Optimal Filtering Scheme for Bilinear Discrete-Time Systems
Shaker, Hamid Reza

Published in:
7th IFAC Symposium on Robust Control Design

DOI (link to publication from Publisher):
10.3182/20120620-3-DK-2025.00051

Publication date:
2012

Document Version
Early version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
? You may not further distribute the material or use it for any profit-making activity or commercial gain
? You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.
Optimal Filtering Scheme for Bilinear Discrete-Time Systems: a Linear Matrix Inequality Approach

Hamid Reza Shaker *

* Department of Energy Technology, Aalborg University, Pontoppidanstrde 101, 9220 Aalborg, Denmark (e-mail: shr@et.aau.dk)

Abstract: The filtering problem is among the fundamental issues in control and signal processing. Several approaches such as H_2 optimal filtering and H_{∞} optimal filtering have been developed to address this issue. While the optimal H_2 filtering problem has been extensively studied in the past for linear systems, to the best of our knowledge, it has not been studied for bilinear systems. This is indeed surprising, since bilinear systems are important class of nonlinear systems with well-established theories and applications in the variety of fields. The problem of H_2 optimal filtering for discrete-time bilinear systems is addressed in this paper. The filter design problem is formulated in the convex optimization framework using linear matrix inequalities. The results are used for the optimal filtering of a bilinear model of an electro-hydraulic drive.

1. INTRODUCTION

The filtering problem is among the fundamental problems in control theory and signal processing and therefore over the past it has received a lot of attention. Several approaches such as H_2 optimal filtering and H_{∞} optimal filtering have been developed to address this issue (Anderson and Moore [1979]). In general, there are two approaches to solve the filtering problem: the Riccati-like approaches and the linear matrix inequality (LMI) approach. Generally, the algorithms for optimal filtering of linear discrete-time systems which has been proposed in the past is based the optimization of an H_2 norm (Anderson and Moore [1979]). This makes sense, because the statistical knowledge of the input signal, particularly a white-noise process, corrupting the measurement output is described as the sum of the output variances which leads to the H_2 norm. The necessary and sufficient conditions based on a Riccati filtering equation for the existence of an estimator structure associated with the first category were derived (Basar and Bernhard [1995], Petersen and McFarlane [1994]).

The focus of this paper is on the second category of the filtering techniques. An example of such filtering methods is the one proposed in Palhares and Peres [1998]. In Palhares and Peres [1998], the filtering problem has been casted in terms of linear matrix inequalities (LMI’s). In this framework, the global optimal solutions are attained through convex optimization procedures, which can be efficiently solved. The H_2 optimal filtering design was derived from the state-space definition of the H_2 norm of the transfer function which relates the noise signal to the estimation error.

Both families of the methods have been extended for robust filtering of linear systems (See e.g. Petersen and McFarlane [1996], Tuan et al. [2001] ,Gao et al. [2008]) . While the optimal H_2 filtering problem has been extensively studied in the past for linear systems, to the best of our knowledge, it has not been studied for bilinear systems. This is indeed surprising, since bilinear systems are important class of nonlinear systems with appropriate state feedback or can be approximated as bilinear systems in the so-called bilinearization process. See e.g. Svoronos et al. [1980]. The problem of H_2 optimal filtering for discrete-time bilinear systems is addressed in this paper. The filter design problem is formulated in the convex optimization framework using linear matrix inequalities. This is an extension of the optimal filtering scheme in Palhares and Peres [1998], to support bilinear systems. The results are used for the optimal filtering of a bilinear model of an electro-hydraulic drive.

The notation used in this paper is as follows: M^* denotes transpose of matrix if $M \in \mathbb{R}^{n \times m}$ and complex conjugate transpose if $M \in \mathbb{C}^{n \times m}$. The $Tr(M)$ denotes the trace of the matrix M. The \otimes stands for the Kronecker Product. The standard notation $\succ \succ \succ (\prec \prec \prec)$ is used to denote the positive (negative) definite and semidefinite ordering of matrices.

2. BILINEAR SYSTEMS, GRAMIANS AND H_2 NORM

Let Σ be a bilinear dynamical system which is described by:

$$
\Sigma: \begin{cases}
 x(k+1) = Ax(k) + \sum_{j=1}^{m} N_j x(k)u_j(k) + Bu(k), \\
 y(k) = Cx(k),
\end{cases} \tag{1}
$$

where $x(t) \in \mathbb{R}^n$, $u(t) \in \mathbb{R}^m$, $y(t) \in \mathbb{R}^m$.

The controllability gramian for this system is defined as
The observability gramian is dually obtained by:

\[Q := \sum_{i=1}^{\infty} \sum_{k_i=0}^{\infty} ... \sum_{k_i=0}^{\infty} P_i P_i^* , \]

where:

\[P_i(k_i) = A^{k_i} B , \]
\[P_i(k_1, ..., k_i) = A^{k_i} [N_1 P_{i-1} N_2 P_{i-1} \cdots N_m P_{i-1}] , \]

and the observability gramian is defined as:

\[Q := \sum_{i=1}^{\infty} \sum_{k_i=0}^{\infty} ... \sum_{k_i=0}^{\infty} Q_i^* Q_i , \]

where:

\[Q_i(k_1) = C A^{k_1} , \]
\[Q_i(k_1, ..., k_i) = \begin{bmatrix} Q_{i-1} N_1 \\ Q_{i-1} N_2 \\ \vdots \\ Q_{i-1} N_m \end{bmatrix} A^{k_i} . \]

If \(A \) is stable, the gramians are given by the solutions of the generalized Lyapunov equations (Zhang et al. [2003] and Zhang and Lam [2002]):

\[APA^* - P + \sum_{j=1}^{m} N_j P N_j^* + BB^* = 0 , \]
\[A^* QA - Q + \sum_{j=1}^{m} N_j^* Q N_j + C^* C = 0 . \]

These generalized Lyapunov equation (4) has a unique solution if and only if:

\[W = (A \otimes A - I + \sum_{j=1}^{m} N_j \otimes N_j) \]

is nonsingular. The dual condition can be found for (5). See (Zhang and Lam [2002]) for more details.

The controllability gramian \(P \) is obtained by (Zhang et al. [2003] and Zhang and Lam [2002]):

\[P = \lim_{i \to \infty} \hat{P}_i , \]

where:

\[\hat{A} P_i A^* - \hat{P}_i + BB^* = 0 , \]
\[\hat{A} P_i A^* - \hat{P}_i + \sum_{j=1}^{m} N_j \hat{P}_{i-1} N_j^* + BB^* = 0 , \]

The observability gramian is dually obtained by:

\[Q = \lim_{i \to \infty} \hat{Q}_i , \]

where:

\[A^* \hat{Q}_i A - \hat{Q}_1 + C^* C = 0 , \]
\[A^* \hat{Q}_i A - \hat{Q}_1 + \sum_{j=1}^{m} N_j \hat{Q}_{i-1} N_j + C^* C = 0 , \]

The controllability and observability gramians show how difficult a system is to control and to observe. The gramians for bilinear systems have an important property which will be used for \(H_2 \) filtering in the next section. For bilinear system \(\Sigma \), if \(A \) is stable and the reachability gramian \(P \) (or observability gramian \(Q \)) exists; then its \(H_2 \) norm can be computed from (Zhang and Lam [2002]):

\[\| \Sigma \|_2 = \sqrt{\text{Tr}(CPC^*P^*)} = \sqrt{\text{Tr}(B^*QB)} \]

3. \(H_2 \) OPTIMAL FILTERING

Consider the following bilinear time-invariant discrete-time system given by:

\[S : \begin{cases} x(k+1) = Ax(k) + \sum_{j=1}^{m} N_j x(k) w_j(k) + Bw(k) , \\
y(k) = Cx(k) + D w(k) , \\
z(k) = L x(k) . \end{cases} \]

where \(x(k) \in R^n \) is the state vector, \(y(k) \in R^r \) is the measurements output vector, \(w(k) \in R^m \) is the noise signal vector (including process and measurement noises), and \(z(k) \in R^p \) is the signal to be estimated. It is assumed that \((A,C) \) is detectable. This guarantees that there exists an observer constant gain such that the filter is asymptotically stable. The goal is to design an asymptotically stable linear filter described by:

\[F : \begin{cases} \hat{x}(k+1) = A \hat{x}(k) + \sum_{j=1}^{m} N_j \hat{x}(k) w_j(k) \\
+ \hat{K} (y(k) - C \hat{x}(k)) . \end{cases} \]

where \(K \in R^{n \times r} \) is the filter constant gain to be determined.

The state error is defined as \(\epsilon(k) := x(k) - \hat{x}(k) \), then the dynamics of the estimation error is described by:

\[E : \begin{cases} \epsilon(k+1) = A_{\psi} \epsilon(k) + \sum_{j=1}^{m} N_j \epsilon(k) w_j(k) + \epsilon(k+1) \\
+ B_{\psi} w(k) , \end{cases} \]

where \(z(k) := z(k) - \hat{z}(k) \) is the estimation error, and:

\[A_{\psi} := A - KC , \]
\[B_{\psi} := B - KD . \]

In the optimal \(H_2 \) filtering scheme, a bilinear filter \(F \) needs to be determined such that the estimation error variance is minimized. The problem therefore will be:

\[\min_K \| E \|_2 \]

The \(H_2 \) norm of estimation error dynamics according to (11) can be computed as:

\[\| E \|_2 = \sqrt{\text{Tr}(B_{\psi}^* Q_{\psi} B_{\psi})} \]

where \(Q_{\psi} \) is the observability gramian of the bilinear system (14) and is the solution to the generalized Lyapunov equation:

\[A_{\psi}^* Q_{\psi} A_{\psi} - Q_{\psi} + \sum_{j=1}^{m} N_j^* Q_{\psi} N_j + L^* L = 0 \]
In the following some results are stated and proved which will be used later to reformulate our problem in LMI framework:

Lemma 1. Let A be stable and W which is defined as:

$$W = (A^* \otimes A^* - I + \sum_{j=1}^{m} N_j^* \otimes N_j^*)$$

be nonsingular. If X satisfies:

$$A^*X - X + \sum_{j=1}^{m} N_j^* X N_j \leq 0,$$

then: $X \geq 0$.

Proof:

Let X satisfies (20), there exist $M \geq 0$ for which:

$$A^*X - X + \sum_{j=1}^{m} N_j^* X N_j + M = 0,$$

(21)

On the other hand, A is stable and W which is obtained by duality from (6) as:

$$W = (A^* \otimes A^* - I + \sum_{j=1}^{m} N_j^* \otimes N_j^*)$$

is nonsingular. The generalized Lyapunov equation (21) has a unique solution which is obtained as:

$$X = \lim_{i \to \infty} \bar{X}_i,$$

(22)

where:

$$A^* \bar{X}_1 A - \bar{X}_1 + M = 0,$$

$$A^* \bar{X}_i A - \bar{X}_i + \sum_{j=1}^{m} N_j^* \bar{X}_{i-1} N_j + M = 0,$$

$$i = 2, 3, \ldots, (23)$$

Since $M \geq 0$, then $\bar{X}_1 = \sum_{k=0}^{\infty} (A^k)MA^k \geq 0$. For $i = 2, 3, \ldots$, we have:

$$\sum_{j=1}^{m} N_j^* \bar{X}_{i-1} N_j + M \geq 0,$$

consequently: $\bar{X}_i \geq 0$. Therefore: $X = \lim_{i \to \infty} \bar{X}_i \geq 0$.

Proposition 2. Let for bilinear system (1), A be stable and W which is defined as:

$$W = (A^* \otimes A^* - I + \sum_{j=1}^{m} N_j^* \otimes N_j^*)$$

(24)

be nonsingular. Assume that Q is the observability gramian of (1). If \tilde{Q} satisfies:

$$A^* \tilde{Q}A - \tilde{Q} + \sum_{j=1}^{m} N_j^* \tilde{Q} N_j + C^* C \leq 0$$

(25)

then: $\tilde{Q} \geq Q$.

Proof:

Subtract (25) from (5) and apply Lemma 1 with $X = \tilde{Q} - Q$.

Corollary 3. Let A_ψ be stable and W_ψ which is defined as:

$$W_\psi = (A_\psi^* \otimes A_\psi^* - I + \sum_{j=1}^{m} N_j^* \otimes N_j^*)$$

(26)

is nonsingular. Let Q_ψ be the observability gramian for the bilinear system (14) and assume that there exist Q_ψ which satisfies:

$$A_\psi^* Q_\psi A_\psi - Q_\psi + \sum_{j=1}^{m} N_j^* Q_\psi N_j + L^* L \leq 0,$$

(27)

then:

$$Tr(B_\psi^* Q_\psi B_\psi) \geq Tr(B_\psi^* Q_\psi B_\psi).$$

(28)

In the following, the H_2 optimal filtering problem for bilinear system is cast as a convex optimization problem:

Theorem 4. Consider the following optimization problem:

$$\min_{J, V} Tr(J)$$

(29)

Subject To:

$$\begin{bmatrix} J & B^* Y - D^* V^* \\ Y B - V D & I \end{bmatrix} \geq 0,$$

(30)

$$\begin{bmatrix} Y & \sum_{j=1}^{m} N_j Y + Y A - V C \\ \sum_{j=1}^{m} N_j^* Y + A^* Y - C^* V^* & Y L^* \\ 0 & L & 1 \end{bmatrix} \geq 0,$$

(31)

$$Y \geq 0,$$

(32)

where $Y = Y^* \in R^{n \times n}$, $V \in R^{n \times r}$ and $J = J^* \in R^{m \times m}$. The optimal solution is such that:

$$Tr(J) = \min \| E \|^2$$

(33)

and the optimal H_2 filtering gain is given by:

$$K = Y^{-1} V,$$

(34)

Proof:

Suppose that there exist $Y \geq 0$ and V, satisfying (31). Then, from Schur’s complement we have:

$$(\sum_{i=0}^{m} Y N_j + Y A - V C) Y^{-1} (\sum_{j=1}^{m} Y N_j + Y A - V C) - Y + L^* L \leq 0,$$

Equivalently, we have:

$$(\sum_{j=1}^{m} N_j + A - Y^{-1} V C) Y (\sum_{j=1}^{m} N_j^* + A - Y^{-1} V C) - Y + L^* L \leq 0,$$

For $K = Y^{-1} V$ and $Y = \tilde{Q}_\psi$. \qed
Therefore:

\[A^* \bar{Q} \bar{A} - \bar{Q} + \sum_{j=1}^{m} N_j^* \bar{Q} N_j + L^* L \leq 0, \]

Corollary 3 applies and therefore we have:

\[\text{Tr}(B_0^* Y B_0) \geq \text{Tr}(B_0^* \bar{Q} B_0). \] \hspace{1cm} (35)

On the other hand, from (30) using Schur complement we get:

\[J - (YB - VD)^* Y^{-1} (YB - VD) \geq 0 \]

Therefore:

\[\text{Tr}(J) \geq \text{Tr}((YB - VD)^* Y^{-1} (YB - VD)) = \text{Tr}(B_0^* Y B_0). \]

From this, we have:

\[\text{Tr}(J) \geq \text{Tr}(B_0^* \bar{Q} B_0) = \|E\|_2^2. \] \hspace{1cm} (36)

Since no other constraint is imposed on the \(J \), the minimization of the linear cost ensures that:

\[\text{Tr}(J) = \min \|E\|_2^2 \] \hspace{1cm} (37)

This theorem is used for \(H_2 \) optimal filtering of a bilinear hydraulic drive system in the next section.

4. \(H_2 \) OPTIMAL FILTERING OF A BILINEAR HYDRAULIC DRIVE SYSTEM

In general, hydraulic systems are highly nonlinear dynamical systems. The linear models are not sufficiently accurate to describe them and consequently the controllers which are designed based on the linear models of the hydraulic systems often do not end up with satisfying results. On the other hand, due to the complexity of the highly nonlinear hydraulic models, methods for analyzing them, filtering and synthesizing their controllers are not well developed and often they are difficult to apply in practice. In between the spectrum of different models to describe them and consequently the controllers which have been formulated in the convex optimization framework over the last few decades, several approaches such as \(H_2 \) optimal filtering and \(H_\infty \) optimal filtering have been developed for filtering. While the \(H_2 \) optimal filtering problem has been extensively studied in the past for linear systems, to the best of our knowledge, it has not been studied for bilinear systems. Due to the importance of this class of nonlinear systems, the problem of \(H_2 \) optimal filtering for discrete-time bilinear systems has been addressed in this paper. The filter design problem has been formulated in the convex optimization framework using linear matrix inequalities. The results have been successfully used for the optimal filtering of a bilinear model of an electro-hydraulic drive.

\[A^* \bar{Q} \bar{A} - \bar{Q} + \sum_{j=1}^{m} N_j^* \bar{Q} N_j + L^* L \leq 0, \]

\[N = \begin{bmatrix} 0 & 0 & 0 & 0.00003 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}. \]

Applying Theorem 1, the solution to the optimization problem is:

\[Y = \begin{bmatrix} 0.00036 & -0.00432 & 0.05733 & -0.77669 \\ -0.00432 & 0.08441 & -1.40225 & 21.68466 \\ 0.05733 & -1.40225 & 27.68576 & -487.88060 \\ -0.77669 & 21.68466 & -487.88060 & 985.27364 \end{bmatrix}, \]

\[V = \begin{bmatrix} -0.58546327196 \\ 0.36290729131 \\ -514.30992621789 \end{bmatrix}, J = 7.55316291347e - 012. \]

The optimal \(H_2 \) filtering constant gain is given by:

\[K = \begin{bmatrix} 946.6941734529101 \\ 423.9133743225211 \\ 65.09278123427475 \\ 3.6408492106137 \end{bmatrix}. \]

The \(H_2 \) estimation error is:

\[\|E\|_2^2 = 7.55316291347e - 012. \]

5. CONCLUSION

REFERENCES

