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• Introduction of Thermoelectric Generators (TEGs) and application      
background

• Unique Characteristics of TEG

• TEG System Hierarchical Modeling in SPICE & Prototype Experiments

• Applications of the Model in the Optimal Design of Large Energy Systems
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The first principle --
Seebeck and Peltier effects

TEG, Seebeck effect TEC, Peltier effect
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size: from 4*4*3 to 50*50*5 mm3
Lifetime: in the range of 100,000 to 200,000 hours

Current commercially available TE modules

Advantages: no moving part, totally silent, no any gas/liquid used 
and can be applied under a wide range of temperatures.
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TEG in Large Thermal Systems:
An Example of Lukewarm Condition
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When ∆T1 ≠ ∆T2

Ideal Equivalent Model: 
parallel & series connection
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Temperature Dependent Characteristics 
of Practical TEGs
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Thermal/Electric Coupled Characteristics 
of Practical TEGs
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Temperature Dependent Contact
of Practical TEGs
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Heat flow (W) Current flow (A)

Temperature (K) Voltage (V)

Thermal conductivity (W/mK) Electrical conductivity (Ω/m)

Thermal mass (J/K) Electrical capacity (F)

SPICE-based Equivalent Circuit Methodology
to study the effects of partial lukewarming

∙ Accurately predict the TE characteristics (including temperature
dependent, coupled, and interfacial) and output power under
partially lukewarming conditions.

∙ Design aid for users who want to build actual TEG systems, study
the stability and interfacing aspects (e.g., MPPT applications)
without going into the intricate details (e.g., semiconductor
physics).

∙ A tool to study the effect of TEG array configuration on the
output power for a likely/known temperature pattern.

∙ A planning tool that can help in the installation/modification of
efficient and optimum TEG arrays in a given thermal surrounding.
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Device-level SPICE model
(Thermal part and electrical part)
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Quasi-1D Hierarchical Modeling: 
TEG module object oriented
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System-level pilot test rig
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Simulation result
Comparison with experiment results from the test rig
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Practical Schematic in SPICE
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MPPT & Power Electronics Stage 
Integration and Co-simulation
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{16×3} SFPS TEM Array
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{8×6} PFSS TEM Array
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{8×6} PFSS TEM Array

Thank you!
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