Low-Complexity MMSE Precoding for Coordinated Multipoint with Per-Antenna Power Constraint
Kim, Tae Min ; Sun, Fan; Paulraj, Arogyaswami

Published in:
IEEE Signal Processing Letters

DOI (link to publication from Publisher):
10.1109/LSP.2013.2246152

Publication date:
2013

Document Version
Early version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
? You may not further distribute the material or use it for any profit-making activity or commercial gain
? You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: February 01, 2016
Low-Complexity MMSE Precoding for Coordinated Multipoint with Per-Antenna Power Constraint

Tae Min Kim, Fan Sun, and Arogyaswami Paulraj

Abstract—We propose a low-complexity minimum mean square error (MMSE) transmit filter design for the coordinated beamforming (CB) in the coordinated multipoint (CoMP) under the practical per-antenna power constraint (PAPC). The proposed design is based on the non-linear Gauss-Seidel type algorithm in which the transmit filters for given receive filters are computed by iteratively updating the beamformer of each transmit antenna using simple closed-form expressions. The proposed approach can significantly reduce the overall complexity of the alternating optimization while preserving the optimality in the MSE sense.

Index Terms—MMSE, Coordinated Beamforming, Per-Antenna Power Constraint, Non-linear Gauss-Seidel Algorithm

I. INTRODUCTION

COORDINATED multipoint (CoMP) transmission has recently attracted much attention as a means to mitigate the inter-cell interference (ICI) in the cellular networks by using the base stations (BSs) cooperation. When the BSs are connected over a limited backhaul, coordinated beamforming in the CoMP (CoMP-CB) can effectively reduce the ICI by jointly designing the transmit (Tx) filters at the BSs based on the shared channel state information (CSI) without sharing the user data across the BSs as in the joint processing [1].

We consider the downlink CoMP-CB based on the minimum mean square error (MMSE) approach. The MMSE criterion has been adopted in various MIMO beamforming scenarios including the MIMO broadcast channel (MIMO-BC) [2] and the interference channel (MIMO-IC) [3], [4] due to its practical importance. First, minimizing the MSE is closely related to minimizing the error rate of the system in the finite signal-to-noise ratio (SNR) regime. More importantly, it has been proven that the sum-rate maximization in the interfering broadcast channel (IBC) can be casted into the weighted MSE minimization with optimally adjusted weights [3]. Locally optimal MMSE Tx filters can be obtained efficiently using the alternating optimization [3], [4].

Computational complexity of the alternating optimization is dominated by computing the MMSE Tx filters for the given Rx filters [5]. Though it is a convex problem under the per-BS power constraint (PBPC) or the per-antenna power constraint (PAPC), directly finding the Tx filters with standard convex programming solvers costs significant computations. Therefore, it has been of practical interest to develop a numerically efficient algorithm to compute the Tx filters for the alternating optimization. To this end, under the PBPC, Shen et al. proposed an algorithm to obtain the dual variable corresponding to the PBPC by solving a polynomial equation [4].

However, while the PAPC is more important constraint in practice, an efficient low-complexity Tx filter design for the CoMP-CB under the PAPC has not been studied much in the literature to the best of the author’s knowledge. Following an approach similar to [4] would require to solve complicated multivariate polynomial equations under the PAPC, which is known to be NP-hard [6]. Furthermore, one previous work in [7] proposed a heuristic low-complexity design by including an additional alternating step for the dual variables, yet its convergence to a feasible solution is not guaranteed in high SNR or for a large number of Tx antennas. In [8], another low-complexity Tx filter design based on the uplink-downlink duality was proposed. However, their design focused on the single-cell multi-user MIMO and is not easily extensible to the CoMP-CB.

In this letter, we propose a low-complexity MMSE Tx filter design for the CoMP-CB under the PAPC with the guaranteed optimality at each alternating step. Observing the power constraints in each BS are naturally decoupled across the Tx antennas, we decompose the original convex problem into a set of sub-problems each involving the beamforming from only one antenna with the corresponding PAPC. Specifically, a non-linear Gauss-Seidel (NGS) type algorithm [9] is employed to iteratively update the beamformer of each Tx antenna. For given Rx filters, the proposed algorithm preserves the optimality in the MSE sense. For each sub-problem, we give a closed-form solution which can be computed efficiently by simple vector operations. While achieving the same MSE, complexity analysis and computer simulations show that the proposed algorithm significantly reduces the overall complexity, e.g., a CPU time reduction of over 99%, compared to the benchmark which directly finds the Tx filters using the standard convex programming solvers.

Notation: \(|\cdot|_m\), \((\cdot)^T\), \((\cdot)^\dagger\), and \(||\cdot||_F\) denote the \((m,n)\)-th element, the transpose, the conjugate transpose, the Frobenius norm of a vector/matrix, respectively. \text{diag}(\cdot)\) is the diagonal matrix taking only the diagonal terms of a matrix. An \(m \times m\) identity matrix is denoted by \(I_m\).

II. PRELIMINARY

A. System Model

We consider a cooperative multi-cell network, where \(P\) base stations (BSs) are connected via backhaul and serve \(K\) user equipments (UEs) per cell. Let \(BS_p\) and \(UE_{pk}\) denote the \(p\)-th BS and the \(k\)-th UE in the \(p\)-th cell, respectively. Each \(BS_p\) and \(UE_{pk}\) is equipped with \(M\) transmit antennas and \(N\) receive antennas, respectively, and \(BS_p\) transmits \(d \leq N\) independent data stream(s) to each \(UE_{pk}\) in its serving cell. The data vector for \(UE_{pk}\), denoted by \(s_{pk} = [s_{1pk} \cdots s_{dpk}]^T \in \mathbb{C}^{d \times 1}\), satisfies \(E[s_{pk}] = 0\) and \(E[s^H_{pk} {s}_{pk}] = I_d\).

Let \(H_{pqk} \triangleq \beta_{pqk} H_{pqk}\) be the \(N \times M\) MIMO channel from \(BS_q\) to \(UE_{pk}\), where \(H_{pqk} \sim \mathcal{CN}(0, I_N)\) and \(\beta_{pqk}\) is a
non-negative constant reflecting a large scale fading. Defining the aggregated data vector transmitted from BS\(_p\) as \(s_p \triangleq [s_{p1} \cdots s_{pK}]^T\), the received signal vector \(y_{pk}\) at \(UE_{pk}\) is
\[
y_{pk} = \sum_{q=1}^{P} H_{pqk} W_q s_q + n_{pk}
\]
where \(W_p \in \mathbb{C}^{M \times K}\) is the precoding matrix at BS\(_p\) obeying the PAPC, and \(n_{pk} \in \mathbb{C}^{N \times 1}\) is an AWGN vector at \(UE_{pk}\) satisfying \(\mathbb{E}[n_{pk} n_{pk}^*] = \sigma^2 I_N\). Then, in CoMP-CB, the BSS jointly design \(\{W_p\}\) to mitigate the ICI by sharing their local CSI through a backhaul.

B. Sum-MSE Minimization based Transceiver Design

We consider the Tx and Rx filter design based on the MMSE criterion, i.e., minimizing the sum of the MSE across all the UEs in the network. Let \(A_{pk} \in \mathbb{C}^{d \times N}\) denote the Rx filter at \(UE_{pk}\). Following the leakage-based MMSE approach in [5], the MSE contributed from BS\(_p\) is given by
\[
\mathcal{M}_p \triangleq \sum_{k} \mathbb{E}[\|A_{pk}(H_{pqk} W_p s_p + n_{pk}) - B_k s_p\|_F^2]
\]
\[+ \sum_{q \neq p} \sum_{k} \mathbb{E}[\|A_{qk} H_{pqk} W_p s_p\|_F^2] \quad (1)
\]
\[
= \text{Tr} \left(\sum_{q,k} A_{qk} H_{pqk} W_p W_q H_{qpk}^* A_{pk}^* + \sum_k \sigma^2 A_{pk} A_{pk}^* + K I_d \right)
\]
\[- \text{Tr} \left(\sum_{q,k} A_{qk} H_{pqk} W_p B_k + B_k W_p^* H_{qpk} A_{pk}^* \right) \quad (2)
\]

where \(B_k\) is a \(d \times K\) row selection matrix satisfying \(s_{pk} = B_k s_p\) and \(I_d\) in (2) is due to \(B_k B_k^* = I_d\) for any \(k\). Note that the first and second term in (1) corresponds to the signal distortion at the serving UEs and the leakage interference power to the neighboring UEs caused by BS\(_p\), respectively. Then, the sum-MSE minimization based transceiver design under the PAPC is

\[
\text{minimize} \quad \sum_{p=1}^{P} \mathcal{M}_p \quad (3)
\]

subject to \(\text{diag}(W_p W_p^*) \preceq \Psi\) for \(p = 1, \cdots, P\).

where \(\Psi = \text{diag}(\psi_1, \cdots, \psi_M)\) is a diagonal matrix denoting the PAPC in BS\(_p\). Though not jointly convex in \(\{W_p\}\) and \(\{A_{pk}\}\), the objective function in (3) is convex on \(W_p\) for the fixed \(\{A_{pk}\}\), and vice versa. Therefore, we can use the alternating optimization between \(\{W_p\}\) and \(\{A_{pk}\}\) to find (at least) a local optimal solution of (3) as in the MMSE transceiver design under the per-BS power constraint, i.e., \(\text{Tr}(W_p W_p^*) \leq \text{Tr}(\Psi)\) [3]-[5].

Specifically, the Lagrangian of (3) is given by
\[
\mathcal{L}(\{W_p\}, \{A_{pk}\}) = \sum_{p=1}^{P} \left(\mathcal{M}_p + \text{Tr}(A_p (\text{diag}(W_p W_p^*) - \Psi)) \right)
\]

where \(A_p = \text{diag}(\lambda_1, \cdots, \lambda_M) \succeq 0\) is an \(M \times M\) non-negative real diagonal matrix consisting of \(M\) Lagrange dual variables for the power constraint at each Tx antenna in BS\(_p\). For the given \(\{W_p\}\), from the Karush-Kuhn-Tucker (KKT) condition of the Lagrangian \(\mathcal{L}(\{W_p\}, \{A_{pk}\}) = 0\), \(A_{pk}\) can be easily obtained in a closed form as
\[
A_{pk} = B_k W_p^* H_{ppk}^* \left(\sum_q H_{pqk} W_q H_{qpk}^* H_{qpk}^* + \sigma^2 I \right)^{-1} \quad (4)
\]
for each \(p = 1, \cdots, P\) and \(k = 1, \cdots, K\). Then, for the alternating optimization, it remains how to find the Tx filters \(\{W_p\}\) for the given Rx filters \(\{A_{pk}\}\).

III. Low-Complexity Transmit Filter Design

We first describe the convex formulation under the PAPC and review the previous works on the low-complexity MMSE Tx filter design for given \(\{A_{pk}\}\). Then, we propose the optimal low-complexity Tx filters design algorithm under the PAPC and provide the complexity analysis to show the complexity reduction of the proposed design.

A. Convex formulation and previous works

Observing that any \(M_q\) with \(q \neq p\) is not affected by \(W_p\), the Tx filter \(W_p\) for the given \(\{A_{pk}\}\) is given by the solution of the following convex quadratically constrained quadratic programing (QCQP):
\[
\text{minimize} \quad \mathcal{M}_p
\]
subject to \(\text{diag}(W_p W_p^*) \preceq \Psi\).

From \(\nabla \mathcal{L} (\cdot) = 0\), the minimizer of (5) is given in a semi-closed form by
\[
W_p = \left(\sum_{q,k} H_{qpk}^* A_{qk} H_{qpk} + A_p \right)^{-1} \sum_{k} H_{ppk}^* A_{pk} B_k. \quad (6)
\]

However, unlike (4), computing (6) requires an additional step to find \(A_p\) satisfying the complementary slackness condition
\[
A_p \left(\text{diag}(W_p W_p^*) - \Psi \right) = 0. \quad (7)
\]
Under the PBPC where \(A_p\) reduces to a single parameter \(\lambda\) satisfying \(\text{Tr}(W_p W_p^*) = \text{Tr}(\Psi)\) = 0, an efficient algorithm was proposed to find \(\lambda\) based on solving a polynomial equation [4]. However, under the PAPC, finding \(A_p\) involves the multivariate polynomial equations of \(\lambda_1, \cdots, \lambda_M\) with degree of 2\(M\), which is known to be NP-hard [6]. Instead, a heuristic sub-optimal approach was proposed to alternatively optimize \(\{W_p\}\) and \(\{A_{pk}\}\) [7]. However, this generally requires a large number of iterations and the convergence to a feasible \(W_p\) satisfying the PAPC is not guaranteed, especially for high SNR or large \(M\).

Noticing that (5) is a convex problem, QCQP solvers such as CVX [10] can be used to find \(W_p\) numerically. However, as will be shown in Section V, this can cost significant computations considering that \(W_p\) needs to be updated for each BS at every alternating step. Therefore, it is of practical interest to develop an efficient algorithm to compute \(W_p\) under the PAPC.

Remark 1: In a single-cell multi-user MIMO setup, an iterative algorithm based on the uplink-downlink duality was proposed to find the MMSE Tx filters under the PAPC in [8]. However, such duality does not directly carry on to the CoMP-CB [4].

B. Low-complexity Non-linear Gauss-Seidel (NGS) Algorithm

Observing that each Tx antenna (each row of \(W_p\)) is subject to a separate power constraint, we consider a decomposition method to obtain the Tx filters by solving the original convex QCQP through a set of more numerically efficient sub-problems [11].
1) Decomposition Method: Let \(\tilde{w}_{mp} \) be the \(m \)-th row vector of \(W_p \), i.e., \(W_p = [\tilde{w}_{1p}, \ldots, \tilde{w}_{M_p}] \). From (5), we construct a set of \(M \) sub-problems such that the \(m \)-th sub-problem finds a feasible \(\tilde{w}_{mp}^* \), minimizing \(M_p \) for given \(\{ \tilde{w}_{np} \}_{n \neq m} \). Then, we employ the NGS type algorithm [9] to obtain \(W_p \) by iteratively updating each row of \(W_p \) as the minimizer of each sub-problem. Under the NGS principle, the sub-problem for \(\tilde{w}_{mp} \) is given by

\[
\tilde{w}_{mp}^0 = \arg\min_{\tilde{w}_{mp}} \mathcal{M}_p \left(\tilde{w}_{1p}^0, \ldots, \tilde{w}_{M_p}^0 \right) \tilde{w}_{mp} \tilde{w}_{mp}^T \left(\tilde{w}_{1p}^0, \ldots, \tilde{w}_{M_p}^0 \right)
\]

where we include the arguments in \(\mathcal{M}_p \) to show its dependency on the specific rows of \(W_p \). Here, \(\tilde{w}_{mp}^{(t)} \) denotes the intermediate \(m \)th row of \(W_p \) after the \(t \)-th iteration, namely inner iteration in contrast to the outer iteration which alternates between optimizing \(\{ A_{pk} \} \) and \(\{ W_p \} \). Then, the final \(W_p \) for the given \(\{ A_{pk} \} \) is obtained at the MSE convergence point of the inner iteration.

2) Closed-form Solutions for Sub-Problems: For the given \(\{ A_{pk} \} \), let \(F_p = [f_{1p}, \ldots, f_{M_p}] \) be an \(M \times M \) matrix obtained by the Cholesky decomposition \(F_p = H_p^T A_p H_p \), and let \(G_p = [g_{1p}, \ldots, g_{M_p}] \). Then, the MSE from \(B_S P \) is expressed as

\[
\mathcal{M}_p = \text{Tr}(F_p^T F_p W_p W_p^T) - \text{Tr}(G_p^T W_p + W_p G_p) + C_p \tag{8}
\]

where \(C_p \) is some constant not affected by \(W_p \). Rewriting (8) in a vector form, the sub-problem \((SP_{mp})\) for \(\tilde{w}_{mp} \) is given by

\[
\text{subject to } \tilde{w}_{mp}^T \tilde{w}_{mp} \leq \psi_m \tag{9}
\]

where \(\tilde{w}_{ip} (i \neq m) \) remain fixed while solving \((SP_{mp})\). The Lagrangian of the sub-problem and the corresponding first order derivative condition w.r.t. \(\tilde{w}_{mp} \) are given by

\[
\mathcal{L}_s(\tilde{w}_{mp}, \lambda_m) = \sum_{i,j} f_{ip}^T f_{jp} \tilde{w}_{ip} \tilde{w}_{jp} - \sum_{i=1}^M (g_{ip}^T \tilde{w}_{ip} + g_{ip}^T \tilde{w}_{ip}) - \sum_{i=1}^M \tilde{w}_{ip}^T \lambda_m (\tilde{w}_{mp} - \psi_m),
\]

respectively, where \(\lambda_m \) is the Lagrangian dual variable corresponding to \(A_{mp} \) in (6). Then, from the KKT condition \(\nabla \mathcal{L}_s(\cdot) = 0 \), \(\tilde{w}_{mp} \) can be expressed as

\[
\left\| f_{mp} \right\|^2 + \left\| g_{mp} \right\|^2 = 0 \Rightarrow \tilde{w}_{mp} = g_{mp} - \sum_{n \neq m} \tilde{w}_{np} f_{np}^T f_{mp}.
\]

(9)

First, assuming that the minimizer of \((SP_{mp})\) satisfies the PAPC with equality, \(\tilde{w}_{mp} \) during the \(t \)-th inner iteration is set to be

\[
\tilde{w}_{mp}^{(t)} = \sqrt{\psi_m} \frac{v_{mp}^{(t)}}{\| v_{mp}^{(t)} \|} \tag{10}
\]

where

\[
v_{mp}^{(t)} = g_{mp} - \sum_{n < m} \tilde{w}_{np}^{(t-1)} f_{np}^T f_{mp} - \sum_{n > m} \tilde{w}_{np}^{(t-1)} f_{np}^T f_{mp}.
\]

Then, from (9) and (10), \(\lambda_m^{(t)} \) is explicitly given by

\[
\lambda_m^{(t)} = \sqrt{\psi_m} \frac{\| v_{mp}^{(t)} \|}{\| v_{mp}^{(t)} \|^2} \| f_{mp} \|^2.
\]

On the other hand, when the resulting \(\lambda_m^{(t)} \) in (12) is negative (infeasible), \(\lambda_m^{(t)} \) is set to be zero and the corresponding \(\tilde{w}_{mp} \) is

\[
\tilde{w}_{mp}^{(t)} = \frac{v_{mp}^{(t)}}{\| v_{mp}^{(t)} \|^2}.
\]

which means the \(m \)-th Tx antenna in \(B_S P \) is not using full power.

Then, in the proposed algorithm, \(\tilde{w}_{mp}^{(t)} \), \(\ldots \), \(\tilde{w}_{mp}^{(T)} \) are sequentially updated at each inner iteration using (10) or (13) until \(\tilde{w}_{mp}^{(T)} = [\tilde{w}_{mp}^{(t)} \ldots \tilde{w}_{mp}^{(T)}]^T \) and, thus, the MSE converges as shown in the inner iteration in Algorithm 1.

3) Convergence: The following lemma shows that the proposed NGS algorithm preserves the optimality of \(W_p \) in the MSE sense for the given \(\{ A_{pk} \} \) in each outer iteration.

Lemma 1. As \(t \to \infty \), \(W_p^{(t)} \) obtained from \(\{(SP_{mp})\} \) in the proposed NGS algorithm is guaranteed to achieve the MSE minima in (5) for the given \(R_x \) filters \(\{ A_{pk} \} \).

 Proof: The MSE \(\mathcal{M}_p \) in (5) is clearly convex and continuously differentiable function of \(W_p \). Furthermore, for the fixed \(\tilde{w}_{np} \) with \(n \neq m \), each sub-problem (SP_{mp}) is strictly convex on \(\tilde{w}_{mp} \) for any non-trivial \(f_{mp} \neq 0 \). Then, the convergence to the minima of (5) follows from [9, Prop. 3.9].

From Lemma 1, the proposed algorithm can be interpreted as to obtain the optimal \(\lambda_{mp} \) in (6) as \(\lambda_{mp} \to \infty \), \(\lambda_{mp} \approx \lim_{t \to \infty} \lambda_{mp}^{(t)} \), based on a series of simple vector operations (10) or (13) instead of dealing with complicated higher-order multivariate polynomial equations. For an example of CoMP-CB with \((P, M, N, d = (3, 4, 1, 2, 2) \), Table 1 shows the element-wise error of \(W_p \) obtained from the proposed NGS algorithm w.r.t. \(W_p^* \) by directly solving (5) using CVX [10].

| Table 1

<table>
<thead>
<tr>
<th>Number of inner iteration (t)</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\max_{i,j} \left</td>
<td>\frac{\left</td>
<td>W_p(i,j) \right</td>
<td>}{\left</td>
<td>W_p^*(i,j) \right</td>
</tr>
</tbody>
</table>

C. Complexity Analysis

The complexity to solve the original convex QCQP of (5) is lower bounded by that of the relaxed problem based on the semi-definite programming (SDP) [12]. Considering \(d = N \) for simplicity, the overall complexity of SDP to solve (5) is \(\mathcal{O}((M + N K)^{3/2} \log(1/\epsilon)) \) where \(\epsilon \) is the accuracy target [12].

On the other hand, in the proposed NGS algorithm, computing the Cholesky decomposition to obtain \(F_p \) requires \(1/2 M^3 + 1/2 M^2 + 1/6 M \) flops (complex scalar operation) [13]. Next, the complexity to compute (10) or (13) is dominated by computing \(\tilde{w}_{mp}^{(t)} \) which requires \((2 M + N K)(M - 1) + (M - 1) N K \) flops, i.e., \(\mathcal{O}(M^2 + M N K) \). Then, the overall complexity of the proposed algorithm can be given by

\[
\mathcal{O}((M^4 + n_{iter} M^2(M^2 + M N K)) \approx \mathcal{O}(n_{iter} M^2 (M + N K))
\]

where \(n_{iter} \propto \log(1/\epsilon) \) denotes the number of the inner iterations until convergence with the accuracy of \(\epsilon \).

Obviously, in each update of the TX filters, the proposed algorithm provides significant complexity reduction as \(M, N \) and \(K \) grows. In Section V, we will further demonstrate this by showing the average CPU time of the proposed NGS algorithm compared to directly solving (5) using QCQP solvers.
IV. ALTERNATING OPTIMIZATION

The alternating optimization for the MMSE beamforming with the proposed NGS algorithm (MMSE-NGS) is summarized in Algorithm 1. Since $\sum_{p} M_p$ is bounded from below and decreasing throughout the outer iteration, the process clearly converges to a local minimum. Note that MMSE-QCQP will denote the benchmark where W_p is updated by solving (5) with QCQP solvers. It is clear from Section III-C that MMSE-NGS requires much less computations than MMSE-QCQP.

Algorithm 1 MMSE Non-linear Gauss-Seidel (MMSE-NGS)

Initialization:
For all p, randomly generate W_p to satisfy $\text{diag}(W_p W_p^H) = \Psi$

Alternating Optimization:

Outer iteration

1) For each p and k, update A_{pk} using (4)
2) For each p, compute F_p, G_p as in Sec. III, and update W_p:
 Inner iteration
 a) update $t = t + 1$
 b) sequentially compute for $m = 1 \ldots M$

 \[
 w_{mp}^{(t)} = \begin{cases}
 \sqrt{\psi_m} \frac{v_{mp}^{(t)}}{\|v_{mp}^{(t)}\|} & \text{if } \|v_{mp}^{(t)}\| \geq \sqrt{\psi_m} \|f_{mp}\|^2 \\
 \frac{v_{mp}^{(t)}}{\|v_{mp}^{(t)}\|} & \text{otherwise}
 \end{cases}
 \]

 until the MSE converges, where $v_{mp}^{(t)}$ is given by (11).

until the MSE converges.

V. NUMERICAL RESULTS

We present the simulation results for the CoMP-CB with three cells ($P = 3$). The power constraint at each antenna is chosen to be the same, i.e., $\psi_m = \frac{1}{M} \text{Tr}(\Psi)$ for all m. We set $\beta_{pqk} = 1$ for $p = q$ and 0.5 otherwise, i.e., the ICI from a neighboring cell is 3 dB weaker than the desired signal in average. We fix the number of the outer iteration to 50 and the inner iteration is terminated when the MSE decreases by less than 0.1%. For the MMSE-QCQP, we use CVX [10] to compute the Tx filters for the given Rx filters in each outer iteration.

Figure 1 shows the sum-MSE performance with the MMSE-NGS and MMSE-QCQP algorithms for varying SNRs, $\frac{1}{\sigma^2} \text{Tr}(\Psi)$, and the number of Tx antennas M, respectively. As expected from the convergence proof, the proposed algorithm achieves effectively the same MSE performance as the MMSE-QCQP in both cases. Next, Table 2 shows the average CPU time corresponding to the case with $(N, K, d) = (2, 1, 2)$ in Fig. 1 (b). We can see that the proposed algorithm provides a complexity reduction of more than 99% in terms of the CPU time compared to the MMSE-QCQP by using efficient decomposition method. The similar complexity reduction was observed for different configurations of (N, K, d) and different SNRs.

VI. CONCLUSION

We proposed the low-complexity MMSE downlink beamforming for the CoMP-CB under the practical per-antenna power constraint. The proposed non-linear Gauss-Seidel type algorithm computes the per-antenna power constrained Tx filters for given Rx filters by a series of the simple vector operations. Complexity analysis and numerical results showed that while preserving the MSE optimality, the proposed algorithm can significantly reduce the overall complexity of the alternating optimization.

REFERENCES