Experimental study of biomass particle combustion
Kouchaksaraiia, Maryam; Kær, Søren Knudsen; Yin, Chungen; Hansen, Troels Bruun; Jensen, Peter Arendt; Glarborg, Peter

Publication date:
2012

Document Version
Early version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
? You may not further distribute the material or use it for any profit-making activity or commercial gain
? You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: december 16, 2018
Experimental Study of Biomass Particle Combustion

M. Momen1, S. K. Kier1, C. Yin1, T. B. Hansen1, P. A. Jensen2, P. Glarborg1

1 Department of Energy Technology, Aalborg University, 9220 Aalborg East, Denmark
2 Department of Chemical Engineering, Technical University of Denmark, 2800 Lyngby, Denmark

E-mail: mam@et.aau.dk

Abstract

An experimental study was conducted to investigate the combustion behavior of single cylindrical and spherical biomass particles with diameters from 1 to 3mm. Particles with different aspect ratios (similar diameter and volume) were produced for studying the influences of particle shape on the combustion process. The particles were combusted in a single particle reactor at temperatures in the range of 1200 $^\circ$C to 1600 $^\circ$C and oxygen concentration levels in the range of 5 to 20%. A CCD camera was used to record the whole combustion process.

Experimental Setup

- The setup mainly consists of a reactor, a burner, a flame detector and a gas supply system. The burner is a Blue Flame Technology 94 Jet Burner.
- The flow rates are controlled by mass flow controllers (MFCs) of the type EL-FLOW which is connected to a computer. The software LabView 8.6 regulates and controls the flow.
- The entire combustion process is recorded by using of a high performance camera which is located in the back of the reactor. The camera is an Allied Vision Technologies Stingray F-033 which is able to take 65 images per second in average.

Materials and Conditions

- The investigated fuel was a low ash content pine wood.
- All the shaped samples were weighed before the tests and there was less than 5% difference.
- Devolatilization time and burnout time are based on the observation from the images captured during the whole combustion process.

Results and discussion

- Three different times can be determined from the resulted video, ignition time, total devolatilization time and burnout time. The criteria for determining the ignition, devolatilization and burnout time are based on the observation from the images captured during the whole combustion process.

Fig. 1. Setup

Fig. 2. Temperature and oxygen concentration profiles ($T=1200^\circ$C, $O_2=20\%$)

Fig. 3. Temperature variation vs. time inside the protection tube and reactor

Fig. 4. Samples

Table 1

<table>
<thead>
<tr>
<th>Shape</th>
<th>D (mm)</th>
<th>L (mm)</th>
<th>AR</th>
<th>M (g)</th>
<th>S/V (mm$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sphere</td>
<td>3.0</td>
<td>-</td>
<td>1</td>
<td>0.0230</td>
<td>2.0</td>
</tr>
<tr>
<td>Cylinder</td>
<td>2.00</td>
<td>4.16</td>
<td></td>
<td>0.0125</td>
<td>2.4</td>
</tr>
<tr>
<td>Cylinder</td>
<td>1.65</td>
<td>6.08</td>
<td></td>
<td>0.0125</td>
<td>2.7</td>
</tr>
<tr>
<td>Cylinder</td>
<td>1.41</td>
<td>8.60</td>
<td></td>
<td>0.0125</td>
<td>3.0</td>
</tr>
<tr>
<td>Cylinder</td>
<td>3.0</td>
<td>6.0</td>
<td>2</td>
<td>0.0125</td>
<td>3.2</td>
</tr>
<tr>
<td>Cylinder</td>
<td>3.0</td>
<td>12.0</td>
<td>4</td>
<td>0.0108</td>
<td>1.6</td>
</tr>
<tr>
<td>Cylinder</td>
<td>3.0</td>
<td>18.0</td>
<td>6</td>
<td>0.0095</td>
<td>1.4</td>
</tr>
</tbody>
</table>

- It has been tried to provide conditions reasonably close to the conditions in a power plant burner. In the experiments, the temperature varies in the range of 1200 to 1600 $^\circ$C and the oxygen concentration changes from 5 to 20%.

- The results showed that among the particles with similar volume and mass, spherical particles have the longest devolatilization time due to the fact that it has the lowest surface area to volume ratio compared to other shapes.
- From a practical point of view, particles are more likely to have similar diameter than mass in a power plant due to the milling grinding process. For the particles with similar diameter and different volume, spherical particle has the highest surface area to volume ratio and this value is almost the same for the cylindrical particles with different lengths. Hence, the spherical particle is devolatalized and burnt out faster than cylindrical particles and there is no significant difference between different cylindrical particles with different lengths due to their similar surface area to volume ratio.
- Single cylindrical particles with an aspect ratio of 4 was combusted at different temperatures and oxygen concentrations. The results indicated that the effect of temperature and oxygen concentrations are more remarkable for burnout time than devolatilization time. The influence of oxygen concentration is reduced by increasing the temperature.

References