Switched loop antenna for RFID localization
Alrabadi, Osama Nafeth Saleem; Pedersen, Gert F.; Møller Petersen, Orla

Publication date: 2012

Document Version
Early version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

> Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
> You may not further distribute the material or use it for any profit-making activity or commercial gain
> You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: januar 03, 2019
Switched Loop Antenna for RFID Localization

Osama N. Alrabadi, Gert F. Pedersen
Antennas, Propagation and Radio Networking (APNeT)
Aalborg University
(oma,gfp}@es.aau.dk

Orla Møller Petersen
Munin Spot Technology ApS
omp@muninspot.com

Introduction

- The poster suggests an approach for localizing tagged items by equipping the RFID tag with a low-complexity switched loop antenna.
- By controlling the polarity of a DC source sharing the RF path with the input signal, different beampatterns are triggered and different spatial responses are thus observed by the RFID reader.
- The different spatial signatures allow the RFID reader to estimate the direction of the tag with a single receive antenna at the reader’s side.

State of the Art

Far-Field

$B_1(\Omega)$ and $B_2(\Omega)$ are weakly correlated beams

They are balanced (in the uniform 3D space) as forming a mirro-image pair

Thus, they are able to trigger two i.i.d. channel responses to be exploited by the RFID reader.

Proposed System

Conclusion

By equipping the RFID tag with a simple switched loop antenna, the direction of the tag can be estimated using a single receive antenna at the reader’s side. This in turn helps future integration of RFID readers in consumer handheld terminals like future smartphones.

References