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Abstract

In this paper, we investigate the mutual-complementary
functionality of accelerometer (ACC) and electromyogram
(EMG) for recognizing seven word-level sign vocabularies
in German Sign Language (GSL). Results are discussed for
the single channels and for feature-level fustion for the bi-
channel sensor data. For the subject-dependent condition,
this fusion method proves to be effective. Most relevant fea-
tures for all subjects are extracted and their universal effec-
tiveness is proven with a high average accuracy for the sin-
gle subjects. Additionally, results are given for the subject-
independent condition, where subjective differences do not
allow for high recognition rates. Finally we discuss a prob-
lem of feature-level fusion caused by high disparity between
accuracies of each single channel classification.

1. Introduction

Sign language is the primary communication way for
hearing-impaired people. As a form of non-verbal commu-
nication, sign language uses multiple visual means simul-
taneously to transmit meanings and emotions: hand/finger
shapes, movement of the hands, arms, and body, facial ex-
pression, and lip-patterns. Sign languages are not interna-
tional and not completely based on the spoken language in
the country of origin, but they vary culture-, local-, and
person-specific. All these cause the difficulty in commu-
nication between hearing-impaired and hearing people and
even between hearing-impaired people from different re-
gions. Hence, the development of a reliable system for
translation of sign language into spoken language is very
important for hearing-impaired people as well as hearing
people.
The development of a sign language translation system

is, however, not a trivial task. A basic requirement for
the system is to accurately capture the gestures that denote
signs. Moreover, in addition to signing gestures, a signer
also uses non-manual features simultaneously, such as fa-
cial expression, tongue/mouth, and body posture, to express

affective states that are limited in sign gestures. There-
fore, in order to completely understand meanings of actu-
ally signing gestures, we need to handle multimodal sen-
sory information by fusing the information from the differ-
ent channels. Since sign language is country-specific and
word order of most sign languages is not the same as the
spoken language in the country, there is no unique formal
way to generalize the grammar of sign languages. Ameri-
can Sign Language (ASL), for example, has its own gram-
mar and rules and it is not a visual form of English.
In general, fusion of multisensory data can be performed

at least at three levels: data, feature, and decision level.
When observations are of the same type, data-level fusion
where we simply combine raw multisensory data might be
probably the most appropriate choice. Decision-level fusion
is the approach applied most often for multimodal sensory
data containing time scale differences between modalities.
Feature-level fusion is eligible for combining multichannel
sensors that measure different types of signals within a sin-
gle modality, such as gesture.
In this paper, we investigate the potential of two sensors,

accelerometer and electromyogram (EMG), for differentiat-
ing word-level sign vocabularies in German Sign Language
(GSL). The main goal of this work is to examine the com-
plementary functionality of both sensors in sign language
recognition and to determine an efficient fusion scheme for
bi-channel sensor combination. Because of the character-
istics of the sensors that measure motion and muscle con-
traction in a synchronized time scale and single dimension,
we focus mainly on the feature-level fusion to classify bi-
channel features and discuss a problem of feature-level fu-
sion caused by high disparity between accuracies of each
single channel classification.

2. Related work

For a comprehensive overview of hand-gesture recogni-
tion we refer to [8]. Much of research on sign language
recognition has been done by employing cameras or sens-
ing gloves. Particularly, most work on continuous sign
language recognition is based on hidden Markov models
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(HMMs ). Using HMMs and variations of them works
on automatic recognition of various national sign languages
are reported, such as English, Chinese, German, Taiwanese,
Greek, etc.
For computer vision approach, most of previous works

used colored gloves to track hand movements of sign-
ers. Starner and colleagues [9] developed a real-time ASL
recognition system using colored gloves to track and iden-
tify left and right hands. They extracted global features
that represent positions, angle of axis of least inertia, and
eccentricity of the bounding ellipse of two hands. Using
HMMs with a known grammar, they achieved an accuracy
of 99.2% at the word level for 99 test sequences. Vogler
and Metaxas [11] used computer vision methods to extract
the three-dimensional parameters of a signer’s armmotions.
They coupled the computer vision methods and HMMs to
recognize continuous ASL sentences with a vocabulary of
53 signs. An accuracy of 89.9% was achieved. More re-
cently, a wearable system has been developed by Brashear
and colleagues [1]. They used a camera vision system along
with wireless accelerometersmounted in a bracelet or watch
to measure hand rotation and movement.
Data gloves have also often been used for sign language

recognition research ([10]; [7]). Data gloves, such as Accel-
Golves [4] and VPL Data Glove [12], are usually equipped
with bending sensors and accelerometers that measure ro-
tation and movement of hand and finger flex angles. In
the work by Gao and colleagues [3], using data glove and
HMMs as classifier, a very impressive vocabulary with a
size of 5177 isolated signs in Chinese Sign Language (CSL)
could be recognized with 94.8% accuracy. To achieve real-
time recognition, they used speech recognition methods,
such as clustering Gaussian probabilities and fast matching,
and recognized 200 sentences with 91.4% word accuracy.
To differentiate nine words in ASL, Kosmidou et al. [6]
evaluated statistical and wavelet features based on the cri-
terion of Mahalanobis distance. Two-channel EMG sensors
are positioned at arm muscles (Flexor Carpi Radialis and
Flexor Carpi Radialis Brevis) of the signer’s right hand. By
using discriminant analysis for classification they achieved
a recognition accuracy of 97.7%.
Recently, Chen et al. [2] reported that the combination

of EMG sensors and accelerometers achieved 5-10% im-
provement in the recognition accuracies for various wrist
and finger gestures. They used two 2-axis accelerometers
and two surface EMG sensors that are attached at the single
arm.
We note that our work in this paper significantly differs

from their approach in the following respects: We use a
single two-channel sensing system (one accelerometer sen-
sor and one EMG sensor) and considerable small dataset
(ten samples for each sign) for training the classifiers. Ad-
ditionally, we investigate the complementary functionality

Figure 1. Illustration of selected GSL words: (a) start position, (b)
aggression, (c) anxiety, (d) depression, (e) emotion, (f) arousal, (g)
fear, and (h) feel.

arm wrist finger overall
movement movement movement dynamics

agg H M H H
anx M L L M
dep M L H L
emo M L L L
aro M H L L
fea H L L M
fee M L H L
H: high, M: medium, L: low

Table 1. Movement characteristics of selected GSL words.

of the applied sensors for sign language recognition. Fur-
thermore, they did not compare the gains achieved for a
subject-dependent case with those achieved for the subject-
independent case, which is a major objective of the research
reported here to gain insights into the feasibility of subject-
independent classification.

3. Sign Language Datasets

As mentioned before, the main goal of this work is to in-
vestigate complementary functionality of accelerometer and
EMG for sign language recognition. For this purpose, we
selected a small set of sign words in GSL, rather than aim-
ing to recognize variety of words or sentences. From GSL
we chose seven affective-specific words (see Figure 1), ”ag-
gression”, ”anxiety”, ”depression”, ”emotion”, ”arousal”,
”fear”, and ”feel”. By observing variation and dynamics,
the characteristics of each signed gesture can be categorized
as shown in Table 1.
For recording a dataset we used the Alive Heart Monitor

system that originally measures electrocardiogram (ECG)
and 3-axis accelerometers and transfers data via Bluetooth
wireless connection. Since the sensing principle and the



Figure 2. Sensor placement.
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Figure 3. Examples of measured signals. EMG signals are high-
pass filtered for detrending unstable baseline while ACC signals
are low-pass filtered.

used electrodes for ECG are technically the same as for the
EMG sensor, we deployed the ECG channel of the system
for measuring EMG data. It also helps avoiding an incon-
venient experimental setting when attaching multiple sen-
sor systems at the arm. As shown in Figure 2, we attached
the Alive system at the forearm (nearby wrist) for measur-
ing acceleration and bi-polar EMG electrodes at the Flexor
Carpi Radialis.

Eight subjects (6 males and 2 females, aged 27 to 41),
who have no history of neuromuscular or joint diseases,
were recruited for data collection. They executed each sign
ten times in a sequence. Before starting the recordings, they
trained the sign gestures following instructive video clips
of native signers until they were able to perform them in a
sufficiently consistent manner. As a result, we obtained a
total of 560 samples. The signal length of each sign gesture
varies in 1-3 seconds depending on the nature of the signing
movement. Figure 3 shows examples of raw (preprocessed)
signals obtained from one of the subjects.

4. Feature Extraction

4.1. Features for ACC

The accelerometer used in our experiment provides the
rate of change of velocity along three axes (x, y, z). For
our analysis, each of the three channels was treated sepa-
rately. For capturing most relevant waveforms, the small
noisy fluctuations in the signal are low-pass filtered by us-
ing a 4-order Butterworth filter with a cutoff frequency at
3Hz. Because of the nature of the ACC signals with very
low frequency contents, we considered to extract features
exclusively from the time domain.
We first calculated common statistical features, such as

maximum, minimum, mean value, variance, signal length,
and root mean square. Furthermore we added the positions
of the maximum and the minimum that are defined by the
relative position (as a percentage) of maximal and minimal
values within the length of the entire pattern. Next, we cal-
culated the zero crosses, which are defined by the number
of crossing or touching the zero line in relation to the length
of the signal. The feature number of occurrences results
from the number of vertices existing in the pattern graph.
From the histogram, averages of lower, median, and upper
quartile are calculated as features.

4.2. Features for EMG

Commonly, the EMG signal requires additional pre-
processing such as deep smoothing depending on the po-
sition of the sensor, because the nature of the signal is such
that all the muscle fibers within the recording area of the
sensor contract at different rates. Fortunately, in our exper-
iment, such noises were hard to find. However there was
another problem hindering the raw signal from being sub-
sequently processed. The incoming signal exhibited an un-
stable baseline that made it difficult to calculate reasonable
values for statistical and frequency features. Therefore we
needed to detrend all EMG signals by applying a 4-order
Butterworth high-pass filter with a cutoff frequency at 0.8
Hz.
In addition to the time domain features as calculated for

the ACC signals, we now added a second set of features
derived from the frequency domain. By using typical 1024-
points fast Fourier transform (FFT), we calculated funda-
mental frequency (F0) and Fourier variance of the spec-
trum. Given the spectrum of the signal we also extracted
the region length, which is defined as a partial length of the
spectrum containing greater magnitude than the mean value
of total Fourier coefficients. This feature should be an in-
dicator for how periodic a signal is. The smaller the region
is, the more periodic is the signal. In the case that more
than one region exists in the spectrum, the lengths of these
regions are added.
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Figure 4. Comparison of feature distribution by using Fisher projection. A total of 56 features (17 for EMG and 3x13 for ACC) are
calculated.

Subj. EMG ACC Fused Fused-sel

1 58.57 98.57 98.57 100
2 74.29 95.71 95.71 100
3 70.00 98.57 98.57 98.57
4 60.00 98.57 97.14 100
5 74.29 95.71 97.14 100
6 90.00 98.57 100 100
7 75.71 94.29 95.71 100
8 64.29 97.14 98.57 100
All 39.29 79.82 84.64 88.75

Aver. 70.89 97.14 97.68 99.82
Accuracy in %, All: 5-fold cross-validation
on all samples

Table 2. Classification results.

5. Classification Results

For the classification we actually tested two machine
learning algorithms, support vector machines (SVM) and k-
Nearest Neighbor (k-NN) classifier. As we obtained better
recognition results by using k-NN (with k = 5), we present
only the results for this classifier in Table 2. The Table
shows the recognition accuracy (%) obtained by a 5-fold
cross-validation, i.e. in each fold 8 samples per class are
used for training the classiifer and 2 samples per class for
testing. Results are given for each single channel classifi-
cation and for bi-channel feature-level fusion. As we men-
tioned in the introduction, we focused on feature-level fu-
sion where the features of bi-channel sensors are simply
mixed and classified by using single k-NN classifier.
For the general condition (All), the features of all the

subjects are merged and normalized. Best results were ob-
tained by combining feature selection method prior to clas-
sification, as shown in the Table. We used a wrapper for-

ward selection (WFS) method described in [5]. In fact, if
we consider the ratio between the number of features (56
features), number of classes (7 gestures), and the fixed sam-
ple size (70 samples from each subject), it is conceivable
that the classifier can suffer from the curse of dimension-
ality problem due to the extremely small size of the train-
ing dataset. We achieved an averaged accuracy of 99.82%
for subject-dependent recognition (perfect recognition for
seven subjects) and 88.75% for the general condition by em-
ploying selection-based feature fusion.
Overall it turned out that the 3-axis accelerometer out-

performs the EMG sensor for the recognition of the se-
lected seven sign gestures in our experiment, although the
results depend on the selection of the sign gestures. As
shown in Table 1, almost all gestures selected for our ex-
periment involve performing dynamic arm movements that
could be better differentiated by 3-axis accelerometer than
using EMG analysis. Nevertheless, the complementary ef-
fect of EMG on ACC is also revealed in all gestures. This
can easily be verified by previewing the distribution of bi-
channel features in a Fisher projection (see Figure 4).
For a deeper insight into the complementary effect on

each gesture, Tables 3, 4, and 5 show the confusionmatrices
for the general condition. For example, for “aggression”,
which is accompanied by dynamic finger and wrist move-
ments, ACC provided a relatively low confidence in classifi-
cation, which could be significantly supplemented by EMG
features. In the case of ”depression”, however, the EMG
features interfered with the 100% accuracy of ACC and fi-
nally caused a lower accuracy of the bi-channel fusion than
ACC alone. The results point out that multi-channel data fu-
sion, especially for feature-level fusion, does not guarantee
an improvement of decision accuracy if there exists a high
disparity between single channel accuracies. As can be seen
with the confusion matrices, this effect depends on the ges-



actual Prediction
class agg anx dep emo aro fea fee

agg 45 5 2 0 10 13 5
anx 6 35 9 6 7 8 9
dep 6 8 34 6 9 5 12
emo 6 2 11 25 16 6 14
aro 10 3 7 14 28 8 10
fea 15 6 4 7 10 28 10
fee 6 9 14 7 12 7 25

Table 3. Confusion matrix for classification using EMG signals
(general condition).

actual Prediction
class agg anx dep emo aro fea fee

agg 58 4 0 1 5 0 12
anx 0 74 0 3 1 1 1
dep 0 0 80 0 0 0 0
emo 0 7 0 73 0 0 0
aro 7 1 0 0 57 4 11
fea 3 2 0 2 13 46 14
fee 5 3 0 0 13 0 59

Table 4. Confusion matrix for classification using ACC signals
(general condition).

actual Prediction
class agg anx dep emo aro fea fee

agg 70 4 0 1 1 1 3
anx 2 78 0 0 0 0 0
dep 0 0 78 2 0 0 0
emo 0 1 1 78 0 0 0
aro 3 1 0 0 64 1 11
fea 0 2 0 1 6 62 9
fee 5 1 0 0 5 2 67

Table 5. Confusion matrix for classification using bi-channel fu-
sion with feature selection (general condition).

ture classes and thus on the different movements necessary
for performing the gestures. A fine-grained analysis is in
order here to determine the specifics on when to rely on sin-
gle channel recognition and when to opt for bi-channel fu-
sion. This information can then inform a knowledge driven
decision-level fusion scheme with parametric weighting of
classification results from the unimodal classifiers.
Feature selection was applied on the whole set of sam-

ples that were recorded for the eight subjects. 15 features
from EMG and ACC are selected by using WFS and spec-
ified in Table 6. From the result it can be concluded that
features from frequency domain of the EMG signal and fea-
tures in the z-axis signal of the ACC signal are more rel-
evant for classifying the seven gestures. Overall, the ef-

EMG time std dev, hist quartile75, fft power mean,
fft std dev, fft peak range

ACC x time max, x histo quartile75, y time range,
y time quartile75, z time max, z time range,
z time std dev, z time mean, z histo quartile25,
z time max position

Table 6. Selected features.

Subject 1 2 3 4
Accuracy 86.25% 98.57% 92.86% 98.57%

Subject 5 6 7 8
Accuracy 100% 100% 97.14% 97.14%

Table 7. Subject-dependent classification results using selected
features.

Subj. EMG ACC Fusion

1 24.29% 62.86% 65.71%
2 31.43% 55.71% 48.57%
3 21.43% 34.29% 42.86%
4 35.71% 77.14% 70.00%
5 11.43% 61.43% 57.14%
6 25.71% 48.57% 44.29%
7 21.43% 58.57% 47.14%
8 11.43% 78.57% 62.86%
Aver. 22.86% 59.68% 54.82%

Table 8. Results for subject-independent classification.

fectiveness of histogram features, especially upper quartile
(75th percentile), could be proven for both signals. For es-
timating the universality of the features, we tried to classify
the seven gestures for each subject seperately, using the se-
lected features. The results are illustrated in Table 7. An
average accuracy of 96.31% is achieved for all subjects.
So far, classification results are very promising for the

subject-dependent condition and for the general condition
but it remains to be shown if this carries over to subject-
independent classification. This was tested by the leaving
one out method, i.e. from our eight subjects, the samples of
seven of them represent the training set, whereas the sample
of the last subject constitutes the test set for the classifier.
This is repeated until all subjects have been tested. Table
8 gives the result for this evaluation, which is somewhat
disappointing.
The disparity, i.e. the qualitative difference, between

the EMG and ACC sensors is also seen for the subject-
independent condition with the ACC data allowing for
higher recognition rates. Overall, recognition rates are
much lower then before. Moreover, the positive effect of
bi-channel fusion is only seen for two (1 and 3) out of eight
users. Thus, our results show that for sign language classifi-



cation with EMG and ACC sensors, subject-dependent clas-
sification should be preferred. We showed that by applying
feature-level fusion and feature selection, recognition rates
always increase. This is in line and confirms earlier results
by Chen and colleagues [2]. A further analysis of our data
revealed that this increase varies between gestures. Addi-
tionally, we examined subject-independent recognition for
the unimodal and the bimodal case and could show that al-
though recognition rates are above chance most of the time,
a successful subject-independent recognition is not feasi-
ble with the proposed setup. The individual differences
in signing seem to be too strong to allow for an effect of
multimodal recognition either for the EMG or ACC sensors
seperately or for feature-level fusion.

6. Conclusion

The main challenge of this work was to examine the mu-
tual complementary function for recognition of sign lan-
guage gestures using a limited sensor configuration, i.e. one
accelerometer and one EMG sensor. Actually this reduced
sensor setup clearly differs from the previous works we re-
viewed in the research field.
Using the most relevant 15 features, an average accu-

racy of 99.82% is achieved for subject-dependent recogni-
tion. The universality of the selected features is proven for
all subjects with an average accuracy of 96.31%. Unfortu-
nately, this high accuracy does not carry over to the subject-
independent recognition.
From the results, effectiveness of accelerometers for ges-

ture recognition could be verifiedwith its dominantly higher
accuracy compared with the EMG single channel. On the
other hand, it should be noted that because of the local
sensing nature of EMG, its performance for gesture recog-
nition strongly depends on the sensor position. The prob-
lem becomes even more critical when using a single EMG
sensor to recognize gestures accompanying movements of
multiple body parts. Even under these conditions, we could
verify the complementary effect of EMG features on im-
provement of recognition accuracy when combining the bi-
channel data at feature-level.
Regarding the feature-level fusion method, we observed

a critical problem caused by the high disparity between
the accuracies of each single channel classification. For
this case, employing a decision-level fusion scheme based
on parametric weighting in accordance with the disparity
would be an interesting approach to gesture recognition us-
ing multi-channel sensors. On the other hand, it concludes
that, in practice, no general statements regarding the superi-
ority of one fusion mode over another can be made, but we
need to examine different methods for a given application
and then to determine the most suitable one for subsequent
implementation. Furthermore, to improve recognition per-
formance we can consider a combined scheme of different

fusion levels and also include a feedback term in the scheme
to refine the performance of a certain fusion stage.
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