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Abstract— Energy storage may improve power management in 

microgrids that include renewable energy sources. The storage 
devices match energy generation to consumption, facilitating a 
smooth and robust energy balance within the microgrid. This 
paper addresses the optimal control of the microgrid's energy 
storage devices. Stored energy is controlled to balance power 
generation of renewable sources to optimize overall power 
consumption at the microgrid point-of-common-coupling (PCC). 
Recent works emphasize constraints imposed by the storage 
device itself, such as limited capacity and internal losses. 
However, these works assume flat, highly simplified network 
models, which overlook the physical connectivity. This work 
proposes an optimal power flow solution that considers the entire 
system: the storage device limits, voltages limits, currents limits 
and power limits. The power network may be arbitrarily 
complex, and the proposed solver obtains a globally optimal 
solution.  

 
Index Terms— microgrid, smart grid, distributed generation 

(DG), optimal power flow (OPF), energy storage. 

I. INTRODUCTION 
ICROGRIDS have received increasing attention as a 
means of integrating distributed generation into the 

electricity grid  [1],  [2]. Usually described as confined clusters 
of loads, storage devices and small generators, these 
autonomous networks connect as single entities to the public 
distribution grid, through a point of common coupling (PCC). 
Fig. 1 illustrates a typical microgrid network. Microgrids 
comprise a variety of technologies: Renewable sources, such 
as photovoltaic and wind generators are operated alongside 
traditional high-inertia synchronous generators, batteries and 
fuel-cells  [3]. Thus, energy is generated near the loads, 
enabling the utilization of small-scale generators that increase 
reliability, and reduce losses over long power lines. 

The locality of the microgrid network enables an improved 
management of energy. Generators (and possibly loads) may 
be controlled by a local energy management system (EMS) to 
optimize power flow within the network. The objectives of 
energy management depend on the mode of operation: 
Islanded, or grid-connected. 
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Fig. 1. A typical microgrid. 

 
In islanded mode, the main goal of power management is to 

stabilize the system, in terms of frequency and voltage. In 
grid-connected mode, typical objectives are to minimize the 
price of energy import at the PCC, to improve power factor at 
the PCC, and to optimize the voltage profile within the 
microgrid  [4],  [5]. This work addresses grid-connected 
networks. 

Energy management in microgrids is usually thought of as a 
three level hierarchical control system  [6]. The first control 
level, often called ‘primary’ or ‘autonomous’ control, consists 
of a number of local, autonomous controllers. Each controller 
governs a power electronics converter, and is responsible to 
interface generators, storage devices and loads with the 
microgrid  [7] These controllers are the fastest, as they operate 
in the millisecond range, employing a droop control in 
islanded mode  [2]. A secondary control level employs a low 
bandwidth communication to fix the frequency and amplitude 
of the microgrid's units, restoring their nominal values. 
Finally, the tertiary control level  [1]  ,[6] is related to the 
control of active and reactive power flow. This level of control 
is related to Energy Management Systems (EMS, see  [2]) and 
to the optimization of the microgrid resources, and is the main 
subject of this present work. 

The Tertiary control level coordinates power flow within 
the microgrid, and therefore often utilizes an optimal power 
flow (OPF) solver. Such solvers have been extensively studied 
by many. Surveys may be found at  [8],  [9]. However, classical 
power flow solutions are not tailored for microgrid analysis, 
particularly due to the lacking representation of distributed 
energy sources, storage devices, and pricing methods. 
Recently, several studies have shown optimal power flow 
models that highlight the unique aspects of microgrids. These 
studies can be categorized by focus. A first group of studies 
concern the allocation and optimal power sharing of 
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distributed generators, most often solar or wind  [10]  ,[11]. A 
second group highlights the economic revenue. Their 
objective is usually to minimize the overall price of energy, or 
to maximize the profit from energy generation  [6]  ,[12]. 

A third group examines the optimal dispatch of energy 
storage devices  [13]- [16]. Energy may be stored when 
renewable power is available, or when energy import is 
inexpensive. This stored energy may be consumed later when 
demand is high, or when renewable power is unavailable. The 
objective here is to optimize price, efficiency, and stability, 
considering the constraints imposed by the storage devices, 
such as limited capacity and internal losses. In 
studies  [13],  [14] the storage device operates as a mediator of 
power generation. Overall power generation is optimized to be 
as constant as possible, reducing fuel costs, while taking into 
account the limited storage capacity. Study  [15] employs 
storage to time-shift the generation of renewables, matching 
generation to consumption. Study  [16] addresses a wind farm, 
compensated by a battery energy storage. Their goal is to 
control the storage device for improving the predictability of 
power generation. 

All the above studies assume trivial network topologies. 
None of them inspect storage devices integrated in a general 
power network. An optimal solution to a generally meshed 
network with storage devices has not been shown. The reason 
for this is the tremendous numerical complexity of the 
problem, which includes both the network domain, and the 
time domain, related with storage. Traditional gradient based 
solvers (such as Newton-Raphson), while extremely useful in 
the network domain, are inadequate in time domain, and 
cannot be applied to the combined network-storage problem 
(See section  III). 

To cover this gap, this work introduces a new solution 
method to this problem: an optimal power flow (OPF) solver 
that integrates storage devices. The suggested method 
computes the globally optimal power flow, in both network 
domain and time domain. It considers both the limitations of 
the storage device, and the limitations of the network 
regarding voltages, currents and powers. The method 
combines a power flow solver with a dynamic programming 
recursive search, achieving a numerically efficient solution. 

II. NETWORK TOPOLOGY AND POWER FLOW EQUATIONS 
This work utilizes the usual terminology of a power-flow 

analysis  [8]. Buses are denoted with the running index i, 
where i=1..N. N is the number of buses. Each bus is described 
by four independent signals: 

o Pi (t) – the active power, injected from the bus into 
the grid (positive for generators, negative for loads). 

o Qi (t) – the reactive power, injected into the grid. 
o Vi (t) – the voltage magnitude of the bus. 
o δi (t) – the phase angle of the voltage Vi. 

Basic units of the microgrid are defined in table I. It describes 
single phase units, balanced three-phase units, or unbalanced 
three-phase units, with per phase representation (‘x’ denote the 
phase, A,B, or C, and is omitted for balanced systems).  

TABLE I. Units of the microgrid 

Unit Symbol Constraints model 
refs 

power line 
bus i bus j  

Constraints: 
Ii,j,x(t) < Ii,j,max 

 

load 

 

Constraints: 
Pi,x(t) = -PL,ix(t)  (fixed) 
Qi,x(t) = -QL,ix(t)  (fixed) 

Vix,min ≤ Vix(t) ≤ Vix,max 
Free variables:  Vix(t), δix(t) 

 

Renewable 
generator 

G
 

Constraints: 
Pix(t) = +Pg,ix(t)  (fixed) 
Qix(t) = +Qg,ix(t)  (fixed) 

Vix,min ≤ Vi(t) ≤ Vix,max 
Free variables:   Vix(t), δix(t) 

 

storage 
device 

 

Eix(t) = stored energy or state 
of charge (SOC). 
Typical constraints: 

Vix(t) = VS,i  (fixed) 
0 ≤ Ei(t) ≤ Ei,max 

-Pi,rated ≤ Pi(t) ≤ +Pi,rated 

State equation (one-phase): 

 
Free variables: 

Pi(t), Qi(t), δi(t), Ei(t) 

 [13]- 
 [15] 
 
 

point of 
common 
coupling 
(PCC) 

PCC

utility
grid  

The PCC is always indexed as 
bus 1, i=1. 
Constraints: 

δ1,x(t) = 0 
V1,x(t) = Vin,x   (fixed) 

Q1x,min ≤ Q1,x(t) ≤ Q1x,max 
P1x,min ≤P1,x(t) ≤ P1x,max 

Free variables:  P1(t) , Q1(t) 

 [8],  
 [10] 

 
The PCC corresponds to the ‘slack’ bus. It is always 

indexed as bus 1 (i=1), and is described as a V-δ bus, with 
V1(t)=Vin(t), a uncontrollable voltage signal. Loads and 
renewable generators are uncontrollable and are therefore 
represented by fixed power signals (power vs. time). The 
network power-flow expressions are given in (1), for a 
balanced three-phase system. These may be found in many 
classical textbooks, such as  [8].  

 
1

1
cos

sin

ji

N

i i ij j i j ij
j

ii
ij i j

N

i i ij j i j ij
j

P V Y V

Q V Y V

I V e V e

 (1) 

Yij and θij are the admittances’ magnitude and phase. Yii are the 
self-admittances, and Yij (i≠j) are the cross admittances. Iij are 
the line currents (magnitude). 

The system may also be an unbalanced three-phase system. 
The power flow equations for this case are too complex to be 
described in the present scope, and are fully detailed in  [17]. 
For a simplified unbalanced system, in which leakage currents 
are neglected, and the neutral line impedances are taken as 
zero, the power-flow equations are given by (2), where the 
sub-index ‘x’ represents the phase: A,B or C. It is later 
explained how these various system representations are 
integrated into the proposed time-domain solver. 
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 Storage devices are modeled by an inner state variable – 

the stored energy Ei(t). They are defined by a general state 
equation, f(·), given by: 
One phase storage device: 

 ,i i i i
d

E f P E
dt

 (3) 

Three phase storage device: 

 , , ,, , ,i i i A i B i C i
d

E f P P P E
dt

 (4) 

Where Pi,A, Pi,B, Pi,C, are the three phase powers, at the PCC. 
(See Fig. 2b).  

The objective is to minimize the overall cost of energy 
import from the public grid, determined by incoming power at 
the PCC. For a single phase system the objective is: 

 1
0

min
T

P t C t dt  (5) 

PCC
utility
grid

iE t

jE t

,i iP Q

,j jP Q
G

1P

PCC
utility
grid

three phase 
transformer

feeder 
A AP

feeder 
B BP

feeder 
C CP

iE t

three phase 
storage

,i AP

,i BP

,i CP

G

G

single phase 
storage

single phase 
storage(a)

(b)  
Fig. 2. Notations of one-phase or three-phase networks and storage devices (a) 
Single phase system with two storage devices. (b) Three phase system with a 
three-phase device. 
 

C(t) is a price signal ($/MW), usually a time-dependent 
function. For an unbalanced three phase system (Fig. 2) the 
objective is: 

 
0

min
T

A B CP t P t P t C t dt  (6) 

An alternative objective for unbalanced three phase systems 
may be balancing the power among the three phases: 

 
0

2 2 min
T

A B B C dtP t P t P t P t  (7) 

III. GRADIENT BASED SOLVERS IN TIME DOMAIN 
An optimal solution computes powers (P,Q), voltages (V), 

currents (I), phase angles (δ) and stored energy (E), see table I. 
All quantities are time dependent. While Gradient based 
solvers (like Newton-Raphson) have been proved to solve 
networks efficiently, they are inadequate to storage problems. 
The following section explains this claim. 

The desired solution is a function of stored energy vs. time, 
E(t). To reach a solution, the solver must determine E(t) at 
every time point, thus each time point is a free variable. 
Apparently, many time-energy functions are local minima. 
Consider, for instance, the straight line in Fig. 3b. Assume a 
small perturbation over this possible solution. Due to 
inefficiencies of the storage device, charging and discharging 
are wasteful, therefore, in respect to the objective, the 
perturbation is less efficient, and is worse than the straight line 
solution. The straight line is therefore "surrounded" by 
solutions which are worse, and is in-fact a local minimum. 

 

E t
maxE

time

globally
optimal
solution

E t
maxE

time

Local minimum
“trap function”

(a)

(b)

a small variation over 
the local minimum

 
Fig. 3. Global and local solutions in time domain. (a) global solution. (b) A 
local solution (bold) with a small variation (thin). The variation is 
energetically worse than the local solution, due to charge and discharge losses. 
 

While this explanation is by no means a mathematical 
proof, it highlights the numerical difficulties of gradient based 
solvers, applied to time domain problems. If a gradient based 
solver reaches a local solution, such as the straight line in Fig. 
3b, it will conclude that it is optimal. However, this local 
solution does not resemble the global one, and have no desired 
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properties, such as charging when energy is available and so 
forth. This local solution is unsuitable, and cannot be used in a 
real power system. 

IV. THE DYNAMIC PROGRAMMING APPROACH 
Unlike gradient based methods, dynamic programming 

algorithms (see  [18]) scan all feasible solutions, to locate the 
global optimum. A direct scan of the entire solution space is 
numerically impossible, so the optimal solution is designed 
recursively, combining dynamic allocation in time domain, 
with a traditional power flow solver on the network domain. 

A. A single storage device – one dimensional solution 
With a single, one phase storage device, the stored energy 

function, Ei(t), governs the power flow of the network. For a 
given energy function, the power output of the storage device, 
Pi(t) may be computed using the storage state equation (3). 
Assuming that the voltage magnitude of the device is 
specified, Vi(t) = VS,i, the device may be replaced by an 
auxiliary P-V unit, with known power and voltage values. 
Recall that loads and renewable generators are specified, so 
given the storage power output, power flow over the entire 
network may be computed. This is easily achieved using 
standard power flow algorithms, such as Gauss-Seidel, or 
Newton-Raphson. The problem is therefore one-dimensional, 
with a single controllable state variable, Ei(t). 

The challenge is to determine an energy function, Ei(t)= 
E(t), that minimize the objective, (5) and comply with all 
constraints listed in table I. To this end, a value function V(·) 
is defined: 

 1,

with an initial condition 

T

t

V t E P C d

E t E

 (8) 

The objective (5) is equivalent to minimizing V(0,0), that is, 
to minimize overall cost over the entire period, starting with 
an empty storage, E=0. Calculations are numeric, over a 
discrete grid. dt marks the time step, and dE marks the energy 
step. The optimal solution is computed recursively by the 
Bellman equation: 

 ,
, min

,E t dt

V E E t dt
V t E

V t dt E t dt
 (9) 

The value-function, V(t,E) is numerically computed by 
backward recursion. The process starts at the final time, t=T, 
where the value function is known: V(T,E)=0. Applying (9), 
the value function may be computed at T-dt, revealing V(T-
dt,E) over all the energy values. The process continues until 
reaching t=0. A backward recursion step is shown at Fig. 4a. 

The differential cost, ΔV, is defined for every two arbitrary 
points, {t, E(t) } and {t+dt, E(t+dt)}. It represents the cost of 
transition between the two points.  ΔV is computed in steps: 
1. The first derivative of energy is evaluated by: 

 
E t dt E td

E
dt dt

 (10) 

2. Power output of the storage device, Pi(t) is evaluated. The 
storage state equation (3) is solved using known values of 

E(t) and its first derivative,  E(t), revealing Pi(t). 
3. The storage device is replaced with an auxiliary P-V 

source, with P=Pi(t), V=VS,i. A network power flow 
analysis is computed using Gauss-Seidel, Newton-
Raphson, or any other method. 

4. If the power flow solution complies with all network 
constraints, The differential, ΔV, is assigned a value 
according to the power at the PCC, P1(t). Otherwise, it is 
assigned a value of infinity: 

 1
in

constraints
otherwise

P t C t dt
V  (11) 

Having computed V(t,E) over all times and energies, the 
optimal energy E*(t) may be evaluated. This is done by a 
forward recursion process. Known values of V(t,E) are 
substituted in the Bellman equation to recover the optimal 
solution: 
  

t

E

t t dt

,V t E E t dt

1

4

7 6

E t

8
dV=2

dV=4

dV=∞

t
t dt

iE

jE

t
(b)

(a)

 
Fig. 4. The backward recursion process, using the Bellman equation. The 
value function at each point equals the minimum over all differential paths 
from t to t+dt. Possible paths appear as dashed lines, and the optimal path is 
marked bold. (a) A single storage device, with one state variable E(t). (b) 
Multi-dimensional - Two storage devices with two variables – Ei(t), Ej(t). 
White dots mark the numerical grid. Black dots mark feasible solutions. 

 
*

* ,
arg min

,E t

V E t dt E t
E t

V t E t
 (12) 

 
Energy at t, E*(t), is calculated in relation to a previous 

energy value, E*(t-dt). The computation process starts at t=0, 
in which optimal energy is known and equals the starting 
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condition, usually E*(0)=0. Optimal energy at the next time 
step, E*(dt), is evaluated by (12). The process continues until 
the entire optimal energy path has been discovered, up to the 
final time t=T. Knowing the optimal energy path, all powers, 
voltages and phase angles may be computed directly.  

B. Multiple storage devices 
Each storage device adds a dimension to the solution space. 

Thus, a network with two storage devices is a two-
dimensional problem, with two free variables: Ei(t) and Ej(t). 
Power flow is now governed by two energy functions, instead 
of one. A two-dimensional computation is shown at Fig. 4b. 

Multi-dimensional solutions are essentially equivalent to 
single dimension solutions. The major difference is that the 
value function, V(·) is now multi-dimensional. Consider, as an 
example, a one-phase network with two storage devices. The 
value function is now defined as follows: 

 1, ,

 ,initial condition:  

T

i j
t

i i j j

V t E E P C d

E t E E t E
 (13) 

 
It is a function of both Ei(t) and Ej(t). The Bellman equation 
now involves minimization over both energy variables: 

,

, , ,
, , min

, ,
i i j j

i j

i ji
j

E t dt
E t dt

V E E t dt E E t dt
V t E E

V t dt E t dt E t dt
 (14) 

The differential cost, ΔV is computed for two-dimensional 
points: {t, Ei(t), Ej(t) } and {t+dt, Ei(t+dt), Ej(t+dt)} (See Fig. 
4b). The computation involves evaluation of two derivatives: 

 

i i
i

j j
j

E t dt E td
E

dt dt
E t dt E td

E
dt dt

 (15) 

These are employed for computing the output power of both 
storage devices. Using this data, the network power flow is 
evaluated normally, at each time point, using Gauss-Seidel, or 
Newton-Raphson. The differential, ΔV, is assigned a value 
according to the power at the PCC, or assigned a value of 
infinity in case the solution is infeasible. 

Three phase storage devices may be one-dimensional, or 
three dimensional. A balanced three phase device, with equal 
powers, Pi,A=Pi,B=Pi,C, is one dimensional. The stored energy, 
E(t), determines the three phase powers, in accordance with 
the storage state equation (4). Knowing the storage output 
powers, a three-phase power flow analysis is computed at each 
time point. If phase powers are each individually controlled, 
using a dedicated power converter, than the problem is three 
dimensional. The free variables may be Pi,A(t), Pi,B(t), Pi,C(t).  

V. MICROGRID CASE STUDY I 
To demonstrate the proposed method, we examine a power 

system proposed by Brekken et. Al.  [16]. The system (Fig. 5a) 
includes a wind farm (renewable source), coupled with a 
battery energy storage. During high winds, energy is stored in 
the battery. Stored energy is released when wind is low, 

smoothing total power injected to the grid.  
The following description is duplicated from  [16]: Wind 

power is represented by Pwind, storage power is PES, total 
power is Ptotal. The battery is modeled by its power capacity 
Prated, the storage capacity Jrated, and the battery State of 
Charge (SOC), in the range 0...1. This represents energy in 
this problem. The storage state equations are: 

 

 0

0

0 1

ES

rated

out ES

in ES

rated ES rated

Pd
SOC

dt J

P

P

P P P

SOC

 (16) 

 

0

0.5

1

-0.5

0

0.5

201.5 202 202.5 203 203.5 204

0

0.5

1

po
w

er
 [p

.u
.]

po
w

er
 [p

.u
.]

S
O

C

Time [days]

windP
totalP

ESP

ratedP

ratedP

(b)

utility
grid

G wind 
farm

energy
storage

windP

ESP
totalP

(a)

 
Fig. 5. Power system of Brekken et. Al.  [16]. (a) Wind farm and storage. (b) 
Optimal solution. Top – wind power and total power. Middle – storage power. 
Bottom –Battery State of Charge (SOC). 
 
The parameters are chosen as follows: Prated=0.34, Jrated=0.4, 
ηin=0.85, ηout=1.15. Wind power, Pwind, is sampled from  [16]. 

The proposed dynamic programming analysis is applied to 
this system, optimizing the utilization of storage. A price 
signal is unavailable, so a minimal price objective cannot be 
evaluated. Instead, we chose to optimize the power output of 
the system by minimizing losses over the mutual power line. 
Assuming a resistance of R=0.01, and a bus voltage V1=1.0, 
the objective is: 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 
 

6 

 2
2

10
mintotal total

T
R

P P dt
V

 (17) 

The value function V(·) is defined over time and the state of 
charge, SOC. It embeds the objective, as follows: 

 
2

2
1

,

with an initial condition 

T

total total
t

R
V t SOC P P d

V
SOC t SOC

 (18) 

 
The analysis is computed over a numeric grid, using time 

step of dt=0.1 hr, and dE = d(SOC) = 0.01. V(·) is evaluated 
using backward recursion, scanning all possible paths of SOC 
over time. Then, the optimal function SOC(t) is constructed by 
forward recursion. Optimal power flow results are shown in 
Fig. 5b. 

VI. MICROGRID CASE STUDY II 
The second system case study combines both a non-trivial 

network and storage devices. Power flow is optimized to 
satisfy both the storage device constraints, and the physical 
constraints of the network. The objective is to optimize the 
cumulative price of energy at the PCC (eq. (5)).  

The network is shown at Fig. 6. This microgrid is a medium 
voltage (MV) network. It is supplied by a central transformer 
at the PCC, which ratings are: V1(t)=Vin(t)= 13.8 kV, Snom=5 
MVA. Impedances are specified in per-unit (in percent), using 
a base equal to the transformer's ratings. Active power at the 
PCC is limited by the transformer: -5≤P1(t) ≤+5 MW. 

The microgrid contains 2 renewable generators, 6 loads (the 
sixth is a capacitor bank), and 2 storage devices. The 
generators are photovoltaic sources having installed power 
peaks of 1 MW and 0.5 MW. They provide only active power. 
Power signals were generated randomly, over a 72 hours 
period, as shown in Fig. 7. The storage device capacities are 
Emax = 0.4 MWhr (Mega Watt – hour) each. The storage state 
equation is: 

 0

0

,max

1 / 0

0

0

i i i i

i
i

i

i i

d
E E P P

dt
P

P
P

E t E

 (19) 

where Ei,max is the capacity of the device, α is the rate of self-
discharge, and η0 is the efficiency of the device. The chosen 
parameters are: Ei,max= 0.4 MWhr (Mega Watt – hour), for 
each device, and α=0.02 1/hr. η0 is varying, taking the values 
of η0=1.0, 0.6, 0.4, 0.1. 

Power flow is optimized using a one dimensional process 
(Fig. 4). The two storage devices have the same ratings, and 
are treated as a unified device. V(t,E) is numerically computed 
by backward recursion (eq. (8) – (11)),  with dt=0.5 hr, 
dE=0.05 MWh. At each time step, network power flow is 
solved using the simple Gauss-Seidel analysis. Optimal stored 
energy is rebuilt by forward recursion (eq. (12)). The resulting 
optimal power signals are shown in Fig. 8. 
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Fig. 6. Microgrid case-study II.  
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Fig. 7. Microgrid case-study II. Powers of loads and generators. Top – sum of 
active load power. Middle – sum of reactive load power. Bottom – active 
power of generators. 

VII. DISCUSSION 
This work proposes an optimal power flow analysis, 

integrating storage devices. An exact global solution to this 
problem has not been shown so far, due to the numerical 
complexity of the problem, which includes both the network 
domain, and the time domain, related with storage. Traditional 
solvers view the problem as a function to be minimized. This 
way of thinking leads to traditional solution methods, such as 
gradient search and linear programming. However, traditional 
solvers, such as Newton-Raphson, are inefficient in time 
domain (See section  III). We propose a new way of thinking, 
which leads to an entirely different solution, capable of 
circumventing the numerical complexity: Instead of looking at 
the problem as a function to be minimized within constraints, 
we regard stored energy as a resource to be allocated. Instead 
of a minimization problem, we view it as an allocation 
problem: energy is allocated in time domain, to optimize 
power import at the point-of-common coupling.  

Allocation problems are easily solved by dynamic 
programing algorithms, so this is the main "engine" of our 
solver. The solver combines a recursive dynamic 
programming scan on time domain, with a traditional solver 
(we used Gauss-Seidel) on the network domain. The solution 
process is general, and can be used with any network topology 
(single phase, balanced or unbalanced three-phase). Likewise, 
there is no assumption on the power-flow solver, which can be 
Newton-Raphson, Gauss-Seidel, or a specific per-phase 
solver, such as forward backward sweep or TCIM. At each 
time point, the value function, V(·),is evaluated in respect to a 
previous value. The network power flow is solved at each time 
point, after replacing the storage devices with dummy P-V 
sources. This power output is evaluated only by the current 
and previous energy values. Thus, each time point is evaluated 
once. There is no need to re-compute the entire energy path, so 
the calculation is numerically efficient.  

 
 

The dynamic programming approach presents several 
important advantages: First, it reveals the globally optimal 
solution, since the algorithm scans the entire solution space. 
Second, the model is extremely general. It does not bind to a 
certain model or constraint. Storage device are described by 
general state equations (eq. (3)-(4)). Different storage devices 
with entirely different properties may be integrated in the 
same network. One phase networks may be solved just as well 
as three phase networks. Different objective functions may be 
considered (eq. (5)-(7),(17)). The solution method is always 
the same: a recursive scan of all feasible system states. 

A main disadvantage of the propose approach is that 
numerical complexity grows in power law with the number of 
(different) storage devices. This is evident in Fig. 4b: Each 
storage device contributes an extra dimension to the solution 
space. From our experience, a network with a single storage 
device is evaluated in seconds, even if it contains hundreds of 
buses. However, a system with four or five devices may be 
evaluated if it contains only a few buses. 

Two system case studies are shown. The first system is a 
two bus topology (Fig. 5). The second system (Fig. 6) is a 
network, with two renewable sources, and two storage 
devices. The systems differ in both topology and design 
objectives, and employ different storage devices. The 
objective in the first system is to minimize loss over the 
transmission line, whereas in the second system, the objective 
is to minimize the price of imported energy. The same 
dynamic programming analysis is applied to both systems. the 
cost function V(∙), shown in eq. (8), is defined, and evaluated 
by backward-recursion, as shown in eq. (9)-(11). Optimal 
stored energy and power flow is revealed by forward 
recursion, described in eq. (12).  

The resulting optimal power management (Fig. 5, Fig. 8) 
reveals a similar conceptual strategy for both systems: energy 
is stored according to the availability of the primary source: 
wind power, in the first example, or low-cost energy at the 
PCC, in the second example. Stored energy is released to the 
network when wind power is not available (first example) or 
when the price of energy is high (second example). In both 
systems, stored energy tends to equalize the total power, in 
order to reduce losses as much as possible. The second system 
includes the non-zero admittances of power lines, and the 
power limit of the transformer. This topology of the network 
effects the management of stored energy. For example, the 
storage device compensates the load, to sustain the 5 MVA 
capacity of the PCC's transformer, as shown in Fig. 8c.  Fig. 8 
reflects the effect of storage efficiency (η0) on power 
management. In Fig. 8a (η0=1), the storage is charged to full 
capacity. In Fig. 8b (η0=0.6), losses are higher, and the storage 
is not fully charged. In Fig. 8c (η0=0.4), the storage device is 
so lossy that it becomes economically worthless. In Fig. 8d 
(η0=0.1), the storage losses dominates. Here, the storage 
device cannot supply enough power to compensate the load's 
power peak, and the network will become unstable. There is 
no feasible solution. 
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Fig. 8. Microgrid case-study II. Resulting optimal powers for different values of storage efficiency. (a) η0=1.0.  (b) η0=0.6.  (c) η0=0.4. (c) η0=0.1. The graphs 
from top to bottom: C(t) – price. E(t) – stored energy. P1(t) is the power supplied by the utility grid (at the PCC), Pgen(t) - the combined active power generation 
of all loads and renewable generators (taken negative).  PS(t) – combined active power supplied by the storage devices. QS(t) – combined reactive power supplied 
by the storage devices. 
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VIII. CONCLUSION 
This work suggests an algorithm to compute the optimal 

energy management of storage devices in grid-connected 
microgrids. Stored energy is controlled to balance the power 
of loads and renewable sources, over the time domain, 
minimizing the overall cost of energy at the PCC. The 
algorithm incorporates an arbitrary network topology, which 
can be a general one-phase, balanced or unbalanced three-
phase system. It employs a power flow solver in network 
domain, within a dynamic programming recursive search in 
time domain. This combination is robust and numerically 
efficient, and reveals the globally optimal stored-energy vs. 
time for each storage device. 
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