Filtration of several uncharged solutes on reverse osmosis membrane: theory modification based on slip boundary
Farsi, Ali; Boffa, Vittorio; Christensen, Morten Lykkegaard

Publication date:
2012

Document Version
Early version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA):
Filtration of several uncharged solutes on reverse osmosis membrane: Theory modification based on slip boundary

Ali Farsi*, Katja König, Vittorio Boffa, Morten Lykkegaard Christensen
Department of Biotechnology, Chemistry and Environmental Engineering,
Aalborg University, 9000 Aalborg, Denmark

Introduction

Nanofiltration is a promising membrane technique with a large number of applications in treatment of process water, drinking water and wastewater.

More specifically, nanofiltration can be used to remove small organic molecules. Models for nanofiltration are usually based on non-slip condition which can be modified to slip condition as a rational assumption.

In this paper, the effects of slip length on the rejection of uncharged solutes such as glycerol and glucose along the effective membrane thickness have been investigated. The Bowen nanofiltration transport model based on Hagen–Poiseuille equation for solvent velocity (no slip condition) has been modified by several slip conditions and a new model allowing calculation of uncharged solute rejection on the basis of a binary membrane parameter (slip length and pore radius) was developed.

Model development

1. The fundamental transport equation to be used for uncharged solutes

\[j_i = K_i c_i \frac{d V_i}{d x} \]

\[\mu = R T \ln a + V_i P + \text{Constant} \]

\[f_i = K_i c_i - \frac{d p}{d x} \]

2. The average velocity equation in a rectangular nanopore with considering slip length (b)

\[u = \frac{h^2}{12 \eta} \left(1 + \frac{6 b}{h} \right) \left(-\frac{dp}{dx}\right) \]

3. Develop the Rejection Equation

\[\text{Rej} = 1 - \frac{1}{\epsilon} \]

\[\epsilon = \frac{1}{\beta} \left[1 - \frac{\frac{b}{\eta}}{DF_i V_i} \frac{d x}{R T} \beta \right] \]

Results

1. Glycerol

2. Glucose

Conclusion

The obtained results show that by increasing the slip length which has been related to the pore size and membrane materials, the solute rejection can be increased up to approximately 5%. Concerning these results, the solute rejection can be increased by synthesis of a membrane layer with optimum conditions according to slip length.

Acknowledgements

The authors would like to thank Danish National Advanced Technology Foundation for project funding (Project #099-2011-1).

*Corresponding Author:
Address: Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, Room: D114, Sognsvej 9400, Aalborg, Denmark
Telephone: 45-98403663, Email: alli@bio.aau.dk