Selectivity of amphiphilic cyclodextrins towards volatile organic compounds
Rishede, Mie; Lumholdt, Ludmilla; Nielsen, Ronnie Bo Højstrup; Nielsen, Thorbjørn Terndrup; Larsen, Kim Lambertsen

Publication date:
2012

Document Version
Early version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA):
Selectivity of amphiphilic cyclodextrins towards volatile organic compounds

Mie Rishede1, Ludmilla R. Lumholdt1,2, Ronnie Nielsen1,2, Thorbjørn T. Nielsen1, Kim L. Larsen1

1Section of Chemistry, Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, DK-9000 Aalborg, Denmark
2Amphidex A/S, DK-9220 Aalborg Ø
(kll@bio.aau.dk)

The use of cyclodextrins (CDs) to control the release of fragrances or for removal of malodours has been studied for several years1 and has led to a number of successful products. The commercially available CDs (α, β and γ-CD) are known to make inclusion complexes with a range of different guest molecules2. Due to the difference in the cavity size of the three CDs, the stability of a complex with a guest is affected by the size of the guest. Selectivity can be observed in the formation of a complex between a specific CD and guests with different sizes.

We have developed a simple and fast method to anchor CDs to textile surfaces utilising amphiphilic CDs, i.e. CDs modified with short-length fatty acids. This allows for easy and fast coating of a large range of surfaces and for the development of CD functionalized products, such as air filters.

In this study, butanoylated α-, β- and γ-CDs were synthesised, by direct esterification of native α, β and γ-CD with butanoic acid chloride in the presence of LiH. The capacity and selectivity of the amphiphilic CDs towards the uptake of volatile organic compounds was investigated by use of gas chromatography.