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Exact constraint aggregation with applications to smart grids and
resource distribution

Klaus Trangbaek Jan Bendtséviember, IEEE

Abstract— As hierarchical predictive control of large-scale o 'S o 'S
distributed systems grow in complexity, it eventually becomes Pmax=2 Pmax=6
necessary to consideaggregation of lower-level units into larger 5 Emas st VT T T N ey
groups of units that can be handled efficiently at higher levels in o e Fm of 1+ e
the hierarchy. When aggregating similar units in this manner, e hS 1
it is advantageous if the aggregation maintains a certain degree - - Teo--d
of genericity, since the higher-level algorithms can then be Sg————————— a0
designed with a higher degree ofmodularity. To achieve this
goal, however, it is not only necessary to examine aggregation Minkowski sum
of models of the underlying units, but also the accompanying 0
constraints. Constraint sets for rate- and storage volume- 5
constrained units can often be represented as polytopes in o 4
high-dimensional Euclidean space; unfortunately, adding such
polytopic sets in higher dimension than 2 has so far been -
considered a combinatorial problem. In this paper, we present R e ——

a novel method for computing such polytopic constraint sets for
integrating units, which achieves a much lower computational
complexity than previous results. The concept is demonstrated

via simulations of a smart grid control scenario. Fig. 1. - Minkowski summation of two resource polytopes for aagple
horison. Py,q. and P,,;, refer to power limitations, whileF,, ., and

Ein are energy limitations for two “intelligent consumers” in a Sma
I. INTRODUCTION Grid setting. The polytopes are represented by their \est{dots) [9].

Many complex systems feature closely interacting subsys-
tems that can be difficult to control with a single monolithic
control structure [1]. One way of reducing complexity is bYinyroduces artificial aggregators as a way of dealing with
employing hierarchical control, where controllers manage computational complexity.

only a limited set of subsystems, which in turmn may manage However, it appears that constraints generally tend to be

£ hi hical irol ‘ for inst irafi ht Sificult to handle. In [9], the authors proposed a geometric
of hierarchical control systems, for instance trafic contr interpretation of constraint sets involved in distributiof

[2]). wastewater treatment [3], drinking water network} [4 power to controllable consumers in a similar Smart Grid set-

and even production plar.mmg [s]’ to name ‘? few. ) ing. In that application, each consumer would be modelled
A natpral aspect of hlera.rchilcal control is the ISSue Ogs a simple integrator constrained with respect to the amoun
aggregation of Iower-level_ L_Jmts into Igrger groups_of unlts_Of power (short-term consumption) and energy (long-term
that can be handled efﬂqently E.it h|gh§.r I_evels_ in the hI(':onsumption), and although the power and energy constraint
gre_lrchy. When aggregatmg S|m|Iar. units n t.h's mannekannot immediately be added to describe several consumers,
It is "?‘d"a“tage"‘.‘s if the aggregation maintains a certajp, ¢ explained how these constraints could be mapped to
generic aspect, since the higher-level algorithms can tieen . polytopes in a way that would allow the polytopes to

designed with a higher degree whbdularity, as this makes e added in a meaningful way. The polytopes were observed
the overall solutions more scalable and better able to leandy, o hypercubes with ‘corners cut-off’ due to the energy

modification and replacement of individual subsystems [6] ., «traints. The polytopes could then be added to yield a

Most work so far has fogused on a_tggregation of thﬂ?arger polytope using the so-call&tinkowski sum operation,
models of the underlying units. [5], for instance, developsiustrated in Figure 1.

an enhanced integrated model, which includes automatic

acquisition of parameters. [7] considers a general thvekle resource polytopes is quite demanding, because the number

hierarchical control problem and attempts to solve it b ; : : . -
) L f vertices grows combinatorically with the prediction ho-
recasting the optimisation problem at each level as a multj-

parametric programming problem. [8] considers hieraiahic rison. In [9], a procedure for computing the vertices in an

L . . . 8rdered sequence was proposed, but it suffered from high
control of electricity consumers in a Smart Grid setting an . ) i .
complexity. The procedure gives the exact Minkowski sum

The authors are with the Department of Electronic Systems, Au'-n a vertex representation, but for optimisation purposes a

tomation and Control, Aalborg University, Denmark; emgftli non, half-plane representation is more appr.oprifate. The CGMI’
ktr}@s. aau. dk from vertex to half-plane representation is computatignal

Unfortunately, computing the Minkowski sum of several



demanding as well, and a faster over-approximation was
therefore suggested.

In this paper, we extend the work in [9] by formally prov- flo‘id
ing that by representing the constraints via polytdasets Main Main ﬁa}l
rather than via vertices, the aforementioned combindtoria Controller feowe LSystem

approach can be replaced by vector addition; furthermore,
since the resulting polytopes are represented by halfeglan
directly, the optimisation can be performed with exact ag-
gregated constraints without the need for costly convessio
between representations.

The outline of the rest of the paper is as follows. Section Il
provides an overview of the hierarchical distribution gesb
considered in the paper, while Section Il describes the
geometric representation of flow and storage constraints.

Section IV provides the main result of this paper, a formal Fig. 2. Control architecture with main control and flexibleitan[8]
proof that it is possible to compute Minkowski sums of
resource polytopes directly using the aforementioned- half

plane formulation. Section V compares the calculation timgctivation of a heat pump in a house (see [10] for a real-
and accuracy of the proposed half-plane approach with thiga example of this concept).

vertex-based method on a model-predictive control (MPC) 1hea control system typically attempts to minimise some

simulation example from [9]. Finally, Section VI sums up,pnrgpriate cost function, which tries to reach the design

the work. . goal (e.g.,Spa; = 0) while penalising the use of.,; over
Throughout the papefR; and R_ denote the positive (ime subject to system constraints. In particulgr.and f,

and negative real axis, respectively, including the orig&,  are constraints on the flows théh flexible unit is able

Ry ={z € Rlz > 0},R_ = {z € Rjz < 0}. Similarly, Z+ {5 consume at (discrete) time whereasS; and S; are

andZ_ indicate the positive and negative integers includingnstraints on the'th flexible unit's amount of storage. For

0, respectively. o _simplicity, the storage in thé'th unit is modelled via the
Furthermore, we make use of certain bit-wise b'”ar3éimple difference equation

operations between integers i, ; A represents bitwise
AND (e.g.,,5 A6 = 0101, A 0110, = 0100, = 4, where
(1)p indicates base 2)/ represents bitwise OR (e.g.v 6 =

0101, v 0110, = 0111, = 7) and— represents bitwise NOT . . . . .
(e.g.,—13 = 1101, = 0010, = 2). We use/ as short-hand with the implicit assumption that the signals have been

for bitwise AND-NOT, i..,i/j = i A (=j). normahsgd and gny mean values subtractemiori.
On a finite horison, the above may be cast as a standard
Il. CONTROL HIERARCHY optimisation problem, see e.g., [8], which can be tackled

We consider a control hierarchy of the form shown irpSing well-established methods, e.g., [11], [12], [13]{Hr
Figure 2. The system to be controlled consists of a maifowever, as the number of flexible units grows, it becomes
system and a large number of parallel flexible units. Th'glcreasi_ngly difficult to keep track of the individual units
flexible units are not necessarily identical, but their effien ~ constraints.
the main system is assumed to be only through the sum ofIn [8] it was proposed to use dedicateajgregators
the flows f1, fo, ..., fn. The system is disturbed by a time-between the main controller and the flexible units to manage
varying load f;,.q4, and the control objective is to maintain the units in smaller groups, allowing the main controller to
a certain variables,,; at a desired level, for instance 0. Thesolve an optimisation problem of lower order. This approach
control system can affect the main system either directigame at the expense of having to aggregate the individual
throughf. ., or indirectly by using the flexible units FUi =  unit constraints, however. As mentioned in the introductio
1,...,N. Typically, the use off.,, is associated with a high [9] provided a combinatorial approach to managing the con-
cost, however, so it is preferable to use the flexible units araints for all units assigned to each aggregator, aloriy wi
much as possible in order to achieve the control objectivean optimisation-based approach to dispatclfioffz, ..., fv

In a smart grid setting, for instance, the main systergance the constraints have been determined. [14] offers an
would be a power grid and the control objective wouldlternative dispatch strategy in a similar setting.
be to maintain the energy balance between production andHandling the aggregated constraints is the main topic
consumption, i.e., the integral of the difference betweeonf the rest of this paper. Although the optimal choice of
produced and consumed power. The external flow is powerat flexible units to aggregate remains an open question
produced at central power plants, whereas the flexible unigd the time of this writing, we shall simply assume that the
could be intelligent consumers, consumers that can adjustsignment of units to aggregators has already been carried
their power consumption, for instance by postponing theut.

FU;

Si(t+1) = Si(t) + fi(t) 1)



Without loss of generalisation, it can be assumed that
R,,SeR_,f R, andf € R_. The convex polytope in
R" resulting from a set of flow and storage constraints can
then be identified with the set-valued m&j : R, x R_ x
R, x R_ — P, whereP" C R" denotes the set of bounded
convex polytopes irh-dimensional Euclidean space. For the
simple integrating units discussed in the previous segcti@n
have

RMS,S,f. f) =

J
{reRMf<a; <F8<) a <8, j=1,...,h} (2
k=1

wherez; is the j'th coordinate of the vector. We refer to
this set as aesource polytope, since, for flexible unit with
constraintsS;, S;, f,, f.» R"(S:,S,, f:,f;) is exactly the
convex set of all admissible flow profiles over the horizon.
The Minkowski sum & of a number of convex polytopes,
,...,II, € P" is defined as the (polytopic) set of all
sums of elements from the individual polygons, l&; =
I, o ...e11, = {Z:L:lxl|xl e Il;,7 = 1,...,7),}. This
is exactly what we need to compute for a set of several
flexible units in order to provide the control level with a
single constraint set; that is, given consumption capescfor
a number of flexible units over a horizon, the total capacity
will be given by the Minkowski sum of these. Note that this
operation isnot the same as simply adding flow rate and
Fig. 3. Graphical representation of the mappil for h = 1, h = 2and ~ Storage capacity limits, however.

f:] =3.In thle top figUfe, O"%Jgth?] flow (t?)onsgainb{ ?EE)activeh. impglérllg Note further that the flow rate and storage capacity con-
that any value in the intervalf, f] can be chosen fof (7). In the middle ; :

and lower figures, the storage constraifits’ S(r+1) = S(7)+f(7) < S straints can be written on the form
andS < S(r+2)=S(r+1)+ f(r+ 1) < S become active, limiting
the admissible flow profiles. Fr < g

where F' and g are matrices of appropriate dimensions;
we refer to this form as dalf-plane representation. [9]
treated resource polytopes via their vertices (see Figyre 1
In this section, we represent flow and storage constrainfghich required a costly transformation into the half-plane
geometrically in a way that is amenable to aggregation; thepresentation for numerical optimisation purposes.
principle is illustrated in Figure 3. At every time step In the following sections, we will show that the sum can
the constraints limit the potential consumption of flexiblg,e computed directly in the half-plane representatioretbye

unit 7; hence, at = 7 the unit can potentially consume any aygjding the aforementioned transformation.
flow f;(7) within the flow limitationsf,, f,. Doing so would

bring the storage in flexible unitto the levelS;(r 4+ 1) =
S;(1)+ fi(7). Attime t = 7+1, the unit would again be able
to consume any flowf;(r + 1) € [f;, f;], unless doing so
would bring the storag§;(7+2) = S;(7+1)+ fi(t+1) to a

level where it would violate either of the constrairts, S;, o h . . ;
: . . ’ . satisfyingz < 2", we define thévinary representation vector
implying that the storage constraints cause the admissib . h o

of z as the unique vectdr, , € {0,1}" that satisfies

flow at one time step to depend on the flow at the previous
time step. As illustrated in the figure, over a finite horizon A

of lengthh > 0, the constraints orf;(¢),t = 7,..., 7+ h Zb{ oh—i _ 3)

can be represented by a polytopeRA. In fact, as long as P =t

the constraintsS; < 5; < S; are not active, the polytope

is a hypercube, but when the level constraints do becon¥ote that, when considering the binary representation as a
active, they ‘cut off’ convex subsets of the hypercube vianapping betweefZ . and{0,1}", it is an isomorphism; for
intersection by hyperplanes, as indicated in the figure. instance bs 11 = [0 1 0 1 1]T — 11 and 11 + b5 11.

Ill. REPRESENTATION OF RESOURCES

IV. GENERALISED RESOURCE POLYTOPES

In order to achieve the desired result, a few tedious
definitions are necessary. First, for the pairz € Z,



Next, we define theonstraint matrix H}, € RC""'=2xh  where the entrieg;,d; ,i = 1,...,2" — 1 must satisfy
as follows:
i df =dy =0 (10)
bj.1 [0 0 0 17 I rd->dt 4 d-
h, T+ds>df+d, (12)
by, 0O 0 ... 1 0 Lo T
: . . . d + dj > di/\j + dj\/i (12)
’ d +d: >d;, . +d . 13
Hh = by | |1 1 .01 1 @ i +h i = ;AJJF Jf (13)
WL T loo0 0 -1 Jz € Iy (d) : by, o = d; (14)
—bj 0o 0 ... -1 0 dz €Yy (d) : —bp o =d; (15)
: ' : : : forall 1 <i,j < 2"—1 (index 0 may result from some of the
_bz;zh_l_ -1 -1 ... =1 —1] bitwise operations). Now, it turns out that if a polytofeis

a resource polytope, the extended constraint vector negult
The purpose ofi!:, is to link constraints with the sample from the operatiori¥"(IT) belongs to this semigroup:

numbers at which they apply. Individual flow constraints Theorem 1: Let S, S, 7, f be flow and storage constraints
£, f may for example apply at individual time steps, whichas given in (2); then
can be associated with binary representations of the form o
[0 1 0 0,[0 0 0 1] etc., while storage constraints W"(R"(S,S,f,f) e W (16)
S, S correspond to summing over a number of time steps, Proof: LetIl = R"(S,S, f, f) andd = W"(II); (14)-
which can be associated with binary representations ¢i5) follow trivially from the definition ofi¥/".
theform[1 1 0 0],[1 1 1 1] etc. However, when  Note thatd;” = max,cn b} ;o is obtained by maximising
adding two resource polytopes via Minkowski addition, conz;, whenb! ., = 1 and minimising wherb! ., = 0, and,
straints can appear which do not fit into these two pattern'fmportantly; the order of these optimisationé’does not enatt
Hence,H{, is structured so as to encode constraints for all For1 < i,j < 2", pick ani such thatb? . .& = dz‘.t\j.

. . . h,iNj
possible sample combinations. Then, for anya such that(i A j) V a = a, we have
We are now rleady to define the vector-valued function N N .
Wh . Ph N R?‘rl+ —2 as da = d”\] + 1;1{163.123( bh,a/(i/\j)‘r (17)
whn) = [df - df,, dy - d;h_l]T (5) whereP = {x € II|b ,,; ok = b} ;r; ,ExVk}. Observe
wherell is a bounded convex polytope B and T;leag b}:,i/(i/\j)x + I;leag bz:,j/(i/\j)x
df = maxbie i=1,...,2" -1 (6) = max i/ + max i /i
= = _minbl.r i=1.... .9 > r o
d; min bpiz, i=1,...,2" =1 )] > ?ealg( bn.ijiyv /)T
T
We shall refer to the output of this mapping, i.€.,= - max Oh, (ivi) /(in) T
W"(II), as anextended constraint vector, since it defines . _ .
the polytope Applying (17) witha = ¢ anda = j to the left and with
a =1V j to the right, we have
7 (d) = {x € RMHE x < d}. (8)
df —di+df —df, > dl—db s+ df - d

Inspection shows that if this operation is applied to a ) .
resource polytope of the form (2), we end up with exactly€- (12)- Inequality (13) follows in the same manner.
the same polytope, i.elll, (W"(RMS;,S,,F: £.))) = Since(i/j) A (§/i) = 0 Vi, j, (11) follows from
Rh(ﬁi,giji,[i).' However, sinch{;, is strgctured to maxb? ,, .z +max —b7 .z =max(®!,,. — 0T a
encode all possible time step-wise summations over theep /37 " wep M/ T pephiali s Tl
horison, the representation in (8) is, in fact, a genertitina :max(b;i — bf_j)x

of the representation in (2). vel '

T T
Finally, let us define the semigroup (under vector addition) < max bhi + rfea;((_bhﬂ)

[df Thus, W"(I1) = Wh(R"(S, S, f, )) € Wh. [ ]
: As noted above, the extended representation does not
d+. affect the resource polytope itself.
wh=ld= Zh:l C ]Rih“_2 9) We now point out some useful properties of this represen-
1 tation; together, Lemmas 1 and 2 imply that a facet resulting
: from the Minkowski summation of two facets or ridges in the

_d§';_1- extended representation will be a facet in the sum polytope.




| Refrig. system| Heat pump

Lemma 1: Let the integers) < i,j,m,n < 2" be such

o ; h E;=S5; 2.6 kWh 8 kWh
thati A j = m An = 0. If there exist ag € R” andc € R B, =S, 0 kWh 0 kWh
such that P =T: 17, 3 kw 1.3 kW

P, =Ts'f, -7 kW -3 kw
{v+0 € R": b v =d;, bf jv=dj, bj 0 =dp, b}, 0 =dy} TABLE |
={weR": ¢Tw=c} (18) PARAMETERS FOR THE CONSIDEREDCS.

where d;,d;,dn,,d, € R are fixed numbers and
bn.i,bnj,bn.m and by, are binary representation vectors,where the last equality follows from (14). Similarly, we can
then there exist a scaling factor € R and an integer chooses; = d; + d;, and hencel = d + d. [
1 € [0,2") such thaty = by, ;. Theorem 1 and 2 allow the generalised constraint vector
Lemma 2 Letd — [di} eWh. Ifi/j>0andj/i >0, to be com_puted separately for each resource (in a distdbute
d manner, if need be), and the total resource polytope of
the intersection offI{;, (d) and either pair of hyperplanes the form (8) can then be used for optimisation purposes.
by jw=df, bj ;o =df or =b] w=d;, b} x=d; isof Any flow profile that satisfies the polytopic constraints is
dimension lower thark — 2 or empty. guaranteed to be possible to distribute among the aggcegate
The proofs are omitted due to space constraints. flexible units.
The key observation to be made here is that because the
extended constraint vectors belong to a semigroup that is V. SMART GRID SIMULATION EXAMPLE
closed under vector addition, it becomes possible to p@rfor In [9], a model predictive control scheme for smart grids
the Minkowski summation as a simple vector addition, agvas presented and applied to a simulation example involving

will be shown in the following. a grid consisting of wind turbines, heat pumps, cooling
Theorem 2: Letd,d € W"; then facilities and a power plant. The wind turbines exhibit fast
5 3 fluctuations, which must be balanced by the heat pumps,
h h _ 17h
Ly, (d) & Iy (d) = Iy (d +d). (19) cooling facilities, and, if necessary, by the power plarite T

Proof: (19) holds trivially forh = 1, so in the following

we shall assume thdt > 2. .
The facets ofIlf, (d) & 1%, (d) are formed by the  E(t+1) = E(t) + Ts(Ppiant(t) — Puwina(t) — Px(t))
Minkowski summation of facets and ridges Hf;, (d) and

energy balance is modelled as

. o d . _ where E denotes energy (storage) ardd denotes power
1%, (d). Let the entries ind = {d be indexed as in (9) (flow). The sample tim&, is 15 minutes.

and letF = {v € I}, (d) : bf,iv —d, bf,jv —d;}i > j, At every sample, the control system solves the problem
be a ridge or facet (if = 0) of I1%,(d). T

SinceF is a ridge or facet of a polytope iR”, it must be min Z y(t) T Qy(t)
of dimensionh —2 or h— 1, respectively. From Lemma 2 we PotoPotant.t 1= 4T 42

then know that we cannot have eithgj > 0 or j/i > 0;  where

hence we must havg/i = 0, and thusF = {v € II%,(d) : E(t) 0 0 0

T oed —d b7 v=d :

bh,i/30 = di = dj, bh,j”; d;j}- y) = | Poant(t) = Puinat) |, Q=10 01 0
Similarly, let d = B} be indexed as in (9) and, with Prtant(t) = Pprant(t — 1) 0 0 20

- 5 ) . . Four aggregators are included in the simulations and each
m= " let 1" = {d ¢ F’Vl‘ﬁ(d) ) bzﬁ_"v_ = din, bj, 0 = dn} aggregatg? handles 400 heat pumps and 400 refrigeration
be a ridge or facet Oﬂvg(dz' Inﬁ‘ similar manner as before, oy stems. Flow (power) and storage (energy) constraints for
we see that” = {0 € Iy, (d) : b, ,,,/,0 = dim—dnsb,,0 = the two types of units can be found in Table I. Refer to [9]
dn }- ) for further details.

We can now apply Lemma 1 to see that there ekatd  \yg repeat the simulation to compare three methods: the
csuch thatl & F = {v+ 0} € {w: by, yw = ¢}. This claim ey method from [9], the half-plane approach presented
clearly holds for any sum of cor'respondmg facets a_nd rd9essre and a low-complexity, but conservative, “box” apptoac
of 11y, (d) andH’V’V(d),_and, crucially, the correspondifigj, |, the pox approach, the resource polytopes are inner-
forms a row in I}, in (8). Consequently, there exists agpproximated by boxes defined by the two vertices found
§ = Lgl € Wh such thatll?, (d) @ H%(CZ) = T1%; (9). by respectively maxi_mising and minisimipg the power at

each sample beginning with the first. This means that the

Specifically, we can choose early samples have the most flexibility, while the storage

5 = max CbF (v 4D) constraints will limit the latter ones. This is expected teeg
velly, (d),0€lly, (d) the best performance in the receding horizon scheme. This
=  max b}’;iv + max bl o approach has very low complexity since only two vertices
velly, (d) vely, (d) must be computed for each resource, and the Minkowski

di + cfj“ sum of boxes is simply found by adding these vertices.
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thereby having a smooth output from the power plant, while
keeping the energy imbalance small. The conservative box
method has to use the power plant more and still gives
a worse balance. The vertex method does fine until an
infeasible trajectory is produced in the optimisationpitsg

in problems keeping the balance.

VI. CONCLUSIONS

This paper considered hierarchical predictive control of
large-scale distributed systems, in particular systemsist
ing of flexible units operating in parallel toward a common
goal, subject to integrating dynamics and rate- and storage
volume constraints. It was shown how such constraints could
be represented as polytopes in high-dimensional Euclidean
space, so-called resource polytopes. Furthermore, a novel
method for aggregating such polytopic constraint setsrfor i
tegrating units, which achieves a much lower computational
complexity than previous results, was proposed. The cdncep
was demonstrated via simulations of a smart grid control
scenario, but can potentially be used for entirely différen
applications as well, for instance warehouse logisticdewa
distribution etc.
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