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Abstract—The timely and quantitative evaluation of the degra-
dation is crucial for traction inverter systems in railway ap-
plications. The implementation in the industry is impeded by
two major challenges including the varying operational profiles
and the scalability for system-level applications. This paper
proposes a deep recurrent autoencoder-based degradation eval-
uation method, to assess the degradation level of the traction
power module online. The recurrent structure is embedded for
processing multivariate time series condition monitoring data
stream, in order to exploit the inherent time dependence to
improve the accuracy and robustness. The autoencoder-based
framework enables the scalability of the proposed method to
system-level applications and can be applied under varying
operating conditions. The method is experimentally demonstrated
on an FPGA-based hardware platform.

Index Terms—Power module, inverter system, deep learning,
autoencoder, degradation, prognostics and health management

I. INTRODUCTION

Predictive maintenance of traction inverter systems is crucial
to the safe operation of high-speed railways. An industry
survey [1] indicates that the power semiconductor is among
the most fragile components. It demands the timely detection
and accurate quantification of the degradation status of the
power module in the railway traction inverter, as a basis for
safety-oriented decision making [2].

Extensive studies have been devoted to this area that cov-
ers for example the physics-of-failure analysis, degradation
precursor determination, sensory circuit design, degradation
evaluation, etc. Among them, most of the existing efforts focus
on the physics of the failure analysis of power devices and
modules [3], identifying candidate degradation precursors [4],
followed by the design of the hardware circuit to collect the
degradation precursors in real-time [5]. With increasing data
availability of the degradation precursors, how to evaluate the
aging effects via degradation evaluation is the next demanding
but very daunting task.

As illustrated in Fig. 1, along with traction inverter op-
eration, the in-situ condition monitoring system will collect
multiple sensor channels consisting of degradation precursors
and operation profiles, resulting in high-speed data streams.
Essentially, the specific pattern, e.g., the increasing trend,
of the degradation precursors, can be applied to access the
inverter degradation, while the operation profiles record the

Fig. 1. Condition monitoring schemes for the degradation evaluation of the
inverter systems. The variations among the health data cluster at t0, the
moderate degradation data cluster at t1, and the severe degradation data cluster
at t2 are due to both the aging and the operational profiles.

inverter missioning modes. The variation of the degradation
precursors can be essentially attributed to two factors in-
cluding 1) inverter aging effects leading to the degradation;
and 2) the variation of external operational profiles. It is
worth mentioning that the degradation precursors are coupled
with the operational profiles via complex nonlinear and time-
varying relationships. For example, in condition monitoring
of MOSFETs [6], the degradation precursor drain-source on-
state resistance Rds(on) highly depends on the operational
profile device case temperature Tc. For degradation evaluation,
however, only the variation of the degradation precursors as a
result of the aging effects is of interest. Formally, the objective
for degradation evaluation is to quantitatively isolate the aging
effects in the degradation precursors, from the operational
profiles.

To this end, one direction is to separate the operational
profiles from the degradation precursors separately, leaving
the variations due to degradation solely. However, the non-
linear and time-varying between these two factors are very
difficult to characterize for decoupling purposes explicitly.
Another direction is to evaluate the variation of the degradation
precursor, under the same operational profiles. Since the
operational profiles are identical at different evaluation time
epochs, the effects of operational profiles on the degradation



precursors can be suppressed, leaving only variations due to
the aging effects for the degradation evaluation. In this way,
variations on the degradation precursors due to aging can
be accessed virtually and indirectly, which are equivalently
independent of the operational profiles.

For the selection of the same operational profiles, there are
three options including

1) Find an specific working point in the operational profiles
that the degradation precursor is invariant. As a result, at
different monitoring epochs, the degradation precursors
at this specific working point are utilized for comparison
so that we can investigate the aging effect only. As an
example, for the degradation detection of insulated gate
bipolar transistor (IGBT) package in [7], an inflection
point at which the precursor on-state collector-emitter
voltage vce(on) is irrespective of the junction tempera-
ture, is used for condition monitoring purposes. Similar
example can be found in [8] for condition monitoring of
capacitor, where elaborated transformation is performed
on the degradation precursors to make them invariant
to the operational profiles. Note that this technological
method requires expert experience and experimental
evidence to identify this invariant working point.

2) Identify a specific working point at which the variations
of the degradation precursors due to the aging effects
is more evident and sensitive. When accessing the
degradation, only executing the degradation evaluation
procedure when the data at these specific operational
points are available. However, the identified most evident
and sensitive working points is complicate and case-
by-case, which is challenging to be generalized. More-
over, when the number of the degradation precursors
is relatively large, it will be difficult to determine the
most evident and sensitive working points, since each
degradation precursor may resulting different working
points. Therefore, it will be difficult to apply to the
system-level cases.

3) From the data-driven perspective, the degradation pre-
cursors and the comprehensive operational profiles are
collected. As a result, it assumes that the overall opera-
tional profiles are available. The next step is evaluating
the variation effects of the degradation precursors, in
the presence of the same characterisitics and distribution
of the operational profiles at any condition monitoring
times. From a system-level perspective, this techno-
logical method can be well generalized to complex
cases without extensive expert experience. The paid cost,
however, is that the data collection part should be well-
designed to cover the comprehensive operational profiles
as much as possible. For system-level applications, this
method is preferred since the method can be general-
ized well. The above limitations on the data collection
requirement, from the industrial implementation per-
spective, can be well fulfilled since the degradation of
power electronic systems is very slow. There is enough

time for the data logging system to collect the data at
comprehensive operational profiles.

For the degradation evaluations for the traction inverter
system, another key feature is the fast system dynamics that
require high-speed data collection, resulting in a large volume
of condition monitoring streams. It makes the determination
of the specific invariant or the most sensitive operational
profile even more challenging. As a result, considering the
generalization capability for dealing with multiple degrada-
tion precursors of the degradation evaluation methods, the
endeavors of this paper focus on developing the degradation
evaluation method from the data-driven perspective. For this
paradigm, exemplary cases include a Principal Component
Analysis (PCA)-based degradation detection of SiC MOSFETs
[9], a Mahalanobis distance-based technique identifying the
anomalous behavior in non-punch through (NPT) and field
stop (FS) IGBTs [10], etc. However, these conventional statis-
tical methods such as PCA-based methods and Mahalanobis
distance-based methods, are based on the monitoring infor-
mation only at the current time instance, which is less robust
and results in a high percentage of false alarms, especially
considering that the monitoring precursors from the traction
inverter are very noisy.

To address the above challenges and ease field implementa-
tion, we resort to the reconstruction-based scheme for degra-
dation detection, which is facilitated by the deep learning tool
of autoencoder [11]. Specifically, in this paper, we propose a
new deep recurrent autoencoder-based degradation evaluation
method for traction power modules. By exploiting the time
dependence among the condition monitoring data streams,
the proposed framework has industry-favorable features in-
cluding unnecessary specific operational profile selection and
robustness. Moreover, the method is irrelevant to the varying
operating conditions and has the potential to be scalable to
system-level applications with a large number of degradation
precursors and complex operational profiles. The method im-
plementation on a Field Programmable Gate Array (FPGA)
platform is investigated for demonstration.

The remainder of the paper is organized as follows. Section
II presents the problem setting and the proposed method,
illustrated with the field dataset of the traction inverter system.
Section II-A demonstrates the method by using the implemen-
tation on an FPGA hardware. Finally, the findings and insights
are summarized in Section IV.

II. METHODOLOGY

A. Degradation Emulation for Traction Power Module

An experimental setup of traction inverter systems in rail-
way applications is developed for the data collection. Note
that the degradation of the traction inverter in the field is
very slow, which is difficult to collect field degradation data.
Instead, for illustration, the traction inverter is operated with
two modes for emulating the healthy and degraded behavior of
the power module. Specifically, when the inverter is normally
operated, the cooling fan of the power module is working



Fig. 2. Data collection for traction power module with different status of the cooling fan. (a) Healthy dataset when cooling the fan at a high speed; and (b)
Degraded dataset when the cooling fan stops working.

at a high speed. The dataset collected in this condition is
considered a healthy dataset. To emulate the degraded behavior
of the power module, the cooling fan is manually stopped
without any cooling wind flow through the heatsink. The
different operational conditions of the cooling fan can be
used to emulate the degradation due to the thermal path
deteriorating. As a result, the dataset collected in this case is
considered the degraded dataset. In these two cases, the opera-
tional profiles including phase current Iw, and the degradation
precursors including the heatsink temperature Th and the on-
state collected-emitter voltage vce(on) of the IGBT module, are
collected, as shown in Fig. 2. There is an evident difference
in the heatsink temperature Th for these two cases. Note that
the operational profiles are as diversified as possible so that
they can cover all of the possible cases in the field. For the
degradation evaluation, the primary task is to evaluate the data
cluster difference quantitatively between the healthy and the
degraded datasets of the power module in the traction inverter.
Mathematically, the collected datasets consist of multi-channel
information resulting in multivariate time series signals.

Fig. 3 shows the healthy and degraded datasets from a
point-wise perspective. It can be clearly seen, however, that a
large proportion of these two datasets are extensively mixed,
suggesting that the healthy and the degraded datasets are
challenging to be separated from the point-wise point. There-
fore, the overall difference cannot be evidently quantified.
To address this challenge, the inherent time-dependence in-
formation in the monitoring precursors is exploited, in addi-
tion to the features in the space coordinate [Th, Iw, vce(on)].
Theoretically, these multivariate time series data are from a

dynamic system that will generate and output system states
progressively along with time. As a result, the former and the
latter time steps are highly dependent on each other. Therefore,
incorporating this time-dependence information will increase
the probability to separate these two datasets quantitatively,
and the following analysis confirms this assumption that such
a time-dependence mechanism can significantly improve the
accuracy and robustness of degradation evaluation. In this
case, the multivariate time series Xk = [Th, Iw, vce(on)]

(k+s)
k

is considered as the inputs rather than just the single vector
[Th, Iw, vce(on)]k values at any particular time instance tk,
where s = 20 is the sequence length.

B. Degradation Evaluation with Deep Recurrent Autoencoder

The proposed method applies the reconstruction scheme
[11], [12] for the degradation evaluation with the inputs of
multivariate time series, by using a deep recurrent autoencoder.
Given the multivariate time series, the objective is to acquire
a low-dimensional feature representation space that effectively
captures the essential characteristics of the given data streams.
This technique is commonly employed for data compression
and dimension reduction purposes. In the context of degra-
dation evaluation, the rationale behind utilizing this approach
is that the learned feature representations are constrained to
capture significant regularities of the data streams, result-
ing in minimal reconstruction errors. Consequently, degraded
datasets, being inherently dissimilar from normal ones, exhibit
substantial reconstruction errors, making them difficult to
accurately reconstruct from the derived representations. Sum-
marizing, it is assumed that normal multivariate time series



Fig. 3. Point-wise illustration for the healthy and degraded datasets. Note that
most of the data points from these two categories are extensively overlapped.

can be more effectively reconstructed from the compressed
space compared to degraded data streams.

For the implementation, the deep autoencoder is designed
to fulfill this purpose. It consists of the encoder part and the
decoder part. The encoder part will transform the multivariate
time series into a compact representation, i.e., the latent space,
while the decoder will restore the signals. Due to the reduced
expressive capability of the encoder part, the architecture will
enforce the network to learn the most relevant information in
the data and suppress the irrelevant ones such as noise. Note
that the autoencoder is an unsupervised learning method [13],
suggesting only the healthy dataset is required for the method
training and is more applicable to field applications.

However, the encoder and decoder of the conventional
autoencoder are implemented with the vanilla neural network,
which has no capability to ingest the sequential information
in the datasets. Deep recurrent autoencoders have emerged as
a powerful tool for the representation learning tasks in time
series modeling domains. The key ability of this powerful data-
driven tool is to capture temporal dependencies and preserve
sequential information. By employing recurrent architecture
in the encoder and decoder networks, it can effectively model
time series data and learn compact representations with tem-
poral information. In this case, the encoder and decoder of
the model are implemented with recurrent structure, i.e., the
Long Short-Term Memory (LSTM), in particular. Fig. 4 shows
the architecture of the deep recurrent autoencoder. It is worth
mentioning that one of the key advantages of this technological
approach is that there is no limitation on the number of
information channels. It can be easily scalable to system-level
applications without extensive manual configuration.

For degradation evaluation in this paper, this deep recurrent
autoencoder is applied to establish the healthy model of the
traction power module. Assume that the model is trained by
using the inverter healthy data only, it therefore can reconstruct
these healthy data streams in the outputs. However, since the
model cannot characterize the inverter behavior in other states,

Fig. 4. Deep recurrent autoencoder for degradation evaluation with the
condition monitoring of multivariate time series for the traction power module.
The reconstruction error is calculated with the Mean Absolute Error (MAE).

e.g., the different levels of degraded states, it will not be able
to reconstruct the datasets. Therefore, when the data streams
of the degraded power module are fed to the established
model, the model will reconstruct the signals with a large
reconstruction error. The more degraded status, the higher the
reconstruction error. In this way, the reconstruction error can
be applied as an indicator to illustrate the degradation status
of the traction power module quantitatively.

C. Statistical Tool for Suppressing Operational Profile Varia-
tions

Another challenge for field degradation evaluation is that the
calculated degradation index is highly sensitive to the opera-
tional profiles. To mitigate the affecting factor of operational
profiles, one feasible approach is to compare the data charac-
teristic difference in the presence of all possible operational
profiles. It is noted that collecting comprehensive operational
profiles is feasible at a specific condition monitoring epoch
since the degradation is very slow. To evaluate the overall
variation effect, the Box-plot statistical tool [6] is applied to
obtain the median value of the overall variation. Since the data
characteristics of the operational profiles are almost the same
at different evaluation time instances, the variations due to the
operational profiles can be suppressed.

Specifically, the reconstruction errors of a large number of
multivariate time series [Th, Iw, vce(on)]

(k+s)
k are applied to

quantify the degradation levels of the traction power module.
The median of the reconstruction errors, obtained by using
the Box-plot analysis, is applied as the degradation index.
Regarding the healthy dataset and the degraded dataset as in
Fig. 2, the histogram of the reconstruction errors is shown in
Fig. 5. It can be seen that there is a clear gap between the
histograms based on the healthy and the degraded datasets,
suggesting an acceptable limit can be applied to differentiate
these two cases. Once the reconstruction errors are obtained,
the box-plot tool is applied to calculate the statistical median
of the reconstruction errors, as the overall degradation index of
the traction power module. As a result, based on the box-plot
analysis, the medians of these reconstruction errors are applied
as a quantitative index for assessing the degradation levels,



Fig. 5. The histogram of the reconstruction errors for the healthy and degraded
cases.

Fig. 6. The median statistics using the Box-plot for quantifying the recon-
struction errors for different degradation levels.

which are 0.0043 and 0.3417 for the healthy and degraded
cases, respectively, as shown in Fig. 6. It can be seen that the
difference between the healthy and the degraded cases can be
evidently quantified.

It is worth mentioning that one of the key requirements of
the proposed method is the completeness of the operational
profiles, which should be as diversified as possible and can
cover most of the representative operational profiles in the
field. This assumption can be feasibly fulfilled in field appli-
cations. For example, the healthy dataset can be collected in
the field for several months when a new traction inverter is
installed for commissioning. In this period, the degradation
of the inverter at the very beginning of the service life cycle
is negligible. During these months, the operational profiles
that the system is subjected to will be as comprehensive
as possible, which can cover all the possible cases in the
following operations. The above data collection procedure can
be iteratively performed when requesting the degradation eval-

uation result. Although the data collection is a little bit time-
consuming, considering the degradation of power electronics
is very slow in practice, the above procedures can be readily
implemented in the field.

III. HARDWARE IMPLEMENTATION WITH FPGA
A. Algorithm Modules and FPGA Architecture

The method implementation on an edge platform is key
for industrial applications. The design of the degradation
evaluation system endeavors to attain low complexity and
acceptable utilization of resources in the context of resource-
limited edge implementation. In this paper, the proposed
method is implemented on an FPGA platform (Xilinx Zynq
ZC706). It is based on the Zynq System-on-Chip (SoC)
platform of Xilinx, which integrates a Dual-core ARM Cortex-
A9 processor system (PS) and a programmable logic (PL)
unit of FPGA within a single chip. The combination of the
PL and PS enables the partitioning of the functionalities into
time-critical components that are mapped onto the FPGA,
freeing the processor to handle less critical and potentially
more complex functions. Implementation of both critical and
non-critical functions is accomplished through hardware de-
scription language (HDL) development in the PL. While
developing the proposed architecture on the designated FPGA
development board, specific hardware blocks within the PL,
such as distributed memory, arithmetic units, logic, and various
interconnections, are utilized.

As the degradation of a well-designed traction inverter
system is a gradual process over the normal operating year,
degradation evaluation is not considered a regular task that
requires frequent execution. Hence, the computing speed of the
designed architecture is not a significant performance metric,
and constraints on speed can be relaxed to facilitate imple-
mentation simplicity. The architecture of the implemented
hardware is shown in Fig. 7. It has been designed to be scalable
for deep learning tool implementation in terms of the number
of network layers, hidden units, and input dimension if suffi-
cient hardware resources are available. The system framework
performs four primary functions including the initialization of
the neural network, normalization of the input data, neural
network inference, and calculation of the MAE value for the
reconstruction error in terms of the degradation index. These
functions were implemented using Verilog hardware language
in the programmable logic PL section of the hardware, with a
focus on implementing both critical and noncritical functions
efficiently.

The implementation of a deep learning tool (e.g., neural
network) involves a significant number of weights and bias
parameters, making manual coding a challenging and time-
consuming task. To overcome these difficulties, the MATLAB
Deep Learning HDL Toolbox was employed to construct a
deep learning processor optimized for FPGA implementation.
The data type employed is in accordance with the IEEE-754
single-precision floating-point standard. With the Matlab Deep
Learning HDL Toolbox, it allows to generate the synthesizable
HDL code from deep learning models directly, which can then



Fig. 7. The architecture of the FPGA hardware and the implementation of the deep recurrent autoencoder-based degradation evaluation. The autoencoder
inference is implemented in the deep learning processor IP module and the degradation index calculation is implemented in the MAE calculation module.
More details can be found in [14].

Fig. 8. The implementation pipeline of the degradation evaluation of the power module in the traction inverter system with FPGA hardware.

be integrated into digital circuits for efficient execution on
FPGAs and other hardware platforms. It offers a more focused
approach to implementing deep neural networks compared to
the HDL Coder Toolbox. Moreover, the former emphasizes
the implementation of crucial components for deep learning
tools such as processing modules, memory access arbitrator
modules, a top-level scheduler module, and profiler and de-
bugger utilities. Another key advantage of the Deep Learning
HDL Toolbox is its ability to adapt to the size and scale of
the deep learning models being implemented. This adaptation
can result in reduced hardware resource usage by optimizing
the input and output memory size, disabling convolutional

processing modules, adjusting the number of fully connected
layer threads, etc.

B. Implementation Pipeline

The entire pipeline and procedures are illustrated in Fig. 8.
The implementation of the proposed degradation evaluation
method consists of the offline model training part and the
online execution for the degradation evaluation part. For the
offline model training, the new traction power module system
will be monitored for data collection for several months,
so that to collect the data at varying operating conditions
as diversified as possible. These data are considered as the
healthy dataset, which will be used to train the deep recurrent



TABLE I
RESOURCE UTILIZATION OF OVERALL ARCHITECTURE OF FPGA

(XC7Z045 FFG900)

Resource Utilization Available Percentage
LUT 95843 218600 43.84%

LUTRAM 9658 70400 13.72%
Flip-Flops 105727 437200 24.18%

BRAM 51.5 545 9.45%
DSP 73 900 8.11%

autoencoder offline and then embedded on the FPGA with the
MATLAB Deep Learning HDL Toolbox.

For the online execution for calculating the degradation
index part, by feeding the raw multivariate time series data
stream Xk = [Th, Iw, vce(on)]

(k+s)
k into the pipeline, the steps

of 1) data stream preprocessing, 2) autoencoder inference, 3)
statistical analysis tool, and 4) degradation index calculation
are implemented on FPGA and will be subsequently executed
in real-time. In this way, the degradation level of the inverter
system can be continuously evaluated and monitored. The
details of resource utilization of FPGA are given in Table I. It
can be seen that the method occupies less than 50% of the total
resources, which can be further reduced with computation-
light measures such as network quantizing and pruning [15].

One of the key advantages of the proposed method is that
it is a tailored degradation detection solution for a specific in-
verter system. Therefore, it is unnecessary for transferring the
trained model to the specific system. The paid cost, however,
is that there is no detection capability when collecting healthy
data at the very beginning of several months. It is acceptable
in practice since the new system degradation at the beginning
stage would be negligible.

IV. CONCLUSIONS

A deep recurrent autoencoder-based degradation detection
method is proposed for the traction power module in this
paper. The multivariate time series of the traction power
module in a healthy state is applied to train a deep recurrent
autoencoder model, formulating the healthy behavior model
of the traction inverter system. The reconstruction error is
applied as a quantitative index for degradation evaluation.
The entire data-driven pipeline is implemented and verified on
FPGA-based hardware. It demonstrates that the deep recurrent
autoencoder-based framework holds great potential to address
the challenges of scalability and affecting operational profiles
in the degradation evaluation for power electronic systems.
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