When 'exact recovery' is exact recovery in compressed sensing simulation
Sturm, Bob L.

Published in:
Proceedings of the European Signal Processing Conference

Publication date:
2012

Document Version
Early version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA):
When “Exact Recovery” is Exact Recovery in Compressed Sensing *Simulation*

Bob L. Sturm

Department of Architecture, Design and Media Technology
Aalborg University Copenhagen
A.C. Meyers Vænge 15, DK-2450, Denmark

August 27, 2012

1B. L. Sturm is supported in part by Independent Postdoc Grant 11-105218 from Det Frie Forskningsråd.
Measurements u come from sensing x by sensing matrix Φ: $u = \Phi x + n$. We use a recovery algorithm to build \hat{x} given u and Φ, e.g., OMP, BP.

Exact Recovery

- In theory, we have no trouble asking $\hat{x} \overset{?}{=} x$.
- In practice, we must use a different criterion.
- At least two different criteria have been used in the simulation of compressed sensing recovery algorithms.
Let Ω index the columns of Φ, and define the support of x as

$$S(x) := \{ i \in \Omega : x_i \neq 0 \}.$$

x is exactly recovered with respect to support if

$$S(\hat{x}) = S(x).$$ \hspace{1cm} (SC)

This has been used in simulations of CS recovery in, e.g.,

One exact recovery criterion in CS simulation: Support

For $N = 512$. (a) Empirical prob. exact recovery as fun. of M (ord.), K/M (abs.). White is 1.0. (b) Empirical prob. of exact recovery for $M = 64$ as function of K/M.
One exact recovery criterion in CS simulation: Support

Fig. 1. The percentage of 1000 input signals correctly recovered as a function of the number N of measurements for different sparsity levels m in dimension $d = 256$.
One exact recovery criterion in CS simulation: Support

Fig. 1. Simulated success probability of ML detection for $n = 20$ and many values of k, m, SNR, and MAR. Each subfigure gives simulation results for $k \in \{1, 2, \ldots, 5\}$ and $m \in \{1, 2, \ldots, 40\}$ for one (SNR, MAR) pair. Each subfigure heading gives (SNR, MAR). Each point represents at least 500 independent trials. Overlaid on the color-intensity plots is a black curve representing (6).
Another exact recovery criterion: Normalized ℓ_2-norm Error

Define a $0 \leq \epsilon^2 < 1$.

x is exactly recovered with respect to normalized squared error if

$$\frac{\|x - \hat{x}\|_2^2}{\|x\|_2^2} \leq \epsilon^2\quad (\epsilon^2 C)$$

This has been used in simulations of CS recovery in, e.g.,

Another exact recovery criterion: Normalized ℓ_2-norm Error

Another exact recovery criterion: Normalized ℓ_2-norm Error

Fig. 1. Empirical noiseless PTCs for Bernoulli-Gaussian signals and theoretical PTC for Lasso.
Another exact recovery criterion: Normalized ℓ_2-norm Error

Two Criteria for Exact Recovery

1. \(x \) is exactly recovered \textit{with respect to support} if
 \[
 S(\hat{x}) = S(x)
 \]
 (SC)

2. \(x \) is exactly recovered \textit{with respect to normalized squared error} if
 \[
 \frac{\|x - \hat{x}\|_2^2}{\|x\|_2^2} \leq \epsilon^2
 \]
 (\(\epsilon^2 \)C)

One does not necessarily imply the other. There are instances, however, when one must be true if the other is true.

My Aims

With regards to running and comparing \textit{simulations of CS recovery}:

- Given a pair \((\hat{x}, x)\), when does “exact recovery” occur with respect to only one or both criteria?
- What is the role of \(\epsilon^2 \), and how should we define it?
Introduction

Presentation Outline

1. Noiseless Case
 - $x \sim$ Bernoulli-Rademacher sparse signals
 - $x \sim$ Bernoulli-Gaussian sparse signals
 - Simulations

2. Noisy Case
 - $x \sim$ Bernoulli-Rademacher sparse signals
 - Simulations

3. Conclusions
Noiseless Case

Measurements u come from sensing x by the sensing matrix Φ, $\|n\| = 0$:

$$u = \Phi x + n.$$

- Given \hat{x}, the weights minimizing the measurement modeling error are
 $$y_{ls} := \arg \min_{y'} \|u - \Phi S(\hat{x})y'\|_2^2 = \Phi_{S(\hat{x})}^\dagger u.$$

With \hat{x} composed of y_{ls}, if (SC) then for any $\epsilon^2 \in [0, 1]$ (ϵ^2C).

- If, however, (ϵ^2C) for $\epsilon^2 = 0$ then necessarily (SC).

Now we analyze the behavior of these criteria for signals distributed Bernoulli-Rademacher, Gaussian, and empirically in other ways.
Consider the **best case scenario** for sparsity \(s \)

- \(S(\mathbf{x}) = \{1, 2, \ldots, s\} \);
- \(\hat{\mathbf{x}} \) lacks the first \(0 < k < s \) elements, i.e., for \(n \in \{1, \ldots, k\} \) \((\hat{x}_n = 0) \);
- \(\hat{\mathbf{x}} \) has all the others, i.e., for \(n \in \Omega \setminus \{1, \ldots, k\} \) \((\hat{x}_n = x_n) \).

This means that

- \(S(\hat{\mathbf{x}}) \subset S(\mathbf{x}) \), i.e., \(\hat{\mathbf{x}} \) has no false detections;
- the missed detections do not influence our estimation of the values of the recovered support.

In this case, \((\epsilon^2 C)\) and not \((SC)\) becomes for \(1 \leq k \leq s \)

\[
\frac{1}{\|\mathbf{x}\|^2} \sum_{n=1}^{k} x_n^2 \leq \epsilon^2. \tag{1}
\]
Bernoulli-Rademacher Signals

If $x \sim \text{Bernoulli-Rademacher}$, its non-zero elements are iid equiprobable in $\{-1, 1\}$. In this case, $\|x\|_2^2 = s$, so

$$P\{(\epsilon^2 C) \land \neg (SC)\} = \begin{cases} 1, & k/s \leq \epsilon^2 \\ 0, & \text{else} \end{cases}$$

(2)

For Bernoulli-Rademacher sparse signals \textit{in the best case scenario}:

The parameter ϵ^2 limits the number of missed detections k for a sparsity s.

- As long as $s < \epsilon^{-2}$ for $x \sim \text{Bernoulli-Rademacher}$, $(\epsilon^2 C) \rightarrow (SC)$.
- In Maleki et al. 2010, where $s < 800$ and $\epsilon^2 = 10^{-4}$, $(\epsilon^2 C) \rightarrow (SC)$. However, if for this ϵ^2 the sparsity $s > 10000$, then the two conditions are no longer equivalent.
Bernoulli-Gaussian Signals

Let the s non-zero elements of $x \sim \mathcal{N}(0, \sigma_y^2)$ with variance $\sigma_y^2 > 0$. Define the independent chi-squared rvs

$$Y_k := \sum_{n=1}^{k} [x_n/\sigma_y]^2 \sim \chi^2(k), \quad Z_{s-k} := \sum_{n=k+1}^{s} [x_n/\sigma_y]^2 \sim \chi^2(s-k)$$

Since Y_k and Z_{s-k} are independent, $F_{k,s-k} := [Y_k/k] / [Z_{s-k}/(s-k)] \sim F(k, s-k)$. Thus, in the best case scenario

$$P\{(\epsilon^2 C) \land \neg(SC)\} = P \left\{ F_{k,s-k} < \frac{\epsilon^2}{1 - \epsilon^2} \frac{1 - k/s}{k/s} \right\}.$$ (3)

If $k/s > \epsilon^2$, then, for $s \geq 2k$, $P \{F_{k,s-k} < 1 + \delta\} > 0.5$ for $\delta > 0$.

For Bernoulli-Gaussian signals in the best case scenario:

The parameter ϵ^2 limits the number of missed detections k before $((\epsilon^2 C) \land \neg(SC))$ is false in a majority sense.
Experiments for several ϵ^2 (labeled) & sparsities (legend)

(a) Zero-mean Gaussian (theoretical)

(b) Laplacian (empirical)

c) Uniform (empirical)

(d) Bimodal Gaussian (empirical)
Noisy Case (assuming (SC))

Measurements u come from sensing x by the sensing matrix Φ, $\|n\| > 0$:

$$u = \Phi x + n.$$

Assume (SC), and \hat{x} is built from $\Phi_{S(x)}^\dagger u$. The weights in real solution are

$$y := \arg\min_{y'} \|u - n - \Phi_{S(x)} y'\|^2 = \Phi_{S(x)}^\dagger (u - n).$$

Then, ($\epsilon^2 C$) becomes

$$\frac{\|y - \Phi_{S(x)}^\dagger u\|^2}{\|y\|^2} = \frac{\|\Phi_{S(x)}^\dagger (u - n) - \Phi_{S(x)}^\dagger u\|^2}{\|y\|^2} = \frac{\|\Phi_{S(x)}^\dagger n\|^2}{\|y\|^2} \leq \epsilon^2. \quad (4)$$

Hence, for any $\epsilon^2 \in (0, 1]$ we can find an n such that $((SC) \land \neg (\epsilon^2 C))$.

This is different from noiseless case.
Bernoulli-Rademacher Signals Given (SC)

Define $\mathbf{v} := \Phi_{S(x)}^\dagger \mathbf{n}$, and assume its $|S(x)|$ elements are iid $\mathcal{N}(0, \sigma_v^2)$ and independent of \mathbf{y}. Define the chi-squared-distributed rv

$$V_s := \sum_{n=1}^{s} \left[\frac{v_n}{\sigma_v} \right]^2 \sim \chi^2(s). \tag{5}$$

If s elements of $\mathbf{x} \sim$ Rademacher, the probability of (ϵ^2C) given (SC) is

$$P\{(\epsilon^2C)|(SC)\} = P \left\{ V_s < \frac{\epsilon^2 s}{\sigma_v^2} \right\}. \tag{6}$$

Note $P \{ V_s < s + \delta \} > 0.5$ for $\delta > 0$.

For Bernoulli-Rademacher signals, in the best case scenario:

Given (SC), if $\epsilon^2 \geq \sigma_v^2$ then (ϵ^2C) in a majority sense.
Assume s non-zero elements of $\mathbf{x} \sim \mathcal{N}(0, \sigma_y^2)$, independent of \mathbf{v}. Define

$$X_s := \sum_{n=1}^{s} \left[\frac{x_n}{\sigma_y} \right]^2 \sim \chi^2(s). \quad (7)$$

The ratio V_s/X_s is an F-distributed rv $W_{s,s} := V_s/X_s \sim \mathcal{F}(s, s)$. Thus, the probability of (ϵ^2C) given (SC) is

$$P\{ (\epsilon^2C) | (SC) \} = P \left\{ W_{s,s} < \frac{\sigma_y^2}{\sigma_v^2} \epsilon^2 \right\}. \quad (8)$$

Note $P \{ W_{s,s} < 1 + \delta \} > 0.5$ for $\delta > 0$.

For Bernoulli-Gaussian signals, in the best case scenario:

Given (SC), if $\epsilon^2 \geq \sigma_v^2/\sigma_y^2$ then (ϵ^2C) in a majority sense.
Experiments for several SNR (legend) given (SC)

(a) Rademacher (theoretical)
(b) Zero-mean Gaussian (theoretical)
(c) Zero-mean Laplacian (empirical)
(d) Zero-mean Uniform (empirical)
Noisy Case (assuming not (SC))

Consider \((\epsilon^2 C)\) is true but not (SC), and best case scenario for sparsity \(s\):
- \(S(x) = \{1, 2, \ldots, s\}\);
- \(\hat{x}\) lacks the first \(0 < k < s\) elements, i.e., for \(n \in \{1, \ldots, k\}\) \((\hat{x}_n = 0)\);
- \(\hat{x}\) has the others perturbed by \(v\): \(n \in \Omega \setminus \{1, \ldots, k\}\) \((\hat{x}_n = x_n + v_n)\).

This means that:
- \(S(\hat{x}) \subset S(x)\), i.e., \(\hat{x}\) has no false detections;
- missed detections do not influence estimations of support recovered;
- values of true detections perturbed only by the noise.

Assume \(x\) and \(v\) are independent, \((\epsilon^2 C)\) given not (SC) becomes

\[
\frac{1}{\|x\|^2} \left[\sum_{n=1}^{k} x_n^2 + \sum_{n=1}^{s-k} v_n^2 \right] \leq \epsilon^2.
\]
Bernoulli-Rademacher Signals (assuming not (SC))

Define the rv

\[G_{s-k} := \sum_{n=1}^{s-k} \left[\frac{v_n}{\sigma_v} \right]^2 \sim \chi^2(s - k). \]

(10)

When the non-zero elements of \(x \) are distributed Rademacher, and \(v_n \sim \mathcal{N}(0, \sigma_v^2) \), \((\epsilon^2 C)\) given not (SC) becomes

\[P\{(\epsilon^2 C) \land \neg (SC)\} = P \left\{ G_{s-k} < \frac{\epsilon^2 s - k}{\sigma_v^2} \right\}. \]

(11)

Note \(P\{G_{s-k} < s - k + \delta\} > 0.5 \) for \(\delta > 0 \).

For Bernoulli-Rademacher signals in the best case scenario:

If \(\frac{\epsilon^2 s - k}{\sigma_v^2} < s - k \), then \((\epsilon^2 C)\) is false in a majority sense.
Experiments for several ϵ^2 (labeled) & SNR (legend)

(a) Rademacher (theoretical)

(b) Zero-mean Gaussian (empirical)
Summary and Conclusion

- In theory, we can test for exact recovery with \(\hat{x} = x \).
- In practice (finite precision), we must use a different criterion.
- In the simulation of compressed sensing recovery algorithms, two different exact recovery criteria have been used:
 1. \(x \) is exactly recovered with respect to support if
 \[S(\hat{x}) = S(x) \] \hspace{1cm} (SC)
 2. \(x \) is exactly recovered with respect to normalized squared error if
 \[\frac{\|x - \hat{x}\|^2_2}{\|x\|^2_2} \leq \epsilon^2. \] \hspace{1cm} (\epsilon^2 C)
- We have shown that each does not necessarily imply the other
- \(\epsilon^2 \) limits the acceptable number of missed detections.

See the paper for more useful tips!