Recent Advances in Wave Energy Generation

- from the perspective of the Wave Energy Research Group, Aalborg University

by

Jens Peter Kofoed

Wave Energy Research Group
Department of Civil Engineering
Aalborg University, Denmark

DAMAS 2013
Dublin
10.07.2013
Wave Energy Research Group

At Aalborg University,
Department of Civil Engineering,
Division of Water & Soil

- Staff: 10-15
- Profile:
 - Waves, Mechanics,
 - Hydro Dynamics, Control
- Experimentiel testing in lab. and at sea
- 2x 3-D wave tanks, wave and current flumes
- Key operator in Nissum Bredning
- Instrumentation for measuring “anything” 😊
- Numerical modelling
Wave Energy Research Group

- Have been involved in more than 40+ concepts/projects over the past 12-14 years
- Partner in 4 ongoing EU financed projects
- Involved in all primary Danish, and numerous international, concept developments within the sector
- National and international standardization efforts
- Teaching, courses (Ph.D./external)
Other relevant research units at AAU

The Wave Energy Research Group is in close cooperation with other research units at the university:

- Structures and geotechnics
 Division of Structures, Materials and Geotechnics
- Power take-off
 Department of Energy Technology, Section of Fluid Power and Mechatronic Systems
- Energy systems
 Department of Development and Planning, The Sustainable Energy Planning Research Group
- Control
 Department of Electronic Systems, Section of Automation & Control

Etc. …

A very interdisciplinary field
Keywords

• Why wave energy?
• Potential
• Concept developments – examples of technologies
• Generic national and international projects
• What’s happening now?
Cost of Energy (in Denmark)

<table>
<thead>
<tr>
<th>ENERGY TYPE</th>
<th>€/MWh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Floating Offshore Wind</td>
<td>400-1500</td>
</tr>
<tr>
<td>Wave Energy</td>
<td>~750</td>
</tr>
<tr>
<td>Photovoltaic</td>
<td>~125</td>
</tr>
<tr>
<td>Offshore Wind</td>
<td>75-125</td>
</tr>
<tr>
<td>Onshore Wind</td>
<td>40-75</td>
</tr>
<tr>
<td>Coal</td>
<td>30-45</td>
</tr>
</tbody>
</table>

30% of our electricity comes from wind. Why?

We are interested in Wave Energy. Why?
Cost of Energy important but not essential

Energy policy is driven by politics

There is a growing demand for clean energy, the main drivers are not just **Jobs, Environment, Global Warming**

Nations wants to secure energy supply
Et energisystem uden fossile brændsler

Vindmøller
Vindmøller skal producere en stor del af den el, der skal bruges i 2050. De fleste af møllerne skal placeres på havet.

Solceller
Solceller kan evt. supplere vindmøllernes elproduktion.

El-bil
De fleste biler skal bruge el. En del større køretøjer som f.eks. lastbiler skal køre på biobrændstoffer.

Bølge-kraft
Bølgekraft kan evt. supplere vindmøllernes elproduktion.

El-kabler
Der skal bygges flere elkabler til udlandet, så vi kan eksportere og importere mere el.

Husene skal isoleres bedre, så de bruger mindre energi end i dag. En del huse skal opvarmes af små varmepumper, resten skal forsynes med fjernvarme.

Varmepumpe
Elapparater skal være mere energieffektive end i dag.

Biomasse
Der skal bruges biomasse både på kraftvarmeværkerne, til produktion af biobrændstoffer til transport og i industrien.
The Wave Energy Resource is Enormous.
~ 20 % of World's Energy Needs
Potential wave energy in Europe

Denmark's electricity consumption: 3,7 GW
Danish West coast (offshore):
- Up to 25 MW/km
- averagely 16 MW/km
- Around 150 km from the coast
 ~ 2,4 GW
In the European Atlantic/North Sea coasts:
 25 - 75 MW/km
Mediterranean sea: 4 - 11 MW/km
Total potential on European coasts: ca. 320 GW
Wave Energy has the potential to contribute significantly to the world's energy production.
Examples of activities (DK focus)

Concept developments
- Wave Dragon – Design study for a 1.5 MW device for deployment at DanWEC, Hanstholm
- Resen Waves – ’Standard’ lab. test
- Weptos – ’Large scala’ lab. testing conducted in CCOB, Santander, Spain
- Wavestar – Performance measurements on prototype at DanWEC, Hanstholm, cont.
- Floating Power Plant – Real sea scale testing, combined wind/wave

EU funded projects
- CORES
- EquiMar
- Marinet
- WaveTrain2
- Hydralab
- Marina
- DTOcean

National, cooperation projects
- SDWED
- Partnership for wave power
- DanWEC
- IEC – TC114 / DS S-614
- FLOAT2
Wave Dragon
- a slack moored wave energy device of the overtopping type

Waves overtopping the doubly curved ramp

Turbine outlet

Reservoir

www.wavedragon.net
Prototype Test Location

Nissum Bredning

- A benign site in Northern Denmark

- 1:4.5 scale (compared DK North Sea) prototype in situ at Test Site 1, 2003 – 2005

- Grid connected, Full control system, Highly instrumented
Resen Waves - LOPF
The wave energy converter *Wave Star*

A multi point absorber system

Scale 1:10 testing in Nissum Bredning

Scale 1:40 testing at AAU

Numerical modelling

www.wavestarenergy.com
Scale 1:10 Real Sea Tests in Nissum Bredning
Power measurements from Roshage test unit

Notes:
- Power is 10 minute average values of harvested power from one float (hydraulic power leaving one cylinder)
- A typical wave period for the Roshage location is used for the simulated curve

- Online data at http://wavestarenergy.com/concept
Weptos

Wave Energy
Floating Power Plant - Combined wind and wave
Very large numbers of ideas....

• Hundreds of concepts for utilization of wave energy – and even more patents!
• Still new concepts coming and being tested
• Some promising concepts, but the race is still open!
• No convergence so far...

And large challenges...

• Valley of death – spec. private cap.
• Very cap. intensive
• Small vs. large installations
• Market
• Externalities
MERMAID, Belgium

- OTARY RS (65%) and Electrabel, Group GDF SUEZ (35%)
- 450 MW wind / 20 MW wave
- Creation of a market!
Examples of activities (DK focus)

Concept developments

- Wave Dragon – Design study for a 1.5 MW device for deployment at DanWEC, Hanstholm
- Resen Waves – 'Standard' lab. test
- Weptos – 'Large scala' lab. testing conducted in CCOB, Santander, Spain
- Wavestar – Performance measurements on prototype at DanWEC, Hanstholm, cont. Developments in lab.
- Floating Power Plant – Real sea scale testing, combined wind/wave

EU funded projects

- CORES
- EquiMar
- Marinet
- WaveTrain2
- Hydralab
- Marina
- DTOcean

National, cooperation projects

- SDWED
- Partnership for wave power
- DanWEC
- IEC – TC114 / DS S-614
- FLOAT2
The Alliance – The Project:
Structural Design of Wave Energy Devices

Objective of the project

Strengthen and consolidate Denmark’s position as one of the leaders in wave energy research, through the formation of a strategic international research alliance focusing on the structural design of Wave Energy Devices

Project granted by the Danish Council for Strategic Research
Call: Strategic Research in Sustainable Energy and Environment
Theme: Energy Systems of the Future

5 years (2010-2014)

12 Partner organizations - 6 Danish (73 %), 6 International (27 %)

Budget: 25 mil. dkr. (19.6 DSF, 5.4 Co-fin.)
Anticipated main results

A novel advanced wave-to-wire model synthesized from the following results related to wave energy devices to be generated in the project:

- Advanced knowledge on wave loadings
- Advanced knowledge on loads from and behaviour of mooring systems
- Advanced knowledge on loads from and behaviour of PTO systems
- New advanced knowledge on the interaction of the mentioned elements
- Advanced knowledge on the structural reliability of the devices
Challenges ...

- Large device variations
- Multiple disciplines involved
- Heavy interactions

Need for a ‘JPEG’ approach!

Get a coarse overview

Refine the details

To get the full picture
Challenges ...

Incorporation of experiences from associated more established fields

- Often same tools but opposite goals:
 - e.g. maximize motions or overtopping rather than minimizing, as in e.g. ship and breakwater design
- Need for more complex models (include non-linearities and interactions)

Need to consider both power production and extreme conditions

- Balance structural loads in both conditions

 - Balance maximizing power production through advanced control against structural wear
 - Balance overall power production against installed generator capacity
What do we want to achieve?

Overall: Reduce cost of energy....
Need tools for WED design and optimization
Different needs in
• Operating conditions
• Extreme conditions
Focus on
• Power production optimization
• Structural design
Many different WED types
• Provide ’building blocks’
Complex systems, non-linear behavior and interactions
• Need to balance computational speed and accuracy
Project test cases

Wavestar:
Operating cond.:
HD – lin./non-lin.
Moorings – N.A.
PTO – time dom. adv. control
Extreme cond.:
Simple – floaters out of water

Dexawave:
Operating cond.:
HD – lin.
Moorings – important, interaction
PTO – simple, passive damping
Extreme cond.:
CFD for structural loading

Weptos:
Operating cond.:
HD – multibody, highly non-linear, hydrostatics, variation of geometry
Moorings – important, weak interaction
PTO – highly non-lin.
Extreme cond.:
CFD for structural loading
Moorings – dyn. analysis
To date 33 ECTS (~150 lectures) given
Publication and dissemination

66 papers published

294 LinkedIn group members

38 press clips

Project website

46 invited lectures and public presentations

6 first and 2nd place SDWED Symposia

1st: 46 participants

2nd: 70 participants
Questions - comments?

Thank you!