Trapping of polycyclic aromatic hydrocarbons by amphiphilic cyclodextrin functionalized polypropylene nonwovens
Lumholdt, Ludmilla; Nielsen, Ronnie Bo Højstrup; Larsen, Kim Lambertsen

Publication date:
2012

Document Version
Early version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA):
Trapping of polycyclic aromatic hydrocarbons by amphiphilic cyclodextrin functionalized polypropylene nonwovens

Konference: 16th International Cyclodextrin Symposium, Tianjin, Kina, Maj 2012

Abstrakt:

Trapping af polycyclic aromatic hydrocarbons by amphiphilic cyclodextrin functionalized polypropylene nonwovens

Ludmilla R. Lumholdt1,2, Ronnie Nielsen1,2, and Kim L. Larsen1

1 Section of Chemistry, Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, DK-9000 Aalborg, Denmark
2 Amphidex A/S, DK-9220 Aalborg Ø, Denmark
(kll@bio.aau.dk)

Recently, there has been an augmented focus on the increasing amount of pesticides, drug residues and endocrine disruptors present in waste and drinking water1. These pollutants represent a challenge in water purification since they may be hazardous to human health even in low doses2.

Cyclodextrins (CDs) are known to be able to form inclusion complexes with a large range of the unwanted pollutants3 but in order to utilise this ability to purify water, the CDs must be immobilised on a surface, for instance, a membrane filter.

We have developed a simple and fast method for the functionalization of otherwise inert textiles with amphiphilic CDs using relatively non-harmful organic solvents and an easy setup. The method relies on the self-assembly properties of amphiphilic CDs and can be applied in situ by as various methods as spray and kiss-roll yielding multi-layers on the surface of the textile fibers.

In this study we present the ability of amphiphilic CD coated polypropylene nonwovens to trap 8 different polycyclic aromatic hydrocarbons/endocrine disruptors from aqueous solutions thus demonstrating the potential of using the amphiphilic cyclodextrins for water purification.