e-16 1.2628e-16 +0.0% 500 42 0/100 00:41:16
5.3405e-17 1.2639e-16 1.2628e-16 +0.1% 1000 42 0/100 01:23:37

2.1045e-26 8.3141e-27 4.1159e-27 102.0% 50 74 46/54 00:05:04
9.6553e-27 4.2122e-27 4.1159e-27 2.3% 100 74 4/96 00:15:17
3.3171e-27 3.2673e-27 4.1159e-27 -20.6% 200 74 0/100 00:31:18
3.4904e-27 4.1488e-27 4.1159e-27 0.8% 500 74 0/100 01:18:32
2.1917e-27 4.1945e-27 4.1159e-27 1.9% 1000 74 0/100 02:39:26

2.4205e-41 5.4142e-42 4.4194e-42 22.5% 50 118 25/75 00:09:59
4.8414e-42 2.7542e-42 4.4194e-42 -37.7% 100 118 1/99 00:24:42
3.7592e-42 2.9829e-42 4.4194e-42 -32.5% 200 118 0/100 00:49:17
4.0601e-42 4.1128e-42 4.4194e-42 -6.9% 500 118 0/100 02:07:44
2.9377e-42 5.0765e-42 4.4194e-42 14.9% 1000 118 0/100 04:16:32

