Quantitative proteomic analysis of Ibuprofen-degrading Patulibacter sp. strain I11

Kjeldal, Henrik; Lolas, Ihab Bishara Yousef; Knudsen, Anders Dahl; Carvalho, Gilda; Nielsen, Kåre Lehmann; Barreto Crespo, Maria Teresia; Stensballe, Allan; Nielsen, Jeppe Lund

Publication date:
2012

Document Version
Early version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA):
Quantitative proteomic analysis of Ibuprofen-degrading Patulibacter sp. strain I11

Kieldal H*, Almeida B1,2,3,7, Lolas I1, Knudsen A D1, Carvalho G1,2, Nielsen K L1, Barreto Crespo M T2,3, Stensballe A1, and Nielsen J L1

1Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, Aalborg, Denmark
2Instituto de Tecnologia Química e Biológica (ITQB)-Universidade Nova de Lisboa (UNL), Av. da República, Estação Agronómica Nacional, Portugal
3Department of Biotechnology, Chemistry and Environmental Engineering (ITQB)-Universidade Nova de Lisboa, Caparica, Portugal

*Equal contributor

Introduction

The increase in diversity and quantity of Pharmacologically Active Compounds (PhACs) detected in the effluents of wastewater treatment plants is an issue of great concern due to health and environmental associated risks of the PhACs 1.

Ibuprofen, a non-steroidal anti-inflammatory drug, is considered one of the most frequently occurring PhACs in the influent wastewater, typically being found in the range of 10-400 μg/L. Typical Ibuprofen removal efficiencies range from 80-100%, depending on operational conditions and wastewater treatment plant configuration2,3. The elimination of ibuprofen is being ascribed primarily to biodegradation. However, in order to investigate the conditions for better removal of compounds like ibuprofen, we need to know the identity of the organisms involved and how their ibuprofen degradation activity depend on the controlling parameters. For this purpose we wanted to identify the genes involved and develop quantitative molecular tools for determining the activity of these genes.

Objective

The main objective of this study was to investigate the biochemical pathway of ibuprofen degradation in the ibuprofen degrading strain Patulibacter sp. Strain I11 using quantitative tandem mass spectrometry.

Methods

Fig. 1 The differential changes in the proteome of Patulibacter sp. strain I11, grown in the presence and absence of ibuprofen, were characterised by the combination of stable isotope metabolic labelling and 1-D gels based shotgun Proteomics. The genome of Patulibacter sp. Strain I11 was sequenced and annotated and used as the reference database for the subsequent MS-based protein identification (the sequencing and annotation part of the genome of Patulibacter sp. strain I11 have been omitted in the above flowchart). The setup was carried out in biological duplicates using a forward and reverse labelling strategy (only the forward labelled duplicate is depicted above). For the reverse labelled duplicate the metabolic labels were reversed, i.e. yielding [(15N + 14N) + Ibuprofen] and [(14N + 15N) + Ibuprofen]. The forward and reverse labelling strategy served the purpose of evaluating potential bias of the [(15N- and 14N)- medium on protein expression levels.

Metabolic labelling

Mix 1:1

In-gel digestion

1D-SDS PAGE

Peak picking & Quantification

Statistical analysis Condenser V. 1.1

Protein Lists

Results

Table 1 Differentially expressed proteins of the biological replicates of Patulibacter sp. 111 grown in presence/absence of ibuprofen. Only up-regulated proteins (log2 ratio ≥ 0.9) are shown in the table. No major influence of the [(15N- and 14N)- medium on the protein expression levels was observed. UniProt accession number of the closest protein homologue Description of the closest protein homologue. Log2 ratio obtained from the quantitative proteomics analysis, *Protein Score obtained from the quantitative proteomics analysis. 1The number of quantitated peptides upon which the quantitative value (Log2 ratio) was determined.

Conclusion

• Several proteins related to uptake and degradation of aromatic acids as well as compound transport-related proteins were found among the proteins up-regulated in response to ibuprofen.

• The high number of up-regulated putative uncharacterised proteins might suggest a novel pathway for the degradation of ibuprofen in Patulibacter sp. strain I11.

Acknowledgements

The authors acknowledge the support of FTP (Danish Research Council for Technology and Production) and Aalborg University. All CG and BCMW were supported by Fundação para a Ciência e Tecnologia through the grant Pest-DE/EQB/LA0004/2011, project grant PTDC/EBB-BBI/098862/2008, and fellowship grants SFRH/BD/47748/2008 and SFRH/BPD/50800/2006.

References

