Aalborg Universitet

AALBORG UNIVERSITY

This construction is too hot to handle

A corpus study of an adjectival construction
Jensen, Kim Ebensgaard

Publication date:
2013

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Jensen, K. E. (2013). This construction is too hot to handle: A corpus study of an adjectival construction. Paper presented at Annual Meeting of the Japanese Cognitive Linguistics Association, Kyoto, Japan.
http://homepage2.nifty.com/jcla/english/05.meeting.html

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal -

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.

Fourteenth Annual Meeting of the Japanese Cognitive Linguistics Association

Thematic session:
Corpus-based approaches to English adjectives: Meaning, grammar, and sound

π

Introduction

- They're too slow to catch a seal in open water. (COCA 2011 MAG NationalGeographic)
- The world has been too ready to unlearn the lessons of the financial crisis (COCA 2011 NEWS CSMonitor)
- [too ADJ to V]-construction.

Outline

- Data and method
- Qualitative analysis
- Collostructional analysis
- Collexeme analysis
- Covarying collexeme analysis
- Distinctive collexeme analysis

repalar adjectival construction

- Cobonstruction: "an entrenched routine ..., that is generally used in the speech community ... and involves a pairing of form and meaning" (Croft 2005: 274)
- Adjectival construction: construction in which an adjectival element plays a semantically/functionally pivotal part.
- Scalar adjectival construction: adjectival construction which draws on the scalarity of gradable, or gradably construed, adjectives.

- Components of a scalar adjectival construction:

- Adjective slot: provides ADJNESs; draws on the content domain (Paradis 2000: 148)
- Degree modifier: construes ADJNESs as a scale and specifies a degree of ADJNESs; draws on the schematic domain (Paradis 2000: 148-149)

(\%calar adjectival construction
 (Vêry) schematic structure

Kim Ebensgaard Jensen
CGS, Aalborg University

?
 ${ }^{1 / 4}$ A ${ }^{10}$ example: [so ADJ that X] (Bergen \& Binsted 2003)

- The film's ending was so shocking that it physically hurt you.
- It was so cold in the kitchen that there was frost on the lettuce.

Kim Ebensgaard Jensen CGS, Aalborg University

Data and method

- 2011 segment of Corpus of Contemporary American English (COCA) (Davies 2013)
- $20,445,868$ words
- Covers: fiction, magazines, newspapers, academic texts, speech
- 1189 instances of [too ADJ to V] retrieved
- Method(s):
- Qualiative analysis (identification of possible subcategories of use)
- Quantitative analyses
- Frequency analysis of identified categories
- Collostructional analysis (using Gries [2007])
- Collexeme analysis of items in ADJ-slot (Stefanowitsch \& Gries 2003)
- Covarying collexeme analysis of ADJ- and V-slots (Stefanowitsch \& Gries 2004b, 2005)
- Distinctive collemexe analysis of potential subcategories of use (Gries \& Stefanowitsch 2004a).
- Cluster analysis (using Jensen [2013])
- Distribution of Dixon's (2004) adjective categories (drawing on an enhanced version of his typology)
- Distribution of protoypically scalar/gradable and absolute/non-gradable items in the ADJ-slot
- Using Canberra distancing and McQuitty clustering

Kim Ebensgaard Jensen CGS, Aalborg University

Data and method

- Usage-based linguistics:
- Language system is emergent (Hopper 1987, Kemmer \& Barlow 2000)
- Naturally occurring language reflects language system (Bybee \& Hopper 2001, Tummers et al. 2003)
- Corpus linguistics has a number of scientifically attractive points (e.g. falsifiability, verifiability, objectivity, completeness etc. - see Kirk [1996: 253-254] for more, also Biber et al. [1998])

Data and method

- Principle of semantic compatibility: "words can (or are likely to) occur with a given construction if (or to the degree that) their meanings are compatible" (Stefanowitsch \& Gries 2005: 4)
- Principle of semantic coherence states that, "since a word in any slot of a construction must be compatible with the semantics provided by the construction for that slot, there should be an overall coherence among all slots" (Stefanowitsch \& Gries 2005: 11).

Qualitative analysis

- Two categories based on underlying semantic force-dynamic relations between the ADJ- and V-slots.
- Three categories based on participant role selection via zero-anaphoric relations between infinitive clause and the immediate co-text of [too ADJ to V].

Qualitative analysis: Force-dynamic categories force-dynamic categories:

- Prevention: degree of ADJNEss prevents situation expressed by V-slot from occurring
- Enablement: degree of ADJNEss enables situation expressed by V-slot to occur.

Qualitative analysis: Force-dynamic categories

- Most of them are too young, too green to know just how human I am. (COCA 2011 FIC Bk:FinalStorm)
- If the making of a revolution is drama, punctuated with tragedies too numerous to count, making peace is long-form prose requiring iterations of conversation between people. (COCA 2011 MAG TechReview)
- After all, when my children were preteenagers and too young to handle last-minute flight cancellations or heavy turbulence on their own, the programs offered considerable peace of mind. (COCA 2011 NEWS NYTimes)

Kim Ebensgaard Jensen
CGS, Aalborg University

- But at a time when our discourse has become so sharply polarized, at a time when we are far too eager to lay the blame for all that ails the world at the feet of those who happen to think differently than we do. (COCA 2011 SPOK CNN_Situation)

Kim Ebensgaard Jensen
CGS, Aalborg University

Qualitative analysis: Force-dynamic categories

${ }^{1 r_{4}}$ Uño ${ }^{\circ 00}$ derlying force-dynamic cognitive models (Johnson 1987, Talmy 2000 413-470)

- Prevention: blockage image schema in which the ANTAGONIST (degree of ADJNESS) is force-dynamically stronger than the AGONIST (primary participant in proposition expressed by infinitive clause).
- Enablement: ENABLEMENT image schema in which a force-input (degree of ADJness) strengthens the AGONIST (primary participant in proposition expressed by infinitive clause).

Qualitative analysis: alrticipant role selection categories e participant role selection categories:

- Primary participant role: zero-anaphoric reference from unexpressed primary participant (AGENT, EXPERIENCER, EXISTENT, COGNIZER etc.) in scenario of infinitive clause to element in cotext of [too ADJ to V]
- Secondary participant role: zero-anaphoric reference from unexpressed secondary participant (THEME, PATIENT, BENIFICIARY etc.) in scenario of infinitive clause to element in co-text of [too ADJ to V]
- Condition/factor: zero-anaphoric reference from unexpressed CONDITION/FACTOR in scenario of infinitive clause to co-text of [too ADJ to V], including 'too ADJ'.

Qualitative analysis: rticipant role selection categories

- A $\$ 25$ donation to the IRC can supply one dehydrated child who is too weak to eat or drink with an IV kit and fluids for two days. (COCA 2011 MAG Redbook)
- I'm too depressed to see straight. (COCA 2011 FIC RedCedarRev)
- A presidential candidate who needs an image consultant to tell him it might not be a good idea to take a T-shirt-clad hottie on a yacht called Monkey Business is too dumb to be president, anyway. (COCA 2011 MAG Newsweek)

Qualitative analysis: TMECondary participant role

 articíipant role selection categories- She had the smallest room, too small to let, a cupboard really, Patrick hadn't even noticed it was there when they first moved in. (COCA 2011 FIC SouthwestRev)
- It's too sophisticated to have been programmed by some punk teenager. (COCA 2011 MAG PopMech)

Kim Ebensgaard Jensen
CGS, Aalborg University

Qualitative analysis: articicipant role selection categories

- It's too dark to see her eyes .. (COCA 2011 FIC BK:LimeCreekFiction)
- Pa fell through the ice in March, but the ground was still too frozen to dig a grave. (COCA 2011 FIC BoysLife)
- The data are too noisy to chalk that trend up to increased rainfall. (COCA 2011 MAG PopMech)

Kim Ebensgaard Jensen CGS, Aalborg University

Quantitative analysis: (Coverall category frequencies

Table 1: Force-dynamic relations*		Table 2: Participant role categories*	
Force-dynamic relation	Frequency	Participant role category	Frequency
Enablement	43	Primary	680
Prevention	1089	Secondary	262
${ }^{*} p=3.38 \mathrm{e}-212$		Condition	190

* $p=1.23 \mathrm{e}-11$ (data pooling used)

Kim Ebensgaard Jensen CGS, Aalborg University

Quantitative analysis: Collexeme analysis

- Different semantic classes
- Scalarity as shared feature found at higher level of semantic categorization
- Technically an item-class-specific construction (Croft 2003: 57-58; Tomasello 2003: 139)

Kim Ebensgaard Jensen CGS, Aalborg University

Quantitative analysis: Collexeme analysis

r

Quantitative analysis: Collexeme analysis

- Cluster of prototypically absolute/non-gradable/partially scalar adjectives (bottom 50 items in ADJ-position)
- Coerced (de Swart 2003) in [too ADJ to V]:
- I am too Catholic to be anything else, but the church hierarchy tries my patience as nothing in my life ever has. (COCA 2011 MAC USCatholic)
- Sunny was too pregnant to argue, but Jerry would have to sleep in the family room. (COCA 2011 FIC SouthwestRev)
- I was too female to be ruthless. (COCA 2011 FIC Bk:DeadMansSwitch)

Kim Ebensgaard Jensen CGS, Aalborg University

Quantitative analysis:

 (CCovarying collexeme analysisTable 5: Top 25 co-attracted lexeme pairs (log-likelihood)

Kim Ebensgaard Jensen CGS, Aalborg University

Ccovarying collexeme analysis

Table 5: Top 25 co-attracted lexeme pairs (log-likelihood)			
Rank	ADJ	V	Collostruction strength
1	good		137.541973606126
2	big	fail	124.214583952871
3	early	tell	74.7141307967985
4	early	say	65.1619493422168
5	willing	compromise	32.0301027919704
6	precious	wear	30.3655661037372
7	late	change	30.1348488072069
8	numerous	count	28.7796928062779
9	happy	oblige	27.5455085556661
10	young	understand	25.2878140994993
11	dark	see	23.7372911654156
12	dangerous	release	22.6207239909575
13	heavy	lift	22.5634901460064
14	busy	bother	22.4968554430303
15	young	remember	22.4492007417720
16	early	gauge	22.2529058825033
17	quick	dismiss	21.8478093852388
18	excited	sleep	19.9901227360955
19	hot	sustain	18.5373716482582
20	disabled	stand	18.1884420908535
21	scared	talk	17.1332049639388
22	embarrassed	ask	16.5824396122544
23	eager	agree	16.1816901988028
24	acute	navigate	16.0625988650582
25	ancient	rouse	16.0625988650582

A number of pairs display obvious semantic coherence.

Kim Ebensgaard Jensen CGS, Aalborg University

Table 5: Top 25 co-attracted lexeme pairs (log-likelihood)			
Rank	ADJ	V	Collostruction strength
1	good	be	137.541973606126
2	big	fail	124.214583952871
3	early	tell	74.7141307967985
4	early	say	65.1619493422168
5	willing	compromise	32.0301027919704
6	precious	wear	30.3655661037372
7	late	change	30.1348488072069
8	numerous	count	28.7796928062779
9	happy	oblige	27.5455085556661
10	young	understand	25.2878140994993
11	dark	see	23.7372911654156
12	dangerous	release	22.6207239909575
13	heavy	lift	22.5634901460064
14	busy	bother	22.4968554430303
15	young	remember	22.4492007417720
16	early	gauge	22.2529058825033
17	quick	dismiss	21.8478093852388
18	excited	sleep	19.9901227360955
19	hot	sustain	18.5373716482582
20	disabled	stand	18.1884420908535
21	scared	talk	17.1332049639388
22	embarrassed	ask	16.5824396122544
23	eager	agree	16.1816901988028
24	acute	navigate	16.0625988650582
25	ancient	rouse	16.0625988650582

A number of pairs display obvious semantic coherence.

Others display semantic coherence that may be less obvious at first.

Kim Ebensgaard Jensen CGS, Aalborg University

Quantitative analysis:

 CCövarying collexeme analysisTable 5: Top 25 co-attracted lexeme pairs (log-likelihood)

A number of pairs display obvious semantic coherence.

Others display semantic coherence that may be less obvious at first.

This indicates that there are underlying semantic relations between the ADJ- and V-positions.

Kim Ebensgaard Jensen CGS, Aalborg University

Quantitative analysis:

 Coovarying collexeme analysis| Table 5: Top 25 co-attracted lexeme pairs (log-likelihood) | | | |
| :---: | :---: | :---: | :---: |
| Rank | ADJ | V | Collostruction strength |
| 1 | good | be | 137.541973606126 |
| 2 | big | fail | 124.214583952871 |
| 3 | early | tell | 74.7141307967985 |
| 4 | early | say | 65.1619493422168 |
| 5 | willing | \triangle compromise | 32.0301027919704 |
| 6 | precious | wear | 30.3655661037372 |
| 7 | late | \rightarrow change | 30.1348488072069 |
| 8 | numerous | - count | 28.7796928062779 |
| 9 | happy | oblige | 27.5455085556661 |
| 10 | young | understand | 25.2878140994993 |
| 11 | dark | - see | 23.7372911654156 |
| 12 | dangerous | release | 22.6207239909575 |
| 13 | heavy | - lift | 22.5634901460064 |
| 14 | busy | bother | 22.4968554430303 |
| 15 | young | remember | 22.4492007417720 |
| 16 | early | gauge | 22.2529058825033 |
| 17 | quick | dismiss | 21.8478093852388 |
| 18 | excited | sleep | 19.9901227360955 |
| 19 | hot | sustain | 18.5373716482582 |
| 20 | disabled | stand | 18.1884420908535 |
| 21 | scared | talk | 17.1332049639388 |
| 22 | embarrassed | \rightarrow ask | 16.5824396122544 |
| 23 | eager | agree | 16.1816901988028 |
| 24 | acute | navigate | 16.0625988650582 |
| 25 | ancient | rouse | 16.0625988650582 |

A number of pairs display obvious semantic coherence.

Others display semantic coherence that may be less obvious at first.

This indicates that there are underlying semantic relations between the ADJ- and V-positions.

The force-dynamic relation categories are also reflected in many of the pairs.

Kim Ebensgaard Jensen CGS, Aalborg University

Quantitative analysis: (Distinctive collexeme analysis

Table 6: Top 30 distinctive collexemes in enablement and prevention categories (log-likelihood)

Rank	Lexeme	Preferred category	Collostruction strength	Rank	Lexeme	Preferred category	Collostruction strength
1	happy	Enablement	89.260926217908	16	small	Prevention	2.83708788714208
2	willing	Enablement	46.9387441340836	17	weak	Prevention	1.88095345135307
3	eager	Enablement	40.0831186240193	18	tired	Prevention	1.80175341058188
4	quick	Enablement	37.5343608571090	19	scared	Prevention	1.4068437340666
5	anxious	Enablement	19.8243266312754	20	expensive	Prevention	1.17076555828738
6	ready	Enablement	19.8243266312754	21	heavy	Prevention	1.09221664490188
7	easy	Enablement	13.1695906448345	22	afraid	Prevention	0.935333748765715
8	likely	Enablement	13.1695906448345	23	hot	Prevention	0.935333748765715
9	early	Prevention	5.77098531119765	24	drunk	Prevention	0.856999504879296
10	young	Prevention	5.77098531119765	25	dark	Prevention	0.778736556949665
11	late	Prevention	4.61810055299727	26	difficult	Prevention	0.778736556949665
12	busy	Prevention	4.37305208570327	27	embarrassed	Prevention	0.778736556949665
13	good	Prevention	4.21007354855397	28	hard	Prevention	0.700544775298872
14	big	Prevention	3.88504026637943	29	large	Prevention	0.700544775298872
15	old	Prevention	3.15817662048135	30	short	Prevention	0.700544775298872

- Enablement category preferred by small number of adjectives
- Primarily human propensity adjectives (Dixon 2004)
- More strongly associated with enablement category than the adjectives that prefer the prevention construction
- Item-class-specific subconstruction? (Croft 2003: 57-58; Tomasello 2003: 139)

Kim Ebensgaard Jensen CGS, Aalborg University

Table 7: 50 distinctive collexemes in the participant role selection constructions (+ attraction, - repulstion)

- Cluster analysis of top 50 attracted items
- Some clusters corresponding to classes in the (enhanced) version of Dixon's (2004) typology

Kim Ebensgaard Jensen CGS, Aalborg University

Concluding remarks

- Force-dynamic relations between the ADJ- and V-positions
- Enablement (based on ENABLEMENT image schema)
- Prevention (based on BLOCKAGE image schema)
- Zero-anaphoric relations between infinitive clause and co-text
- Primary participant
- Secondary participant
- Condition/factor
- Scalarity of ADJ-position seems to be reflected in construction-lexeme attraction patterns (collexeme analysis)
- Force-dynamic categories seem to be reflected in ADJ-V semantic coherence (covarying collexeme analysis)
- Enablement category seems particularly associated with human propensity adjectives
- Condition/factor category seems particularly associated with the following adjective classes
- Temperature
- Atmosphere
- Time
(Bibliography and references
- Bergen, B. K., \& Binsted, K. (2004). The cognitive linguistics of scalar humor. In M. Achard, \& S. Kemmer (Eds.), Language, culture, and mind (pp. 79-91). Chicago: Chicago University Press.
- Biber, D., Conrad, S., \& Reppen, R. (1998). Corpus linguistics: Investigating language structure and use. Cambridge: Cambridge University Press.
- Croft, W. A. (2003). Lexical rules vs. constructions: A false dichotomy. In H. Cuyckens, T. Berg, R. Dirven \& K. Panther (Eds.), Motivation in language: Studies in honour of Günter Radden (pp. 49-68). Amsterdam: John Benjamins.
- Croft, W. A. (2005). Logical and typological arguments for radical construction grammar. In J. Östman (Ed.), Construction grammars: Cognitive grounding and theoretical extensions (pp. 273-314). Amsterdam: John Benjamins.
- Davies, M. (2008-2013). The corpus of contemporary American English (COCA).http://corpus.byu.edu/coca/
- de Swart, H. (2003). Coercion in a cross-linguistic theory of aspect. In E. J. Francis, \& L. A. Michaelis (Eds.), Mismatch: Form-function incongruity and the architecture of grammar (pp. 231-258). Stanford: Stanford University Press.
- Dixon, R. M. W. (2004). Adjective classes in typological perspective. In R. M. W. Dixon, \& A. Y. Aikhenvald (Eds.), Ajective classes: A cross-linguistic typology (pp. 1-47). Oxford: Oxford University Press.
- Fillmore, C. J. (1988). The mechanics of "Construction grammar". Berkeley Linguistics Society, 15, 35-55.
- Gries, S. Th. (2009). Coll. analysis 3.2: A program for R for Windows 2.x
- Gries, S. Th., \& Stefanowitsch, A. (2004a). Extending collostructional analysis: A corpus-based survey on "alternations". International Journal of Corpus Linguistics, 9(1), 97-129.
- Gries, S. Th., \& Stefanowitsch, A. (2004b). Coracying colexemes in the into-causative. In M. Achard \& S. Kemmer (Eds.). Language, Culture, and Mind. Chicago: CSLI.
- Hopper, P. (1987). Emergent grammar. Berkeley Linguistics Society, 13, 139-157.
- Jensen, K. E. (2013). Custerizor: A program for R for Windows 2.x
- Johnson, M. (1987). The body in the mind: The bodily basis of meaning, imagination, and reason. Oxford: University of Chicago Press.
- Kemmer, S., \& Barlow, M. (2000). Introduction: A usage-based conception of language. In M. Barlow, \& S. Kemmer (Eds.), Usage-based models of language (pp. vii-xxviii). Stanford, CA: Stanford University Press.
- Kirk, J. M. (1996). Review of English corpus linguistics: Studies in honour of Jan Svartvik edited by Karin Aijmer and Bengt Altenberg. London: Longman, 1991. Journal of English Linguistics, 24(3), 250-258.
- Paradis, C. (2000). It's well weird: Degree modifiers of adjectives revisited: The nineties. In J. M. Kirk (Ed.), Corpora galore: Analyses and techniques in describing English (pp. 147-160). Amsterdam: Rodopi.
- Stefanowitsch, A., \& Gries, S. T. (2003). Collostructions: Investigating the interaction between words and constructions. International Journal of Corpus Linguistics, 8(2), 2-43.
- Stefanowitsch, A., \& Gries, S. T. (2005). Covarying collexemes. Corpus Linguistics and Linguistic Theory, 1(1), 1-43.
- Stefanowitsch, A., \& Gries, S. T. (2010)' Cluster analysis and the identification of collexeme classes. In S. Rice \& J. Newman (Eds.), Empirical and experimental methods in cognitive/functional research. Chicago: CSLI.
- Talmy, L. (2000). Toward a cognitive semantics. vol. 1: Concept structuring systems. Cambridge, MA: MIT Press.
- Tomasello, M. (2003). Constructing a language : A usage-based theory of language acquisition. Cambridge, Mass: Harvard University Press.
- Tummers, J., Heylen, K., \& Geeraerts, D. (2005). Usage-based approaches in cognitive linguistics: A technical state of the art. Corpus Linguistics and Linguistic Theory, 1(2), 225-261.

