Effective visual short-term storage capacity and speed of encoding are affected by arousal
Sørensen, Thomas Alrik; Bundesen, Claus

Published in:
Journal of Vision

DOI (link to publication from Publisher):
10.1167/11.11.265

Publication date:
2011

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
ABSTRACT

Several Effects of spatial cueing on visual attention have been thoroughly investigated within the last 30 odd years. Similar to spatial cueing, temporal cueing seem to afford a performance enhancement to a subject if he or she knows when in time an event will occur (Coulé & Nobre, 1998). Manipulation of time intervals between a cue and the stimulus onset or the fore periods has been shown to be an effective method of manipulating arousal level. When using accuracy rather than reaction time in experiments the subject’s performance is not confounded by motor movements allowing a manipulation on the perceptual level (Vangkilde & Bundesen, 2009).

INTRODUCTION

In a pilot experiment Sørensen (2010) investigated the reliability of measures of visual short-term memory capacity (K) and processing speed (C). The results suggested that C may be less stable between test sessions than K. Despite an effort to keep external variables constant between test sessions, state variables like arousal of the individual observers probably varied between sessions. The Theory of Visual Attention (TVA; Bundesen, 1990) suggested the interpretation that a variation in the level of arousal would affect C but leave K unaffected. Here we wanted to investigate effects of arousal manipulations by varying the observers’ temporal expectations by use of different foreperiod distributions while measuring their performance by use of TVA.

EXPERIMENT

Design

Experiment 1 combined a temporal expectancy paradigm (Vangkilde & Bundesen, 2009) with a whole report paradigm (Sperling, 1960) which yielded estimates of visual short-term memory capacity (K) at two different levels of temporal expectancy. In either temporal expectancy condition, the foreperiod from the presentation of a warning cue to the presentation of the stimulus display was geometrically distributed. Experiment 2 expanded the whole report into a partial report design (Sperling, 1960) allowing estimation of observers' ability to filter out distracting information. Selectivity was higher (i.e., parameter alpha was smaller) in the high temporal expectancy condition.

RESULTS

The TVA parameters were estimated from the data using the LIHTVA toolbox (Dyrholm et al., submitted).

Experiment 1

In Experiment 1, we replicated results reported by Vangkilde and Bundesen (2009): Manipulating the level of temporal expectancy by changing the probability of success underlying the geometric distribution of foreperiods affected C, but not 0. Thus, C was higher in a high temporal expectancy condition compared with a low expectancy condition. To our surprise, K tended to be slightly lower in the high compared with the low expectancy condition.

Experiment 2

In Experiment 2, we replicated the results for whole report found in Experiment 1. We also introduced a partial report condition which made it possible to estimate observers’ ability to filter out distracting information. Selectivity was higher (i.e., parameter alpha was smaller) in the high temporal expectancy condition.

Experiment 3

In a third experiment, we introduced a condition with an intermediate level of temporal expectancy. Here we found the expected pattern for parameters C and alpha, but no clear effects on K.

Experiment 4

In Experiment 4, waiting times were blocked by condition to ease the observers’ ability to distinguish between the three foreperiod conditions. However, the results were similar to those of Experiment 3.

DISCUSSION

The results of Experiments 1-4 suggest that, with increasing temporal expectancy, processing speed C increased, whereas the temporal threshold for perception, 0, remained constant. The efficiency of selecting targets rather than distractors also increased, but the results concerning possible effects on the available short-term storage capacity K were inconclusive.

REFERENCES


REFERENCES


REFERENCES


ACKNOWLEDGEMENTS

Thanks to Signe Vangkilde for discussions of her original paradigm (Vangkilde & Bundesen, 2009) and the use of this paradigm which was adapted and modified for the present range of experiments.