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On Theorem 10 in “On Polar Polytopes and

the Recovery of Sparse Representations”
Bob L. Sturm, Member, IEEE,, Boris Mailhé, Member, IEEE and Mark D. Plumbley, Member, IEEE

Abstract

It is shown that Theorem 10 (Non-Nestedness of ERC) in [Plumbley, IEEE Trans. Info. Theory, vol. 53, pp.

3188, Sep. 2007] neglects the derivations of the exact recovery conditions (ERCs) of constrained `1-minimization

(BP) and orthogonal matching pursuit (OMP), and thus does not reflect the recovery properties of these algorithms.

Furthermore, an ERC of BP more general than that in [Tropp, IEEE Trans. Info. Theory, vol. 50, pp. 2231, Oct.

2004] is shown.

Index Terms

Exact recovery condition, basis pursuit, orthogonal matching pursuit

I. INTRODUCTION

Theorem 10 (Non-Nestedness of ERC) of Plumbley [1] claims that if the exact recovery condition (ERC) of

Tropp [2] — derived for both `1-minimization (BP) [3] and orthogonal matching pursuit (OMP) [4] — is satisfied

for all representations having s non-zeros in a dictionary, it is not necessarily satisfied for representations having

k < s non-zeros in the same dictionary. In this correspondence, we show that this claim does not reflect the recovery

properties of BP or OMP. We first provide background and notation. Then we briefly review BP and OMP, and

the ERCs derived by Tropp [2]. We extend these conditions to the case of non-unit-norm dictionaries, and find an

ERC of BP more general than that of Tropp [2]. We finally review and discuss Theorem 10 of Plumbley [1].

A. Background

Consider a dictionary of N not necessarily unit-norm atoms D := {ϕi ∈ Cm}i∈Ω, Ω := {1, 2, . . . , N}, which

we express as the matrix Φ = [ϕ1|ϕ2| . . . |ϕN ]. We say D is overcomplete when the cardinality of the index set

|Ω| = N > m, and span(D) = Cm. Any measurement u = Φx is thus expressable exactly as a linear combination
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of at most m linearly independent atoms from D. Given u = ΦI∗y
∗, where the columns of ΦI∗ are the atoms

indexed by I∗ ⊂ Ω, the exact-sparse problem [2] entails recovering I∗ from u by

Î := arg min
I⊂Ω,y∈C|I|

|I| subject to u = ΦIy. (P0)

It is of interest to know when an algorithm paired with a dictionary guarantees a solution to (P0) for any u. A

condition that guarantees such behavior is called a stability condition when Î ⊆ I∗, or ERC when Î = I∗. In [2],

Tropp derives ERCs of two algorithms solving (P0): BP [3] and OMP [4]. We see the same ERC applies to both

algorithms. In later work, Grinbonval and Vandergheynst [5] show that the same ERC is a stability guarantee for

the class of general matching pursuit algorithms, i.e., any algorithm with alternating steps of (weak) greedy atom

selection, and an update of the solution in the span of the selected atoms.

B. Notation

The ith element of a vector is [x]i. The support of a vector supp(x), the set of locations at which x is non-zero.

The `0-pseudonorm of x is ‖x‖0 := |supp(x)|. We call x s-sparse if ‖x‖0 = s; and we say u has an s-sparse

representation in D if u = Φx where x is s-sparse. For a subset A ⊂ Ω, rank(A) := rank(ΦA), and span(A) :=

span{ϕi : i ∈ A}. We consider only dictionaries D containing unique atoms, i.e., span({i}) ∩ span({j}) = 0

for all i, j ∈ Ω, i 6= j. We define the diagonal matrix NA such that [NA]ii := ‖ϕi‖2, i ∈ A. When A = Ω, we

write simply N := NΩ. Define the subspace V∗ := span(I∗). We define ΩF (V∗) ⊆ Ω as the indices of atoms in

D that participate non-trivially in the feasible set of solutions X (V∗,D) := {x ∈ CN : Φx ∈ V∗}. Formally, this

set is defined ΩF (V∗) := {i ∈ Ω : ∃x(x ∈ X (V∗,D) ∧ i ∈ supp(x))}. Every atom indexed by ΩF (V∗) thus has a

non-zero weight in at least one element of X (V∗,D).

II. BP, OMP AND ERCS

A. Unit-norm Dictionaries

Assume the columns of Φ, or the atoms in D, have the same norm. Without loss of generality, we assume they

all have unit-norm. BP [3] is the principle of replacing the non-convex cost in (P0) with the “nearest” convex cost

— the `1-norm of the solution — i.e., posing (P0) as

min
x∈CN

‖x‖1 subject to u = Φx. (`1)

One ERC [2] states a sufficient condition for (`1) to solve (P0) for any u ∈ V∗, i.e., supp(x) = I∗, is

max
i∈Ω\I∗

‖Φ†I∗ϕi‖1 < 1. (ERC-T)

OMP takes an iterative approach to solve (P0). Given Ik ⊂ Ω, OMP augments this set by

Ik+1 ← Ik ∪ arg max
n∈Ω
|〈u⊥Ik ,ϕn〉| (1)
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where u⊥Ik := (I −ΦIkΦ†Ik)u. This selection criterion comes from the desire to minimize in a greedy way the

residual error (before orthogonal projection), i.e.,

arg min
n∈Ω

[
min
α∈C

∥∥u⊥Ik − αϕn∥∥2

2

]
= arg max

n∈Ω
|〈u⊥Ik ,ϕn〉|2. (2)

For initialization, I0 := ∅ and u⊥I0 = u; and usually, OMP is made to stop once it has found a certain number of

atoms, or ‖u⊥Ik‖2/‖u‖2 ≤ δ. An ERC of OMP [2] states that (ERC-T) is a sufficient condition for OMP with D

to solve (P0) for any u ∈ V∗, i.e., Ik ⊆ I∗.

B. Dictionaries having atoms of different lengths

The formulation of (`1) implicitly assumes all atoms in D have the same norm. When they do not, then (`1)

does not mimic (P0). Consider a dictionary of three non-identical atoms in C2, and let x lie in the span of ϕ3. We

can shrink the length of ϕ3 so that (`1) produces a solution using the other two atoms simply because the weight

assigned to ϕ3 in the constraints becomes larger than the sum of the other two. Thus, to apply the principle of BP

to (P0) and take into account that the dictionary has atoms of any length, we must pose the problem instead [6]

min
x∈CN

‖Nx‖1 subject to u = Φx. (W`1)

Now, no matter how much we shrink an atom in relation to the others, N balances all atom contributions in the

constraints. Figure 1 illustrates how the solutions to (`1) and (W`1) can differ for a dictionary having atoms of

different lengths. We generate a dictionary by sampling N = 128 atoms from the uniform spherical ensemble in

m = 48 dimensions. We then scale the norm of each atom by sampling from a uniform distribution in [1, 10]. We

select at random s = 15 atoms from the dictionary, and form u by linearly combining them with weights x sampled

from a normal distribution. Finally, using CVX [7], we solve for u = Dx the convex optimization problems posed

by (`1) or (W`1). We see that the solution to (`1) does not match x, while that of (W`1) does.
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Fig. 1. For a dictionary having atoms of different lengths, we see the solution found by (`1) but not (W`1) matches the true solution x.
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We now derive an ERC for BP for the explicit cost in (W`1), and prove it is more general than the ERC in [2].

Theorem 1 (ERC of BP (W`1) with D): A sufficient condition for (W`1) to solve (P0) for any u ∈ V∗ is

σBP(Ω, I∗) := max
i∈ΩF (V∗)\I∗

‖NI∗Φ
†
I∗ϕi‖1

‖ϕi‖2
< 1. (ERC-W`1)

Proof: First, consider y∗ to be the non-zero elements of the true solution x∗ to (W`1) such that u = Φx∗ =

ΦI∗y
∗. By the constraints of (`1), we know y∗ = Φ†I∗u. Since D is overcomplete, there is another x′ and y′ such

that u = Φx′ = ΦI′y
′ where I ′ = supp(x′). Now, we know

‖NI∗y
∗‖1 = ‖NI∗Φ

†
I∗ΦI′y

′‖1 = ‖NI∗Φ
†
I∗ΦI′N

−1
I′ NI′y

′‖1 ≤ ‖NI∗Φ
†
I∗ΦI′N

−1
I′ ‖1,1‖NI′y

′‖1 (3)

by using the definition of the induced matrix norm, and what it implies, i.e.,

‖A‖p,q := max
w

‖Aw‖p
‖w‖q

=⇒ ‖Aw‖p ≤ ‖A‖p,q‖w‖q. (4)

Since ‖A‖1,1 is the maximum sum of the magnitude elements of its columns, we know

‖NI∗Φ
†
I∗ΦI′N

−1
I′ ‖1,1 = max

i∈I′
‖NI∗Φ

†
I∗ϕi‖1

‖ϕi‖2
. (5)

Recall N is diagonal and positive, all elements of y′ are non-zero, and so ‖NI′y
′‖1 > 0. Hence, dividing both

sides of (3) by ‖NI′y
′‖1 produces

‖NI∗y
∗‖1

‖NI′y′‖1
≤ max

i∈I′
‖NI∗Φ

†
I∗ϕi‖1

‖ϕi‖2
. (6)

For (W`1) to find x∗ instead of x′, we require ‖Nx∗‖1 < ‖Nx′‖1, or equivalently ‖NI∗y
∗‖1 < ‖NI′y

′‖1. Thus, a

sufficient condition for the solution of (W`1) to involve only atoms indexed by I∗, and none by I ′\I∗ ⊂ ΩF (V∗)\I∗,

given any u ∈ V∗ is thus (ERC-W`1).

Corollary 1 (ERC of BP (W`1) for unit-norm D): If all atoms in D are unit-norm, then (ERC-W`1) becomes

max
i∈ΩF (V∗)\I∗

‖Φ†I∗ϕi‖1 < 1. (ERC-`1)

Proof: This comes immediately from considering (ERC-W`1) with atoms having unit-norm, i.e., N = I.

Note that (ERC-`1) is different from (ERC-T) because, by the constraints of (`1), some atoms may not be in

ΩF (V∗) — regardless of the atoms in the dictionary having unit norm. Overlooking the feasible set produces a less

general and more strict ERC of BP in [2].

With its greedy iterative approach, OMP does not consider the feasible set. For a non-unit-norm dictionary, the

atom selection criterion of OMP becomes

Ik+1 ← Ik ∪ arg max
n∈Ω

|〈u⊥Ik ,ϕn〉|
‖ϕn‖2

. (7)

As before, this comes from the desire to minimize in a greedy way the residual error (before orthogonal projection),

i.e.,

arg min
n∈Ω

[
min
α∈C

∥∥u⊥Ik − αϕn∥∥2

2

]
= arg max

n∈Ω

|〈u⊥Ik ,ϕn〉|2

‖ϕn‖22
(8)

For this case, we now adapt Tropp’s proof of the ERC for OMP with unit-norm dictionaries [2].
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Theorem 2 (ERC of OMP (7) with D): A sufficient condition for OMP with D to solve (P0) for any u ∈ V∗ is

σOMP(Ω, I∗) := max
i∈Ω\I∗

‖NI∗Φ
†
I∗ϕi‖1

‖ϕi‖2
< 1. (ERCOMP)

Proof: Assume that ‖u⊥Ik‖ > 0 (otherwise OMP stops). In iteration k + 1, OMP selects by (7) an element

from I∗ if

max

{
|〈u⊥Ik ,ϕn〉|
‖ϕn‖2

}
n∈I∗

> max

{
|〈u⊥Ik ,ϕl〉|
‖ϕl‖2

}
l∈Ω\I∗

(9)

or equivalently ‖N−1
I∗ ΦH

I∗u
⊥Ik‖∞ > ‖N−1

Ω\I∗Φ
H
Ω\I∗u

⊥Ik‖∞. Dividing the right side by the other, we see the

condition is
‖N−1

Ω\I∗Φ
H
Ω\I∗u

⊥Ik‖∞
‖N−1

I∗ ΦH
I∗u
⊥Ik‖∞

< 1. (10)

Assuming OMP has selected k elements of I∗, u⊥Ik must lie in V∗, and so u⊥Ik = (Φ†I∗)
HΦH

I∗u
⊥Ik . Substituting

this above
‖N−1

Ω\I∗Φ
H
Ω\I∗(Φ

†
I∗)

HNI∗N
−1
I∗ ΦH

I∗u
⊥Ik‖∞

‖N−1
I∗ ΦH

I∗u
⊥Ik‖∞

< 1 (11)

where we have inserted NI∗N
−1
I∗ . By (4), we see

‖N−1
Ω\I∗Φ

H
Ω\I∗(Φ

†
I∗)

HNI∗N
−1
I∗ ΦH

I∗rk‖∞
‖N−1

I∗ ΦH
I∗rk‖∞

≤ ‖N−1
Ω\I∗Φ

H
Ω\I∗(Φ

†
I∗)

HNI∗‖∞,∞. (12)

Since the right-hand side is the maximum sum along the magnitude rows, and is equivalent to the maximum sum

along the magnitude columns of the transposed argument, we see

‖NI∗Φ
†
I∗ΦΩ\I∗N

−1
Ω\I∗‖1,1 = max

i∈Ω\I∗
‖NI∗Φ

†
I∗ϕi‖1

‖ϕi‖2
. (13)

Bounding this to be strictly less than 1 gives (ERCOMP).

Corollary 2 (ERC of OMP (7) for unit-norm D): If all atoms in D are unit-norm, then (ERCOMP) becomes

(ERC-T).

Proof: The comes immediately from considering (ERCOMP) with atoms having unit-norm, i.e., N = I.

We can appreciate the difference between (ERC-W`1) and (ERCOMP) with the next theorem.

Theorem 3: If (ERCOMP) holds, then so does (ERC-W`1); but not necessarily the converse. Similarly, if (ERC-

T) holds, then so does (ERC-`1); but not necessarily the converse.

Proof: Since the set over which we evaluate (ERC-W`1) or (ERC-`1) is contained in the set over which we

evaluate (ERCOMP) and (ERC-T), i.e., ΩF (V∗)\I∗ ⊆ Ω\I∗, then if (ERCOMP) holds, so must (ERC-W`1); and

if (ERC-T) holds, so must (ERC-`1). The converse, however, is not true. Consider the following dictionary [1]:

Φ := [ϕ1|ϕ2|ϕ3] :=


1 0 1/

√
3

0 1 1/
√

3

0 0 1/
√

3

 . (14)

While (ERCOMP) does not hold for all atom pairs, i.e., σOMP(Ω, {1, 3}) = σOMP(Ω, {2, 3}) = (
√

3 + 1)/2, and

σOMP(Ω, {1, 2}) = 2/
√

3, (ERC-W`1) holds for all pairs, i.e., ΩF (span{1, 2})\{1, 2} = ΩF (span{1, 3})\{1, 3} =

February 15, 2013 DRAFT
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ΩF (span{2, 3})\{2, 3} = ∅ (with the logical extension of (ERC-W`1) to define “success” when the set over which

it is evaluated is empty). Finally, we can always expand ΩF (V∗)\I∗ with an atom not in span(ΩF (V∗)) such that

(ERC-`1) still holds, but (ERC-T) does not.

III. THEOREM 10 OF PLUMBLEY [1]

Theorem 10 of Plumbley [1] says that if D satisfies (ERC-T) for all {I ⊆ Ω : |I| = s}, D is not guaranteed to

also satisfy (ERC-T) for all {I ⊂ Ω : |I| = k < s}. In other words, that (ERC-T) is satisfied for all signals of one

sparsity, it is not necessarily satisfied for all signals with a smaller sparsity. The proof is by counterexample. We

first define the dictionary matrix

Φ := [ϕ1|ϕ2] :=

 1
√

2

0
√

2

 . (15)

When s = 2, (ERC-T) is trivially satisfied, since Ω\I∗ = ∅, and thus maxi∈Ω\I∗ ‖Φ†I∗ϕi‖1 = 0. Define x∗ :=

[β, 0]T . Thus, (ERC-T) fails since |ϕT1 ϕ2| =
√

2 > 1. Therefore, though D satisfies (ERC-T) for all 2-sparse

representations, it does not for all 1-sparse representations. For the dictionary in (14), we see it trivially satisfies

(ERC-T) for all 3-sparse representations; but when x = [1, 1, 0]T , (ERC-T) fails.

The first problem with Theorem 10 of Plumbley [1] is that (ERC-T) is undefined for a |Ω|-sparse solution, i.e.,

maxi∈Ω\Ω ‖Φ†I∗ϕi‖1 is undefined since Ω\Ω = ∅. We can sensibly extend the conditions in (ERC-T) to include

the case where searching in an empty set automatically implies exact recovery. In the case of a |Ω|-sparse solution

then, we are guaranteed any sparse representation algorithm will always return atoms from the dictionary — which

is not really a useful result. Furthermore, a solution using all the atoms of an overcomplete dictionary is a priori not

sparse, and thus it is meaningless to consider the exact recovery condition for such solutions. The second problem

is that Theorem 10 of Plumbley [1], focusing on the form of (ERC-T), neglects a key assumption made at the

beginning of its derivation: that the dictionary has atoms with unit norms. If we first make the columns of (15)

have unit-norm, then we see (ERC-T) is then satisfied for all 1-sparse representations.

Now, while Theorem 10 of Plumbley [1] is in essence true for (ERC-T) (with the extension to an empty set

above), it does not translate into a result for recovery for either BP or OMP. It neglects the dependence of the

guarantee of exact recovery on the recovery algorithm — a dependence that is subtle in the case of (W`1) — and

is not useful for non-normalized dictionaries — for which one must use (ERC-W`1) or (ERCOMP) instead of

(ERC-T). Furthermore, Theorem 10 of Plumbley [1] does not reflect the “nestedness” of recovery conditions for

either OMP or BP. In fact, we show in [8] that for any dictionary, if OMP can recover all s-sparse signals, then it

can recover all signals with sparsity k < s.

IV. CONCLUSION

We have shown Theorem 10 of Plumbley [1], while true for (ERC-T), does not reflect useful recovery conditions

for either OMP or BP. The dictionary is not the only arbiter in the recovery of sparse representations; one must

consider the dictionary and the algorithm. This has led us to develop ERCs for both OMP and BP that take into
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consideration that a dictionary may not have atoms of the same norm. Finally, we find an ERC more general for

BP than that of Tropp [2].
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