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Exact constraint aggregation with applications to smart grids and
resource distribution

Klaus Trangbaek Jan Bendtsen,Member, IEEE

Abstract— As hierarchical predictive control of large-scale
distributed systems grow in complexity, it eventually becomes
necessary to consideraggregation of lower-level units into larger
groups of units that can be handled efficiently at higher levels in
the hierarchy. When aggregating similar units in this manner,
it is advantageous if the aggregation maintains a certain degree
of genericity, since the higher-level algorithms can then be
designed with a higher degree ofmodularity. To achieve this
goal, however, it is not only necessary to examine aggregation
of models of the underlying units, but also the accompanying
constraints. Constraint sets for rate- and storage volume-
constrained units can often be represented as polytopes in
high-dimensional Euclidean space; unfortunately, adding such
polytopic sets in higher dimension than 2 has so far been
considered a combinatorial problem. In this paper, we present
a novel method for computing such polytopic constraint sets for
integrating units, which achieves a much lower computational
complexity than previous results. The concept is demonstrated
via simulations of a smart grid control scenario.

I. I NTRODUCTION

Many complex systems feature closely interacting subsys-
tems that can be difficult to control with a single monolithic
control structure [1]. One way of reducing complexity is by
employing hierarchical control, where controllers manage
only a limited set of subsystems, which in turn may manage
subsystems of their own, etc. There are plenty of examples
of hierarchical control systems, for instance traffic control
[2]), wastewater treatment [3], drinking water networks [4]
and even production planning [5], to name a few.

A natural aspect of hierarchical control is the issue of
aggregation of lower-level units into larger groups of units
that can be handled efficiently at higher levels in the hi-
erarchy. When aggregating similar units in this manner,
it is advantageous if the aggregation maintains a certain
generic aspect, since the higher-level algorithms can thenbe
designed with a higher degree ofmodularity, as this makes
the overall solutions more scalable and better able to handle
modification and replacement of individual subsystems [6].

Most work so far has focused on aggregation of the
models of the underlying units. [5], for instance, develops
an enhanced integrated model, which includes automatic
acquisition of parameters. [7] considers a general threelevel
hierarchical control problem and attempts to solve it by
recasting the optimisation problem at each level as a multi-
parametric programming problem. [8] considers hierarchical
control of electricity consumers in a Smart Grid setting and
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Fig. 1. Minkowski summation of two resource polytopes for a 2-sample
horison.Pmax and Pmin refer to power limitations, whileEmax and
Emin are energy limitations for two “intelligent consumers” in a Smart
Grid setting. The polytopes are represented by their vertices (dots) [9].

introduces artificial aggregators as a way of dealing with
computational complexity.

However, it appears that constraints generally tend to be
difficult to handle. In [9], the authors proposed a geometric
interpretation of constraint sets involved in distribution of
power to controllable consumers in a similar Smart Grid set-
ting. In that application, each consumer would be modelled
as a simple integrator constrained with respect to the amount
of power (short-term consumption) and energy (long-term
consumption), and although the power and energy constraints
cannot immediately be added to describe several consumers,
it was explained how these constraints could be mapped to
convex polytopes in a way that would allow the polytopes to
be added in a meaningful way. The polytopes were observed
to be hypercubes with ‘corners cut-off’ due to the energy
constraints. The polytopes could then be added to yield a
larger polytope using the so-calledMinkowski sum operation,
as illustrated in Figure 1.

Unfortunately, computing the Minkowski sum of several
resource polytopes is quite demanding, because the number
of vertices grows combinatorically with the prediction ho-
rison. In [9], a procedure for computing the vertices in an
ordered sequence was proposed, but it suffered from high
complexity. The procedure gives the exact Minkowski sum
in a vertex representation, but for optimisation purposes a
half-plane representation is more appropriate. The conversion
from vertex to half-plane representation is computationally



demanding as well, and a faster over-approximation was
therefore suggested.

In this paper, we extend the work in [9] by formally prov-
ing that by representing the constraints via polytopefacets
rather than via vertices, the aforementioned combinatorial
approach can be replaced by vector addition; furthermore,
since the resulting polytopes are represented by half-planes
directly, the optimisation can be performed with exact ag-
gregated constraints without the need for costly conversions
between representations.

The outline of the rest of the paper is as follows. Section II
provides an overview of the hierarchical distribution problem
considered in the paper, while Section III describes the
geometric representation of flow and storage constraints.
Section IV provides the main result of this paper, a formal
proof that it is possible to compute Minkowski sums of
resource polytopes directly using the aforementioned half-
plane formulation. Section V compares the calculation time
and accuracy of the proposed half-plane approach with the
vertex-based method on a model-predictive control (MPC)
simulation example from [9]. Finally, Section VI sums up
the work.

Throughout the paper,R+ and R− denote the positive
and negative real axis, respectively, including the origin, i.e.,
R+ = {x ∈ R|x ≥ 0},R− = {x ∈ R|x ≤ 0}. Similarly, Z+

andZ− indicate the positive and negative integers including
0, respectively.

Furthermore, we make use of certain bit-wise binary
operations between integers inZ+; ∧ represents bitwise
AND (e.g., 5 ∧ 6 ⊜ 0101b ∧ 0110b = 0100b = 4, where
(·)b indicates base 2),∨ represents bitwise OR (e.g.,5∨6 ⊜
0101b ∨ 0110b = 0111b = 7) and¬ represents bitwise NOT
(e.g.,¬13 ⊜ ¬1101b = 0010b = 2). We use/ as short-hand
for bitwise AND-NOT, i.e.,i/j ⊜ i ∧ (¬j).

II. CONTROL HIERARCHY

We consider a control hierarchy of the form shown in
Figure 2. The system to be controlled consists of a main
system and a large number of parallel flexible units. The
flexible units are not necessarily identical, but their effect on
the main system is assumed to be only through the sum of
the flowsf1, f2, . . . , fN . The system is disturbed by a time-
varying loadfload, and the control objective is to maintain
a certain variableSbal at a desired level, for instance 0. The
control system can affect the main system either directly
throughfext, or indirectly by using the flexible units FUi, i =
1, . . . , N . Typically, the use offext is associated with a high
cost, however, so it is preferable to use the flexible units as
much as possible in order to achieve the control objective.

In a smart grid setting, for instance, the main system
would be a power grid and the control objective would
be to maintain the energy balance between production and
consumption, i.e., the integral of the difference between
produced and consumed power. The external flow is power
produced at central power plants, whereas the flexible units
could be intelligent consumers, consumers that can adjust
their power consumption, for instance by postponing the
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Fig. 2. Control architecture with main control and flexible units. [8]

activation of a heat pump in a house (see [10] for a real-
life example of this concept).

The control system typically attempts to minimise some
appropriate cost function, which tries to reach the design
goal (e.g.,Sbal = 0) while penalising the use offext over
time, subject to system constraints. In particular,f i and f i

are constraints on the flows thei’th flexible unit is able
to consume at (discrete) timet, whereasSi and Si are
constraints on thei’th flexible unit’s amount of storage. For
simplicity, the storage in thei’th unit is modelled via the
simple difference equation

Si(t+ 1) = Si(t) + fi(t) (1)

with the implicit assumption that the signals have been
normalised and any mean values subtracteda priori.

On a finite horison, the above may be cast as a standard
optimisation problem, see e.g., [8], which can be tackled
using well-established methods, e.g., [11], [12], [13], or[1].
However, as the number of flexible units grows, it becomes
increasingly difficult to keep track of the individual units’
constraints.

In [8] it was proposed to use dedicatedaggregators
between the main controller and the flexible units to manage
the units in smaller groups, allowing the main controller to
solve an optimisation problem of lower order. This approach
came at the expense of having to aggregate the individual
unit constraints, however. As mentioned in the introduction,
[9] provided a combinatorial approach to managing the con-
straints for all units assigned to each aggregator, along with
an optimisation-based approach to dispatch off1, f2, . . . , fN
once the constraints have been determined. [14] offers an
alternative dispatch strategy in a similar setting.

Handling the aggregated constraints is the main topic
of the rest of this paper. Although the optimal choice of
what flexible units to aggregate remains an open question
at the time of this writing, we shall simply assume that the
assignment of units to aggregators has already been carried
out.
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h = 3. In the top figure, only the flow constraintsf, f are active, implying
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andS ≤ S(τ + 2) = S(τ + 1) + f(τ + 1) ≤ S become active, limiting
the admissible flow profiles.

III. R EPRESENTATION OF RESOURCES

In this section, we represent flow and storage constraints
geometrically in a way that is amenable to aggregation; the
principle is illustrated in Figure 3. At every time stepτ ,
the constraints limit the potential consumption of flexible
unit i; hence, att = τ the unit can potentially consume any
flow fi(τ) within the flow limitationsf i, f i. Doing so would
bring the storage in flexible uniti to the levelSi(τ + 1) =
Si(τ)+fi(τ). At time t = τ+1, the unit would again be able
to consume any flowfi(τ + 1) ∈ [f i, f i], unless doing so
would bring the storageSi(τ+2) = Si(τ+1)+fi(τ+1) to a
level where it would violate either of the constraintsSi, Si,
implying that the storage constraints cause the admissible
flow at one time step to depend on the flow at the previous
time step. As illustrated in the figure, over a finite horizon
of length h > 0, the constraints onfi(t), t = τ, . . . , τ + h
can be represented by a polytope inRh. In fact, as long as
the constraintsSi ≤ Si ≤ Si are not active, the polytope
is a hypercube, but when the level constraints do become
active, they ‘cut off’ convex subsets of the hypercube via
intersection by hyperplanes, as indicated in the figure.

Without loss of generalisation, it can be assumed thatS ∈
R+, S ∈ R−, f ∈ R+ andf ∈ R−. The convex polytope in
R

h resulting from a set of flow and storage constraints can
then be identified with the set-valued mapRh : R+ ×R− ×
R+×R− → P, wherePh ⊂ R

h denotes the set of bounded
convex polytopes inh-dimensional Euclidean space. For the
simple integrating units discussed in the previous section, we
have

Rh(S, S, f , f) ⊜

{x ∈ R
h|f ≤ xj ≤ f, S ≤

j
∑

k=1

xk ≤ S, j = 1, . . . , h} (2)

wherexj is thej’th coordinate of the vectorx. We refer to
this set as aresource polytope, since, for flexible uniti with
constraintsSi, Si, f i, f i, Rh(Si, Si, f i, f i) is exactly the
convex set of all admissible flow profiles over the horizon.

The Minkowski sum ⊕ of a number of convex polytopes,
Π1, . . . ,Πn ∈ Ph is defined as the (polytopic) set of all
sums of elements from the individual polygons, i.e.ΠΣ =
Π1 ⊕ . . . ⊕ Πn = {

∑n
i=1 xi|xi ∈ Πi, i = 1, . . . , n}. This

is exactly what we need to compute for a set of several
flexible units in order to provide the control level with a
single constraint set; that is, given consumption capacities for
a number of flexible units over a horizon, the total capacity
will be given by the Minkowski sum of these. Note that this
operation isnot the same as simply adding flow rate and
storage capacity limits, however.

Note further that the flow rate and storage capacity con-
straints can be written on the form

Fx ≤ g

where F and g are matrices of appropriate dimensions;
we refer to this form as ahalf-plane representation. [9]
treated resource polytopes via their vertices (see Figure 1),
which required a costly transformation into the half-plane
representation for numerical optimisation purposes.

In the following sections, we will show that the sum can
be computed directly in the half-plane representation, thereby
avoiding the aforementioned transformation.

IV. GENERALISED RESOURCE POLYTOPES

In order to achieve the desired result, a few tedious
definitions are necessary. First, for the pairh, z ∈ Z+

satisfyingz < 2h, we define thebinary representation vector
of z as the unique vectorbh,z ∈ {0, 1}h that satisfies

h
∑

i=1

bTh,z,i2
h−i = z. (3)

Note that, when considering the binary representation as a
mapping betweenZ+ and{0, 1}h, it is an isomorphism; for
instance,b5,11 =

[

0 1 0 1 1
]T

7→ 11 and11 7→ b5,11.



Next, we define theconstraint matrix Hh
W ∈ R

(2h+1
−2)×h

as follows:

Hh
W ⊜































bTh,1
bTh,2
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−bTh,2h−1
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0 0 . . . 0 1
0 0 . . . 1 0
...

...
. . .

...
...

1 1 . . . 1 1
0 0 . . . 0 −1
0 0 . . . −1 0
...

...
. . .

...
...

−1 −1 . . . −1 −1





























(4)

The purpose ofHh
W is to link constraints with the sample

numbers at which they apply. Individual flow constraints
f, f may for example apply at individual time steps, which
can be associated with binary representations of the form
[

0 1 0 0
]

,
[

0 0 0 1
]

etc., while storage constraints
S, S correspond to summing over a number of time steps,
which can be associated with binary representations of
the form

[

1 1 0 0
]

,
[

1 1 1 1
]

etc. However, when
adding two resource polytopes via Minkowski addition, con-
straints can appear which do not fit into these two patterns.
Hence,Hh

W is structured so as to encode constraints for all
possible sample combinations.

We are now ready to define the vector-valued function
Wh : Ph → R

2h+1
−2

+ as

Wh(Π) ⊜
[

d+1 · · · d+
2h−1

d−1 · · · d−
2h−1

]T
(5)

whereΠ is a bounded convex polytope inRh and

d+i ⊜ max
x∈Π

bTh,ix, i = 1, . . . , 2h − 1 (6)

d−i ⊜ −min
x∈Π

bTh,ix, i = 1, . . . , 2h − 1 (7)

We shall refer to the output of this mapping, i.e.,d =
Wh(Π), as anextended constraint vector, since it defines
the polytope

Πh
W (d) = {x ∈ R

h|Hh
Wx ≤ d}. (8)

Inspection shows that if this operation is applied to a
resource polytope of the form (2), we end up with exactly
the same polytope, i.e.Πh

W (Wh(Rh(Si, Si, f i, fr))) =
Rh(Si, Si, f i, f i). However, sinceHh

W is structured to
encode all possible time step-wise summations over the
horison, the representation in (8) is, in fact, a generalisation
of the representation in (2).

Finally, let us define the semigroup (under vector addition)

Wh ⊜







































d =





















d+1
...

d+
2h−1

d−1
...

d−
2h−1



























































⊂ R
2h+1

−2
+ (9)

where the entriesd+i , d
−

i , i = 1, . . . , 2h − 1 must satisfy

d+0 =d−0 ⊜ 0 (10)

d+i + d−j ≥ d+i/j + d−j/i (11)

d+i + d+j ≥ d+i∧j + d+j∨i (12)

d−i + d−j ≥ d−i∧j + d−j∨i (13)

∃x ∈ Πh
W (d) : bTh,ix = d+i (14)

∃x ∈ Πh
W (d) : − bTh,ix = d−i (15)

for all 1 ≤ i, j ≤ 2h−1 (index 0 may result from some of the
bitwise operations). Now, it turns out that if a polytopeΠ is
a resource polytope, the extended constraint vector resulting
from the operationWh(Π) belongs to this semigroup:

Theorem 1: Let S, S, f , f be flow and storage constraints
as given in (2); then

Wh(Rh(S, S, f , f)) ∈ Wh (16)
Proof: Let Π = Rh(S, S, f , f) andd = Wh(Π); (14)-

(15) follow trivially from the definition ofWh.
Note thatd+i = maxx∈Π bTh,ix is obtained by maximising

xk when bTh,i,k = 1 and minimising whenbTh,i,k = 0, and,
importantly, the order of these optimisations does not matter.

For 1 ≤ i, j < 2h, pick an x̃ such thatbTh,i∧j x̃ = d+i∧j .
Then, for anya such that(i ∧ j) ∨ a = a, we have

d+a = d+i∧j +max
x∈P̃

bTh,a/(i∧j)x (17)

whereP̃ = {x ∈ Π|bTh,i∧j,kxk = bTh,i∧j,kx̃k∀k}. Observe

max
x∈P̃

bTh,i/(i∧j)x + max
x∈P̃

bTh,j/(i∧j)x

= max
x∈P̃

bTh,i/jx+max
x∈P̃

bTh,j/ix

≥ max
x∈P̃

bTh,(j/i)∨(j/i)x

= max
x∈P̃

bTh,(i∨j)/(i∧j)x

Applying (17) with a = i and a = j to the left and with
a = i ∨ j to the right, we have

d+i − d+i∧j + d+j − d+i∧j ≥ d+i∧j − d+i∧j + d+i∨j − d+i∧j

i.e., (12). Inequality (13) follows in the same manner.
Since(i/j) ∧ (j/i) = 0 ∀i, j, (11) follows from

max
x∈P

bTh,i/jx+max
x∈P

−bTh,j/ix =max
x∈P

(bTh,i/j − bTh,j/i)x

=max
x∈P

(bTh,i − bTh,j)x

≤max
x∈P

bTh,ix+max
x∈P

(−bTh,jx)

Thus,Wh(Π) = Wh(Rh(S, S, f , f)) ∈ Wh.
As noted above, the extended representation does not

affect the resource polytope itself.
We now point out some useful properties of this represen-

tation; together, Lemmas 1 and 2 imply that a facet resulting
from the Minkowski summation of two facets or ridges in the
extended representation will be a facet in the sum polytope.



Lemma 1: Let the integers0 ≤ i, j,m, n < 2h be such
that i ∧ j = m ∧ n = 0. If there exist aq ∈ R

h and c ∈ R

such that

{v+v̂ ∈ R
h : bTh,iv = di, b

T
h,jv = dj , b

T
h,mv̂ = dm, bTh,nv̂ = dn}

= {w ∈ R
h : qTw = c} (18)

where di, dj , dm, dn ∈ R are fixed numbers and
bh,i, bh,j , bh,m and bh,n are binary representation vectors,
then there exist a scaling factorγ ∈ R and an integer
l ∈ [0, 2h) such thatq = γbh,l.

Lemma 2: Let d =

[

d+

d−

]

∈ Wh. If i/j > 0 and j/i > 0,

the intersection ofΠh
W (d) and either pair of hyperplanes

bTh,ix = d+i , bTh,jx = d+j or −bTh,ix = d−i ,−bTh,jx = d−j is of
dimension lower thanh− 2 or empty.

The proofs are omitted due to space constraints.
The key observation to be made here is that because the

extended constraint vectors belong to a semigroup that is
closed under vector addition, it becomes possible to perform
the Minkowski summation as a simple vector addition, as
will be shown in the following.

Theorem 2: Let d, d̂ ∈ Wh; then

Πh
W (d)⊕Πh

W (d̂) = Πh
W

(

d+ d̂
)

. (19)
Proof: (19) holds trivially forh = 1, so in the following

we shall assume thath ≥ 2.
The facets ofΠh

W (d) ⊕ Πh
W (d̂) are formed by the

Minkowski summation of facets and ridges ofΠh
W (d) and

Πh
W (d̂). Let the entries ind =

[

d+

d−

]

be indexed as in (9)

and letF = {v ∈ Πh
W (d) : bTh,iv = di, bTh,jv = dj}, i > j,

be a ridge or facet (ifj = 0) of Πh
W (d).

SinceF is a ridge or facet of a polytope inRh, it must be
of dimensionh−2 or h−1, respectively. From Lemma 2 we
then know that we cannot have eitheri/j > 0 or j/i > 0;
hence we must havej/i = 0, and thusF = {v ∈ Πh

W (d) :
bTh,i/jv = di − dj , b

T
h,jv = dj}.

Similarly, let d̂ =

[

d̂+

d̂−

]

be indexed as in (9) and, with

m > n, let F̂ = {d̂ ∈ Πh
W (d̂) : bTh,mv̂ = dm, bTh,nv̂ = dn}

be a ridge or facet ofΠh
W (d̂). In a similar manner as before,

we see that̂F = {v̂ ∈ Πh
W (d̂) : bTh,m/nv̂ = dm−dn, b

T
h,nv̂ =

dn}.
We can now apply Lemma 1 to see that there existl and

c such thatF ⊕ F̂ = {v+ v̂} j {w : bTh,lw = c}. This claim
clearly holds for any sum of corresponding facets and ridges
of Πh

W (d) andΠh
W (d̂), and, crucially, the correspondingbTh,l

forms a row inHh
W in (8). Consequently, there exists a

δ =

[

δ+

δ−

]

∈ Wh such thatΠh
W (d) ⊕ Πh

W (d̂) = Πh
W (δ).

Specifically, we can choose

δ+i = max
v∈Πh

W
(d),v̂∈Πh

W
(d̂)

bTh,i(v + v̂)

= max
v∈Πh

W
(d)

bTh,iv + max
v̂∈Πh

W
(d̂)

bTh,iv̂

= d+i + d̂+i

Refrig. system Heat pump
Ei = Si 2.6 kWh 8 kWh
E

i
= S

i
0 kWh 0 kWh

P i = T−1
s f i 3 kW 1.3 kW

P
i
= T−1

s f
i

-7 kW -3 kW

TABLE I

PARAMETERS FOR THE CONSIDEREDICS.

where the last equality follows from (14). Similarly, we can
chooseδ−i = d−i + d̂−i , and henceδ = d+ d̂.

Theorem 1 and 2 allow the generalised constraint vector
to be computed separately for each resource (in a distributed
manner, if need be), and the total resource polytope of
the form (8) can then be used for optimisation purposes.
Any flow profile that satisfies the polytopic constraints is
guaranteed to be possible to distribute among the aggregated
flexible units.

V. SMART GRID SIMULATION EXAMPLE

In [9], a model predictive control scheme for smart grids
was presented and applied to a simulation example involving
a grid consisting of wind turbines, heat pumps, cooling
facilities and a power plant. The wind turbines exhibit fast
fluctuations, which must be balanced by the heat pumps,
cooling facilities, and, if necessary, by the power plant. The
energy balance is modelled as

E(t+ 1) = E(t) + Ts(Pplant(t)− Pwind(t)− PΣ(t))

where E denotes energy (storage) andP denotes power
(flow). The sample timeTs is 15 minutes.

At every sample, the control system solves the problem

min
PΣ,t,Pplant,t,t=τ,...,t+τ

t+τ
∑

t=τ

y(t)TQy(t)

where

y(t) =





E(t)
Pplant(t)− Pwind(t)

Pplant(t)− Pplant(t− 1)



 , Q =





1.0 0 0
0 0.1 0
0 0 2.0





Four aggregators are included in the simulations and each
aggregator handles 400 heat pumps and 400 refrigeration
systems. Flow (power) and storage (energy) constraints for
the two types of units can be found in Table I. Refer to [9]
for further details.

We repeat the simulation to compare three methods: the
vertex method from [9], the half-plane approach presented
here and a low-complexity, but conservative, “box” approach.
In the box approach, the resource polytopes are inner-
approximated by boxes defined by the two vertices found
by respectively maximising and minisiming the power at
each sample beginning with the first. This means that the
early samples have the most flexibility, while the storage
constraints will limit the latter ones. This is expected to give
the best performance in the receding horizon scheme. This
approach has very low complexity since only two vertices
must be computed for each resource, and the Minkowski
sum of boxes is simply found by adding these vertices.
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Fig. 4. Computational complexity as a function of optimisationhorizon.
Top: vertex/half-plane computation. Bottom: Remaining optimisation rou-
tines.
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Fig. 5. Simulation of steps up and down in the wind disturbance. Top:
The power plant contribution. Bottom: Resulting energy balance.

Figure 4 shows the computational time for the three
schemes as the control horizon of the MPC is increased. For
the vertex method, the time needed for computing vertices
increases drastically, making it impossible to work with long
horizons. The performance has also been investigated, and
the half-plane approach gives slightly better performance
than the vertex method. They are both significantly better
than the box method.

The reason for the worse performance of the vertex
method is that, even though the computed vertices represent
the correct Minkowski sum, the conversion to half-planes
needed in the optimisation is an (over-)approximation. This
is illustrated by the simulation in Figure 5, where the real
wind data have been replaced by a large step. The half-
plane method is able to fully utilise the flexible resources,

thereby having a smooth output from the power plant, while
keeping the energy imbalance small. The conservative box
method has to use the power plant more and still gives
a worse balance. The vertex method does fine until an
infeasible trajectory is produced in the optimisation, resulting
in problems keeping the balance.

VI. CONCLUSIONS

This paper considered hierarchical predictive control of
large-scale distributed systems, in particular systems consist-
ing of flexible units operating in parallel toward a common
goal, subject to integrating dynamics and rate- and storage
volume constraints. It was shown how such constraints could
be represented as polytopes in high-dimensional Euclidean
space, so-called resource polytopes. Furthermore, a novel
method for aggregating such polytopic constraint sets for in-
tegrating units, which achieves a much lower computational
complexity than previous results, was proposed. The concept
was demonstrated via simulations of a smart grid control
scenario, but can potentially be used for entirely different
applications as well, for instance warehouse logistics, water
distribution etc.
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