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Abstract—Thanks to the fast responses of the inner voltage and 
current control loops, the dynamic behaviors of parallel voltage-
controlled Distributed Generation (DG) inverters not only relies 
on the stability of load sharing among them, but subjects to the 
interactions between the voltage control loops of the inverters 
and the remaining system dynamics. This paper addresses the 
later interactions and the consequent resonances through the 
frequency-domain analysis of the inverters output impedances 
and the remaining equivalent network impedance. Furthermore, 
impacts of the virtual output impedance loop and the voltage 
feedforward loop in the current controller are evaluated based 
on such an impedance interactions analysis. Simulation results 
are presented to confirm the validity of the theoretical analysis.   

I. INTRODUCTION 

Driven by the emerging active distribution networks in the 
development of smart grids, the inverter-interfaced Distributed 
Generation (DG) systems have been undergoing a fast growth 
in the power grid [1], [2]. These DG inverters are expected to 
operate in both current- and voltage-controlled modes, thereby 
providing more reliable and efficient electricity services to the 
customers [3]. Consequently, the islanded networks that are 
dominated by multiple DG inverters are becoming important 
components of the smart distribution grids [4]. The increasing 
concerns over the control and stability of such inverter-based 
islanded systems have been raised [5].  

The active power-frequency (P-ω) droop that mimics the 
speed-governing mechanism of synchronous generators, and 
the reactive power-voltage (Q-V) droop are usually used for 
the load sharing in the parallel DG inverters [6]. Furthermore, 
to overcome the power coupling caused by a high R/X ratio of 
the low-voltage distribution lines, several improved droop-
based power control schemes have been reported [7]. Among 
them, the virtual output impedance loop that is similar to the 
load compensator in the excitation system of the synchronous 
generator shows superior performances [8].  

In order to properly design the droop coefficients and the 
virtual output impedance, small-signal stability analysis of the 
parallel voltage-controlled inverters have been well discussed 
in [9], [10]. However, notice that the dynamic behaviors of the 

inner current and voltage control loops are neglected in those 
analyses, due to the well separation between the bandwidth of 
the outer power control loop and the inner control loops. As a 
result, the interactions between the output voltage control loop 
of the DG inverter and the remaining network dynamics are 
often overlooked [11]. Unlike traditional power systems where 
synchronous generators usually have large time constants, the 
much faster responses of the voltage and current control loops 
in the DG inverters tend to result in the additional resonances 
and small-signal oscillations at the frequencies higher than the 
system fundamental frequencies. Therefore, there is an urgent 
need to explore the dynamic interactions between the inner 
control loops of the parallel DG inverters.  

In this paper, the dynamic interactions between the output 
voltage control loops of the parallel voltage-controlled DG 
inverters are addressed. The potential voltage resonances and 
unstable oscillations caused by such interactions are identified 
through the impedance-based stability analysis. The influences 
of the virtual output impedance loop and the output voltage 
feedforward term in the inner current control loop are assessed 
in the frequency-domain. Finally, simulations are performed 
to validate the theoretical analysis results. 

II. MODELING OF PARALLEL DG INVERTERS 

Fig. 1 represents an islanded three-phase network, where 
two parallel inverter-interfaced DG units are connected via the 
distribution feeders to the common load bus, respectively. 
Constant DC-link voltages of the DG inverters are assumed.  

Fig. 2 illustrates the control block diagrams for the i-th DG 
inverter (i=1, 2). The multiloop control scheme is employed, 
including 1) the inner voltage and current control loops, 2) the 
intermediate virtual output impedance loop, and 3) the outer 
droop-based power controller. Since the interactions between 
the inner voltage and current control loops of DG inverters are 
of the main concerns, the low-frequency power oscillations 
caused by the dynamics of the droop controls are disregarded. 
In the inner control loops, the proportional current controller is 
adopted for the over-current protection and a better LC-filter 
resonance damping [12], and the Proportional Resonant (PR) 
voltage controller is used for the zero steady-state error. 



 
Fig. 1.  An islanded three-phase network with two inverter-interfaced DG units and a common load. 
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Fig. 2.  Control block diagram for the i-th DG inverter (i=1, 2). 

 
It is known that the terminal behavioral model of the DG 

inverter is essential to perform an impedance-based stability 
analysis [13]. Since the DC voltage is assumed to be constant, 
the DC inverter can be seen as a linear system for small-signal 
stability analysis [14].   

From Fig. 2, it is observed that the output LC-filter can be 
modeled by a two-input, two-output system as follow 
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where VPWM,i (s) is the output voltage of the i-th inverter, ZC,i 

(s) and ZL,i (s) are the impedances for the output capacitor and 
inductor, respectively. Thus, the inner current control loop can 
be simplified, as shown in Fig. 3. Supposing that without the 
voltage feedforward term first, the dynamic behavior of the 
current control loop can be given as   
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Fig. 3.  Simplified inner current control loop for the i-th DG inverter. 

 

**

Fig. 4.  Simplified inner voltage and current control loops for the i-th DG 
inverter.

 
where Gcl,i (s) is the closed-loop gain of the current control 
loop and GIoc,i (s) denotes the closed-loop effect of the load 
current, which are given by  
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where Tc,i (s) is the open-loop gain of the current control loop. 
Gd,i (s) is the approximated 1.5 sampling period (Ts) delay. By 
closing the output voltage control loop, the inner voltage and 
current control loops are simply represented in Fig. 4. Thus, 
the output voltage control loop can be modeled as 

 

*
, , , , ,( ) ( ) ( ) ( )o i clv i o i ov i o iV s G V s Z s I s   (8) 

  

 , ,
, , ,

, ,

( ) ( )
( ) , ( ) 1 ( )

1 ( ) 1 ( )
v i C i

clv i ov i Ioc i
v i v i

T s Z s
G s Z s G s

T s T s
  

 
 (9) 

  

, , , ,( ) ( ) ( ) ( )v i v i cl i C iT s G s G s Z s  (10) 



where Gclv,i (s) is the closed-loop gain of the voltage control 
loops, Zov,i (s) is the closed-loop output impedance, and Tv,i (s) 
is the open-loop gain of the voltage control loop. Gv,i (s) is the 
PR voltage controller, which is given by [15] 
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Considering the virtual output impedance loop ZV,i (s), the 

voltage control systems can be derived by 
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where Ztov,i (s) is the total closed-loop output impedance. It can 
be seen that the actual effect of the virtual output impedance is 
affected by the bandwidth of the inner control loops, and the 
virtual impedance loop has no effect on the closed-loop gain 
of the inner control loops.  

On the other hand, taking the output voltage feedforward 
term into account, the dynamic behavior of the current control 
loop is modified as follows 
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Substituting (14), (15) and (16) into (9) and (10), the terminal 
behavioral model of the i-th inverter is modified as 
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It is worthy to note that the output voltage feedforward term 
affects both the closed-loop gain of the inner control loops and 
the closed-loop output impedance, which is markedly different 
from the virtual output impedance loop. 

Following the derivation of the terminal behavioral model 
of the i-th DG inverter, the closed-loop model for the islanded 
three-phase network shown in Fig. 1 is thus built, as shown in 
Fig. 5. The equivalent load impedance Zload,i (s) can be used to 
represent the remaining network dynamics, which includes the 
closed-loop output impedance of the other DG inverter and the  

 
Fig. 5.  Closed-loop model of the islanded three-phase network.  

 

 
 

Fig. 6.  Minor feedback loop for the i-th DG inverter.  

 
distribution lines, as well as the common load. Consequently, 
the interactions between the inner control loops of the i-th DG 
inverter and the remaining network dynamics can be modeled 
by a minor feedback loop, as shown in Fig. 6. The loop gain of 
such a minor feedback loop Tm,i (s) can be given by  
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Thus, the voltage resonances caused by such interactions can 
be clarified via the frequency response of the loop gain Tm,i (s). 

III. IMPEDANCE-BASED STABILITY ANALYSIS 

On the basis of the derived closed-loop system model, the 
impedance-based stability analysis is performed in frequency-
domain. For the sake of simplicity, only the balanced network 
is considered here, and the two DG inverters are assumed to 
have the same filter constants and controller parameters. Table 
I summarizes the system electrical constants, and Table II lists 
the main controller parameters of the DG inverters.   

First, supposing that neither the virtual output impedance 
loop nor the output voltage feedforward term is applied, the 
frequency response of the open-loop gain for the inner voltage 
control loop Tv,i (s) is shown in Fig. 7. It is seen that a stable 
closed-loop terminal behavior of the i-th DG inverter across 
the output capacitor is obtained.  

Then, considering the loading effect of the equivalent load 
impedance Zload,i (s), the interactions between the i-th inverter 
and the remaining network dynamics is assessed. Fig. 8 shows 
the frequency responses of Zov,i (s) and Zload,i (s). The phase 
differences at the intersection points of two impedances imply 
the phase margin of the minor feedback loop. The intersection 
points where the phase differences are larger than 180° denote 
the resonance frequencies.  

From Fig. 8, notice that Zo,i (s) behaves as a capacitance at 
high frequencies, whereas Zload (s) becomes an inductance due 
to the feeders impedances. As a consequence, the series RLC 
circuit is formed in the minor feedback loop. Furthermore, it is 
clear that the phase difference at the intersection point, 1770 
Hz, is larger than 180 degrees, which represents the resonance 
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Fig. 7.  Frequency response of the open-loop gain of the inner voltage control 
loop for the i-th DG inverter. 
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Fig. 8.  Frequency responses of Zov,i (s) and the equivalent load impedance 
Zload,i (s). 

 
frequency. Hence, even though a stable terminal behavior of 
single inverter is obtained, the interactions between the inner 
control loops of parallel inverters can still lead to small-signal 
instability problem.  

Fig. 9 compares the frequency responses of Zload,i (s) with 
the different distribution line impedances and Zov,i (s). It can be 
observed that the phase margin of the minor feedback loop is 
increased with the increase of the line impedances. This fact 
implies that such an undesired resonance can be avoided by 
reshaping the interconnecting impedances between the parallel 
DG inverters. Under the given common load and distribution 
lines, this can be achieved by changing the closed-loop output 
impedances of inverters.  

From (9), (13) and (18), it can be noted that there are three 
ways to change the closed-loop output impedance of the i-th 
inverter, which include 1) adjusting the open-loop gain of the 
voltage control loop, 2) applying the virtual output impedance 
loop, and 3) using the output voltage feedforward term in the 
current control loop. In [11], the damping of resonance via 
reducing the open-loop gain of the voltage control system has 
been discussed. Thus, the damping effects of the latter two 
control methods are investigated in this work. 

Fig. 10 shows the frequency behavior of the total closed-
loop output impedance Ztov,i (s) with the different virtual output  
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Fig. 9.  Frequency responses of Zload,i (s) with the different distribution line 
impedances and Zov,i (s). 
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Fig. 10.  Frequency responses of Zov,i (s) and the equivalent load impedance 
Zload,i (s). 

 
impedances and the original output impedance Zov,i (s). Notice 
that only the virtual resistance is considered. It is observed that 
the total closed-loop output impedance has very few changes 
at the resonance frequency, which implies the virtual output 
resistance loop has no effect on damping of such a resonance. 

In order to see the effect of the output voltage feedforward 
term in the current control loop, the frequency responses of the 
open-loop gain of the current control loop and the closed-loop 
effect of load current are plotted in Fig. 11. Fig. 11 (a) shows a 
comparison of the open-loop gains before and after using the 
output voltage feedforward term. It is clear that the resonance 
peak caused by the output LC-filter is damped by the voltage 
feedforward term. Fig. 11 (b) compares the closed-loop effect 
of the load current derived in (5) and (16). It can be seen that 
the response magnitude is reduced.  

Fig. 12 (a) compares the frequency responses of the open-
loop gains of the voltage control loop derived in (10) and (19). 
It is seen that the loop gain at the low frequencies is increased 
with the output voltage feedforward term. Fig. 12 (b) shows 
the frequency behaviors of the closed-loop output impedances 
in (9) and (18). It is obvious that the resonance peak in Zov,i (s) 
is damped by the output voltage feedforward term. 

Fig. 13 depicts the frequency responses of the closed-loop 
output impedance and the equivalent load impedance with the 



TABLE I.  SYSTEM ELECTRICAL CONSTANTS (SEE FIG.1) 

Electrical Constants Values 

DG inverters 
(DG1 and DG2) 

DC voltage (Vdc,1 = Vdc,2) 750 V   

Filter inductor (L1 = L2) 1.5 mH 

Filter capacitor (C1 = C2) 25 μF 

Switching frequency (fsw) 10 kHz 

Distribution feeders 
(Zl,1 = Zl,2) 

Line inductance (Ll,1 = Ll,2) 0.45 mH 

R/X ratio 3 

Common load (ZL) 
Resistance load (RL) 80 Ω 

Inductance load (LL) 166 mH 

 

-100

-50

0

50

M
a
g
n
it
u
d
e 

(d
B

)

10
0

10
1

10
2

10
3

10
4

-180

-90

0

90

180

P
h
a
s
e
 (
d
e
g
)

 

 

Frequency  (Hz)

Tc (no feedforward term)

Tc' (with feedforward term)

 

(a) 
 

-40

-20

0

20

M
a
g
n
it
u
d
e 

(d
B

)

 

 

10
0

10
1

10
2

10
3

10
4

-180

-90

0

90

180

P
h
a
se

 (
d
e
g
)

Frequency  (Hz)

GIoc (no feedforward term)

GIoc' (with feedforward term)

 

(b) 
 

Fig. 11.  Frequency responses of the current control loop with and without the 
output voltage feedforward term. (a) Open-loop gain. (b) Closed-loop effect of 
the load current.    

 
output voltage feedforward term in the current control loop. 
Compared to Fig. 8, it is evident that the phase differences at 
the intersection points are smaller than 180°, which indicates 
that the resonance resulting from the interactions between the 
inner control loops of the parallel DG inverters are effectively 
damped by using the voltage feedforward term.   

IV. SIMULATION RESULTS 

To validate the above frequency-domain stability analysis, 
the time-domain simulations of the islanded network shown in  

TABLE II.  MAIN CONTROLLER PARAMETERS OF DG INVERTERS 

Controller Parameters Values 

Sampling period Ts,1 = Ts,2 10-4 s   

Current controller Kpc,1 = Kpc,2 5 

PR voltage controller 

Kpv,1 = Kpv,2 0.06 

Krv,1 = Kpv,2 10 

ωc,1= ωc,2 8 rad/s 

ω0 100π rad/s 

Active power droop controller n1 = n2 10-5 

Reactive power droop controller m1 = m2 10-5 
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Fig. 12.  Frequency responses of the voltage control loop with and without the 
output voltage feedforward term. (a) Open-loop gain. (b) Closed-loop output 
impedance.    

 
Fig. 1 is performed in MATLAB/Simulink, and the electrical 
circuit is built with the SimPowerSystems toolbox. The model 
parameters are referred to Table I and Table II.  

 Fig. 14 shows the simulated output voltages of the parallel 
inverters without using the virtual output impedance loop and 
the output voltage feedforward term. The two DG inverters are 
connected in parallel at the instant of 0.2 s. It is evident that 
the voltage resonances arise when the inverters are connected 
in parallel. Fig. 15 gives the harmonic spectra for the resonant 
voltages, where a good match with the impedance interactions   
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Fig. 13.  Frequency responses of the closed-loop output impedance and the 
equivalent load impedance with the voltage feedforward term.  
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Fig. 14.  Simulated output voltages of the parallel inverters without using the 
virtual output impedance loop and the output voltage feedforward term. 
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Fig. 15.  Harmonic spectra for the resonant voltages shown in Fig. 14. 

 
analysis in Fig. 8 can be observed.  

Fig. 16 shows the output voltages of the parallel inverters 
with the increase of the distribution line impedances. It is seen 
that once connecting the two inverters in parallel at the instant 
of 0.2 s, the resonances still arise when the line inductances 
are 0.9 mH, but disappear for the case that the line inductances 
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Fig. 16.  Simulated output voltages of the parallel inverters with the increase 
of the distribution line impedance. (a) Ll,i=0.9 mH. (b) Ll,i=1.8 mH. 
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Fig. 17.  Simulated output voltages of the parallel inverters when the virtual 
resistance, 2.4 Ω, is applied to the control system. 

 
are 1.8 mH. This phenomenon validates the frequency-domain 
analysis of the minor-loop gain in Fig. 9. 

Fig. 17 shows the output voltages of the parallel inverters 
when the virtual resistance, 2.4 Ω, is applied. It is obvious that 
the voltage resonances still arise after 0.2 s, which implies that  
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Fig. 18.  Simulated output voltages of the parallel inverters when the output 
voltage feedforward term is used in the current control loop. 

 
very little damping effect can be obtained via using the virtual 
output impedance loop. This confirms the frequency behaviors 
of the total output impedance shown in Fig. 10.  

In contrast, Fig. 18 depicts the output voltages of parallel 
inverters for the case that the output voltage feedforward term 
is applied in the current control loop. It is observed that the 
voltage waveforms keep sinusoidal after connecting the DG 
inverters in parallel, which validates the frequency-domain 
analysis shown in Fig. 13. Hence, it can be concluded that the 
use of the output voltage feedforward term in the inner current 
control loop can help to stabilize the interactions of parallel 
voltage-controlled DG inverters.  

V. CONCLUSIONS 

This paper has discussed the potential voltage resonances 
caused by the control loop interactions of the parallel voltage-
controlled DG inverters. In order to clarify the nature of such 
undesired resonances, the impedance-based analysis has been 
performed on an islanded network with two parallel voltage-
controlled inverters. It has shown that a series LC resonance 
may be raised depending on the phase difference between the 
inverter output impedance and the equivalent load impedance 
of the remaining network. The damping effects of the virtual 
output impedance loop and the output voltage feedforward 
term in the inner current control loop have been evaluated in 
the frequency domain. It has found that the virtual impedance 
has no effect on stabilizing the controller interactions, whereas 
an output voltage feedforward term can help to dampen out 
the potential resonances. Simulation results are presented to 
validate the frequency-domain analysis.  
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