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Abstract

On-Line Analytical Processing (OLAP) systems based on a dimensional view of data have found widespread
use in business applications and are being used increasingly in non-standard applications. These systems provide
good performance and ease-of-use. However, the complex structures and relationships inherent in data in non-
standard applications are not accommodated well by OLAP systems. In contrast, object database systems are
built to handle such complexity, but do not support OLAP-type querying well.

This paper presents the concepts and techniques underlying a flexible, “multi-model” federated system that
enables OLAP users to exploit simultaneously the features of OLAP and object systems. The system allows
data to be handled using the most appropriate data model and technology: OLAP systems for dimensional data
and object database systems for more complex, general data. Additionally, physical data integration can be
avoided. As a vehicle for demonstrating the capabilities of the system, a prototypical OLAP language is defined
and extended to naturally support queries that involve data in object databases. The language permits selection
criteria that reference object data, queries that return combinations of OLAP and object data, and queries that
group dimensional data according to object data. The system is designed to be aggregation-safe, in the sense
that it exploits the aggregation semantics of the data to prevent incorrect or meaningless query results. These
capabilities may also be integrated into existing languages. A prototype implementation of the system is reported.

1 Introduction

On-Line Analytical Processing (OLAP) systems have become increasingly popular in many application areas, as they
considerably ease the process of analyzing large amounts of enterprise data. Designed specifically with the aim of
better supporting the retrieval of higher-level summary information from detail data, these systems offer substantial
additional user-friendliness over general database management systems (DBMSs). The special dimensional data
models employed in OLAP systems enable visual querying, as well as contribute to enable OLAP systems to offer
better performance for aggregate queries than do traditional DBMSs. As another example, most OLAP systems
support automatic aggregation [29, 21], which means that the system knows which aggregate functions to apply
when retrieving different higher-level summaries.

Almost all OLAP systems are based on a dimensional view of data, in which measured values, termed facts, are
characterized by descriptive values drawn from a number of dimensions; and the values of a dimension are typically
organized in a containment-type hierarchy. While the dimensional view of data is particularly well suited for the
aggregation queries performed in OLAP analysis, it also limits the abilities of OLAP systems to capture complex
relationships in the data. As a result, an OLAP database only captures some of the structure available in the data
from which it derives. Furthermore, it is often difficult or impossible to combine data from an OLAP system with
data from other sources.

In contrast, object database (ODB) systems excel at capturing and querying general, complex data structures.
These systems offer semantically rich data models and query languages that include constructs such as classes,



inheritance, complex associations between classes, and path expressions. However, ODB systems do not support
aggregate queries well. For example, the complex data structures tend to make it hard to formulate correct queries
that aggregate the data in the ODB. Also, ODB systems are optimized to perform more general types of queries,
mostly on the detail level, so the performance for aggregate queries is usually not satisfactory.

Federated database systems [31, 15, 16, 9] support the logical integration of autonomous database systems,
without requiring data to be physically moved and while allowing the individual autonomous database systems to
function as before. Federation is a flexible solution that may leverage existing technology and adapt quickly to
changing information requirements. In contrast, physical integration of data, commonly referred to as the physi-
cal (as opposed to logical) data warehousing approach [35]. This approach has its own advantages, perhaps most
significantly in terms of performance when combining data from different databases, but it is very difficult to keep
the warehouse data up to date. Thus, it is often impossible or impractical to use physical data warehousing, espe-
cially if the data sources belong to different organizations. The two approaches are complimentary, in that they are
appropriate under different circumstances.

When integrating data from databases based on different data models, the traditional approach has been to
map all data into one common data model and federate the (logically) transformed data rather than the original
data [31, 15, 9]. In this paper, we adopt an alternative approach that combines data from summary databases (SDBs)
and object databases using a federated database approach®, where data is handled using the most appropriate data
model and database technology: SDB systems for summary data and ODB systems for complex, general data. No
attempt is made at “shoehorning” the data into one common format, which is unlikely to fit all the data.

Focus is on enabling OLAP-style queries over existing SDBs to also include data from existing, external ODBs,
without jeopardizing the benefits of OLAP queries and without having to integrate the data physically. Specifically,
aggregation safety remains enforced, meaning that incorrect or meaningless extended queries are avoided. As a
first step in demonstrating the capabilities of the system, a prototypical, user-oriented query language for SDBs,
termed SumQL, is defined. The concept of a link, which enables the connection of SDBs to ODBs in a general and
flexible manner, is then integrated into SumQL along with object features, yielding an extended language, termed
SumQL++.

With this language as a vehicle, it is shown how the system enables using path expressions for referencing data
in SDBs in selection criteria. Queries over SDBs may return ODB data along with the aggregate results, i.e., the
result of an OLAP query may be decorated with object data. Finally, SDB data may be grouped based on ODB data.
All extensions are accompanied by formal definitions in terms of SumQL and the underlying object query language
(the ODMG data model and OQL query language [4] are used for the ODBSs). The paper’s contribution is presented
in terms of the SumQL and SumQL++ languages, which are defined formally in the paper and concisely capture
the relevant concepts, to be self-contained and ensure precision. Other languages such as SQL [23], OQL [4], and
MDX [24] may take the place of SumQL++ once enriched with the constructs in SumQL++ that they do not already
offer. Additionally, the approach can easily be extended to allow queries over external relational databases that allow
path expressions in queries, e.g., as proposed in the SQL:1999 standard [18].

A prototype has been built [13] that supports the execution of SumQL++ queries over a federation of autonomous
SDBs and ODBs.

The arguably most related previous work concerned the system based on the nD- SQL language [11]. This
system enables the querying of a federation of solely relational data sources, which are treated symmetrically, using
nD- SQL. In contrast, we extend OLAP-style queries on an identified SBD to object databases with related data.
Further, nD- SQL supports neither dimension hierarchies nor the aggregation semantics that enable safe aggregation
and shield the users from incorrect results. Other existing middleware offerings such as DataJoiner [17], Cohera [8],
and Oracle Gateways [25] exhibit the same limitations, which renders the formulation of distributed OLAP queries
cumbersome and errorprone in comparison to this paper’s proposal.

More specifically, we believe this paper to be the first to consider the integrated querying of data from inde-
pendent summary and object databases without prior physical integration, with the objective of giving OLAP users
enhanced, aggregation-safe query capabilities. Surveys of OLAP data models and languages [26, 33, 34] indicate

Although the paper’s contributions are applicable to aimost all current OLAP systems, we use the term SDB instead of OLAP DB to
emphasize the focus on aggregate queries over summary data.



that this issue has not been addressed previously. To our knowledge, the paper is also the first to demonstrate a
“multi-paradigm” (or “multi-model”) federation [1, 14, 15], where one of the data models is a dedicated summary
data model. Finally, the paper is the first to investigate the important issue of how OLAP concepts such as summa-
rizability and aggregation safety are influenced by federation with external data and how they may be preserved to
ensure safe query results.

The remainder of the paper is structured as follows. Section 2 presents a real-world case study and considers the
arguments for why federating summary and object databases is a good idea. Section 3 introduces the foundations
for the SDBs and ODBs. It describes a prototypical summary data model and its high-level, user-oriented summary
query language, SumQL, as well as the central concept of summarizability. It also briefly presents the Object Data
Management Group (ODMG) data model and its OQL query language. Section 4 describes the notion of link that
connects SDBs to ODBs, and Section 5 proceeds to describe the federated data model, which incorporates links, and
its extended SumQL query language, which enables queries to access information in both SDBs and ODBs. Section 6
describes the prototype implementation of a system that implements the concepts and techniques presented. The last
section summarizes and offers research directions. Finally, an appendix describes the formal syntax and semantics
of SumQL.

2 Motivation

In this section, we discuss why it is a good idea to federate existing summary and object databases and present a
real-world case study that is used for illustration throughout the paper.

2.1 Reasonsfor Federation

Many reasons exist for preferring federating existing SDBs and ODBs, as opposed to physically integrating these.
The generic arguments for federation include leveraging existing technology, accessing the most current information,
and allowing the autonomous existence of the systems being federated. These arguments also apply in this case, so
we concentrate on the advantages specific to summary and object databases.

In many situations, SDBs only contain abstract summary data and do not contain the base data from which the
summary data is derived, thus rendering access to external databases necessary to be able to answer certain queries.
For example, summary databases provided by the Ministry of Health do not permit access to base data, because the
base data is unavailable or considered too sensitive for general disclosure, e.g., diagnosis information. The same
situation arises in census databases, where only high-level information is disclosed publicly.

Federating SDBs and ODBs enables a simple and special-purpose SDB system. An SDB needs not contain all
objects, attributes, and relationships in the base database, but only the elements relevant to summary querying. This
is attractive, as capturing all information in the SDB unnecessarily impedes casual use of the SDB system. Indeed,
most OLAP systems that implement SDBs do not have the necessary facilities, e.g., category inheritance [20], to
support this extra information. The federated approach allows the SDB to remain simple, while still allowing access
to relevant external data. When SDB data resides in a special-purpose SDB system, we cannot use existing database
middleware to access it, leading to a need for technology that enables federations of SDBs and ODBs.

It is possible to obtain better performance when performing summary querying in an OLAP-type system rather
than in a general-purpose DBMS. The former type of system typically employs specialized, performance enhancing
techniques, such as multidimensional storage and pre-aggregation. This performance gain can often outweigh the
performance loss due to the fact that the data is not physically integrated, meaning that a federated system can have
comparable (or even better) performance without the limitations incurred by physical integration 2 .

Next, it is easier to formulate summary queries in an SDB system than in a general (relational or object) DBMS.
This is because an SDB query language is designed exclusively for expressing summary queries over categories, tak-
ing advantage of, e.g., the automatic aggregation implied by the summary database semantics. Even when extending
an SDB language to access object data (as we do in Section 5), it is easier to pose summary queries in the extended
language than in a general database query language such as OQL or SQL.

2However, we are not suggesting that already integrated databases should be split up for performance reasons.



An SDB system may support the formulation of summary queries that return correct, or meaningful, query
results. When building an SDB, the data may be shaped in order to satisfy summarizability conditions [21]. Briefly,
a summary query satisfies summarizability conditions if the query result is correct w.r.t. the real world. For example,
summarizing the populations over cities to get summaries for states will produce incorrect results if the populations
in towns and farms outside cities are not accounted for. As another example, if patients have several diseases, and
we summarize over all diseases to get the total number of sick people, we will get the wrong result as some patients
are counted more than once. We may enrich an SDB system with information that enables the system to ensure
correctness. For example, we may specify that inventory levels should not be added across time [21] or that patient
counts for diseases should not be added. In a general-purpose DBMS, no mechanisms for ensuring correct summary
results are available.

The federated approach offers additional flexibility when query requirements change. SDBs may be huge, and
therefore rebuilding them may be time consuming. Updates to an SDB, e.g., adding new types of information, may
require a total or partial rebuild of the database. Because of the rebuild time, a rebuild of the SDB will most likely
be refused (by the IS department) or postponed to the next scheduled rebuild, e.g., once a week or once a month. In
contrast, a new link can be added in a matter of minutes, yielding much faster access to newly required information.
This allows rapid prototyping of OLAP systems. In a relational DB setting, the ability to do this rapid prototyping
is one of the key selling points for the Cohera federated DBMS [8].

The above reasoning suggests that in many cases, it is advantageous to logically federate existing OLAP and
object databases instead of performing physical integration.

2.2 Case Study

The case study concerns data in three different databases, each managed by a separate organization. Each database
serves a different purpose, but the databases contain related data. A graphical illustration of the databases is seen in
Figure 1.

Demographic Admissions Epidemiology
Database Database Database
Diagnosis
S t
State State Group ymptom
- name - name - code - name
- area - description
1 1 1 0..*
in state located in part of diagnosis symptoms
0.* 0.* 2.* 0..*
City Hospital Diagnosis Diagnosis
- name - name - code - code
- population - text
- deaths/year
1 1 Admission 1 ) |p0|dence§/year
) - lifestyle_disease
has current mayor admitted to - date primary
1 0..* |- reason 0..* diagnosis
Mayor
- name
- age
Contagious Non-
Diagnosis contagious
- transfer_mode Diagnosis

Figure 1: UML Schema of Case Study



The databases are modeled using the Unified Modeling Language (UML) [30]. Compound boxes denote classes.
The class name is in boldface in the top part of the box, while class attributes are listed in the middle part. The
bottom part is reserved for class methods, i.e., dynamic aspects of the class, but since we are only interested in the
data, methods are omitted. Associations, i.e., relationships, between classes are represented by lines tagged with
an association name. The cardinality of an association is shown by the numbers at the ends of the association line.
Either a single cardinality or a range of cardinalities are specified. A “*” denotes any natural number.

The demographic database is maintained by the Department of the Interior and offers central access to demo-
graphic data for all cities and states in the country. Data is collected for states, for which name and area is stored,
and for cities, for which name and population is recorded. The database also contains information about the current
mayor of a city. There are zero or more cities in each state, and each city has exactly one current mayor.

Next, the admissions database is maintained by the Department of Health and provides an overview of the ad-
missions patterns for all hospitals nationwide. For an admission, the date of admission and the reason for admission,
e.g., accident, are recorded. Additionally, we record which hospital the patient is admitted to and the primary di-
agnosis that caused the admission. For hospitals, the name and the state where the hospital is located are recorded.
For diagnoses, we record an alphanumeric code, determined by a standard classification of diseases, e.g., the World
Health Organization’s International Classification of Diseases (ICD-10) [36]. The classification also determines how
the diagnoses are grouped into diagnosis groups. Diagnosis groups consist of at least 2 related diagnoses and a di-
agnosis belongs to exactly one diagnosis group. For diagnosis groups, we record a alphanumeric code, determined
by the classification.

The last database is an epidemiology database maintained by a medical school for research purposes. Data are
collected from hospitals, practicing physicians, and insurance companies to obtain a rich overview of the occurrence
of diseases. The database is organized around the diagnoses in the standard disease classification also used in the
admissions database, but more information is recorded. In addition to the alphanumeric code and an additional
descriptive text, the database also records the number of incidences per year, the number of deaths per year, and
whether the disease is dependent on the lifestyle of the patient. The Diagnosis class has two subclasses, Contagious
Diagnosis and Non-contagious Diagnosis. For contagious diagnoses, we additionally record the mode of transfer
of the disease, e.g., by air. The symptoms of diseases are also recorded. For symptoms, we record a name and a
description of the symptom.

The three databases were built and are used separately, which explains the differences in their information con-
tents. But, we want to use them together, to include information from the demographic and epidemiology databases
in queries against the admissions database. Thus, we need to provide a logical integration of the databases.

To obtain some example data, we assume a standard mapping of the UML schemas to relational schemas, i.e.,
one table per class, and relationships expressed using foreign keys. We also assume the use of surrogate keys, named
ID, with globally unique values. Subclasses are supported by sharing of IDs with the superclass. For example, the
Contagious Diagnosis subclass is represented by a separate table with the 1D shared with the Diagnosis table. The
tables for the demographic, admissions, and epidemiology databases are shown in Tables 1, 2, and 3, respectively.

D Name Area ID Name Population | StatelD | MayorlD ID | Name | Age
o T Calitorma | 100000 10 | Berkeley 140000 0 21 20 | Mr. X | 45
1 Oregon 20000 11 | Portland 500000 1 22 21 | Ms.Y | 57

St Table 12 | Oakland 409000 0 20 22 | Ms.Z | 33
City Table Mayor Table

Table 1: Data for the Demographic Database

3 Federation Data Models and Query Languages

This section defines a prototypical multidimensional data model and query language used for the SDB component

in the federation; and it briefly presents the data model and query language of the federation’s ODB component.
The multidimensional model precisely and concisely captures core multidimensional concepts such as cate-

gories, dimensions, and automatic aggregation. As part of this, the notion of summarizability is defined. The



ID Day Reason HospitaID | DiagnosisiD ID Name Statel D
30 | 05/23/99 Accident 40 50 40 AltaBates 70
31 | 04/12/99 F.P. referral 41 51 41 | Portland Genera Hospital 71
32 | 05/01/98 | Specidlist referra 41 52 42 Portland Kaiser 71
Admission Table Hospital Table
'5'3 CEol%e Grogg’ ID ID | Code | Text ID | Name
60 El Diabetes 70 | Cdifornia
51 | E11 60 -
61 N1 | Infections 71 Oregon
52 | N12 61 DiagnosisGroup Table State Table
Diagnosis Table
Table 2: Data for the Admissions Database
ID | Code Text Deaths | Incidences | Lifestyle
80 | E10 Insulin dependent diabetes 50000 900000 Yes
81 | E11 | Noninsulin dependent diabetes | 20000 1500000 Yes
82 | N12 Pneumonia 100000 | 1000000 No
Diagnosis Table
ID Name Description DI aggc(;)su s ngtfml D
ID TransferMode 20 Cough The lungs of the patient ... 8l 91
82 Air 91 | Acetone Breath The breath of the patient ... 0 )
ContagiousDiagnosis Table 92 Fever The temperature of the patient... o O

Symptom Table Diagnosis.Symptoms Table

Table 3: Data for the Epidemiology Database

multidimensional data model and query language are equivalent in expressive power to previous approaches such as
the ones proposed by Cabbibo et al. [3] and Jagadish et al. [19]. The ODB data model and query language is the
ODMG data model and OQL query language.

3.1 Summary Data Model

The model has constructs for defining the schema, the instances, and the aggregation properties.
An n-dimensional fact schema is a two-tuple S = (F, D), where F is a fact type and D = {7;,7 = 1,..,n} is
its corresponding dimension types. A fact type is a name describing the type of the facts considered.

Example 1 In the case study we will have Admissions as the fact type, and Diagnosis, Place, Reason, and Time as
the dimension types.

A dimension type 7 is a four-tuple (C,<7, T, Ly), where C = {C;,j = 1,..,k} are the category types of
T, <7 is a partial order on the C;’s, with T+ € C and L € C being the top and bottom element of the ordering,
respectively. The intuition is that one category type is “greater than” another category type if each member of the
former’s extension logically contains several members of the latter’s extension, i.e., they have a larger element size.
The top element of the ordering corresponds to the largest possible element size, that is, there is only one element
in its extension, logically containing all other elements. We say that C; is a category type of 7, written C; € T, if
C; € C. We assume a function Pred : C — 2€ that gives the set of immediate predecessors of a category type C j-

Example 2 Diagnoses are contained in Diagnosis Groups. Thus, the Diagnosis dimension type has the following
order on its category types: L piqgnosis = Diagnosis < Diagnosis Group < T piggnesis- Thus, Pred(Diagnosis) =
{Diagnosis Group}. Other examples of category types are Day, Month, and Year. Figure 2, to be discussed in detail
in Example 6, illustrates the dimension types of the case study.



A category C; of type C; is a set of dimension values e. A dimension D of type 7 = ({C;}, <7, T7,L7)isa
two-tuple D = (C, <), where C' = {C;} is a set of categories C; such that Type(C;) = C; and < is a partial order
on U;Cj}, the union of all dimension values in the individual categories.

The partial order is defined as follows. Given two values e1, ez then e; < eq if e is logically contained in es,
I.e., e can be considered as a set containing e;. We say that C; is a category of D, written C; € D, if C; € C. For
a dimension value e, we say that e is a dimensional value of D, writtene € D, ife € U;C}.

We assume a partial order <. on the categories in a dimension, as given by the partial order <+ on the corre-
sponding category types. The category | p in dimension D contains the values with the smallest value size. The
category with the largest value size, T p, contains exactly one value, denoted T. For all values e of the categories of
D, e < T. Value T is similar to the ALL construct of Gray et al. [12]. We assume that the partial order on category
types and the function Pred work directly on categories, with the order given by the corresponding category types.

Example 3 The Diagnosis dimension has the following categories, named by their type. Diagnosis = {50, 51, 52},
Diagnosis Group = {60, 61}, and T piagnosis = { T }. The values in the sets refer to the ID fields in the Diagnosis
and Diagnosis Group tables in Table 2. The partial order < is given by the GrouplD field in the Diagnosis table.
Additionally, the top value T is greater than, i.e., logically contains, all the other diagnosis values.

Let C4, .., C, be categories and 7" a domain that includes the special value null. A measure for these categories
and this domain is a function M : C; x .. x C,, — T. We say that M is a measure for the set of dimensions
D = {Ds,..,D,}, if M is a measure for the categories L p,,.., Lp,. Every measure M has associated with it a
default aggregate function fps : T x T — T. The default aggregate function must be distributive. The null value
is used to indicate that no data exists for a particular combination of category values. As is the case for SQL, the
aggregate functions ignore null values.

Example 4 In the case study we have one measure, TotalAdmissions, which is the total number of admissions by
Diagnosis, Place, Time, and Reason. The default aggregation function is SUM.

The measures associated with each dimension may have different aggregation properties. For different kinds
of measures, different aggregate functions are meaningful. For example, it is meaningful to sum up the number of
admissions; and because this data is ordered, it is also meaningful to compute the average, minimum, and maximum
values. In contrast, in at least some situations, it may not be meaningful to compute the sum (over time) of measures
such as the number of patients hospitalized, but it remains meaningful to compute the average, minimum, and
maximum values. Next, it makes little sense to compute these aggregate values on data such as diagnoses, which
do not have any ordering defined on them. Here, the only meaningful aggregation is the count of occurrences.
Whether or not an aggregate function is meaningful also depends on the dimensions being aggregated over. For
example, patient counts may be summed over the Place dimension, but not over the Time dimension. For additional
discussion of these issues, we refer to reference [21].

By recording what aggregate functions may be meaningfully applied to what data, it is possible to support correct
aggregation of data. With such information available, it is possible to either completely reject “illegal” aggregation
or to warn the users that the results may not be meaningful.

Following previous research [20, 28], we distinguish between three distinct sets of aggregate functions: X,
applicable to data that may be added together, ¢, applicable to data that can be used in average calculations, and c,
applicable to data that may only be counted.

Considering only the standard SQL aggregate functions, we have that > = {SUM, COUNT, AVG, MIN, MAX},
¢ = {COUNT, AVG, MIN, MAX}, and ¢ = {COUNT}. The aggregation types are ordered, ¢ C ¢ C %. If a set of
aggregate functions is meaningful for some data, so are the functions in lower sets.

For each measure M for a set of dimensions D = {D1, .., D, }, we assume a function axs : D — {X, ¢, ¢} that
gives the aggregation type for each dimension. In Section 3.2 we further discuss issues related to correct aggregation
of data.

Example 5 In the case study, a 7o¢414dmissions (Diagnosis) = .



An n-dimensional summary database (SDB) is a 3-tuple S = (S,D,M), where S is the schema, D =
{D1,.., Dy} is a set of dimensions, and M = {M, .., My} is a set of measures for the categories L p,,.., Lp,.
Example 6 The case study has a 4-dimensional summary database with Diagnosis, Place, Reason, and Time as
dimensions. There is one measure, the TotalAdmissions, as described above. A graphical illustration of the SDB is
seen in Figure 2.

Diagnosis Place Reason Time
Dimension  Dimension Dimension Dimension
) ) T )
Diagnosis Place Reason | Time
Year
Diagnosis Group State Reason Group |

Month

Diagnosis Hospital Reason Day

Total admissions

Figure 2: Summary Model for the Admissions Database

3.2 Summarizability

This section defines summarizability, an important property of SDBs related to the use of pre-computed aggre-
gates. Intuitively, summarizability captures when higher-level aggregates may be obtained directly from lower-level
aggregates.

Definition 1 Givenatype T, aset S = {S;,5 = 1,..,k}, where S; € 2T, and a function g : 27+ T, we say that ¢
is summarizable for S if g({g(S1), ..,9(Sk)}) = g(S1 U..USk). The argument on the left-hand side of the equation
is a multiset, i.e., the same value may occur multiple times.

Summarizability is important since it is a condition for the flexible re-use of computed aggregates. Without
summarizability, (pre-computed) lower-level results generally cannot be correctly combined into higher-level results.
In such situations, we have to compute the higher-level results from base data, which may be computationally
expensive.

It has been shown that summarizability is equivalent to the aggregate function (g) being distributive and the
mappings between dimension values in the hierarchies being, strict, covering, and onto [21]. These properties are
defined formally elsewhere [26, 27, 21]. Informally, summarizability requires that the dimension hierarchies take
the form of balanced trees, i.e., all paths from the root have the same length (onto), links between values do not
“skip” levels (covering), and all values below the root have exactly one parent (strictness). If hierarchies do not have
this form, some lower-level values will either be double-counted or ignored.

Summarizability is closely related to the aggregation types defined in the previous section. We use the aggrega-
tion types to capture when it is safe to aggregate a measure over a given dimension. If we have aggregated over a
non-summarizable hierarchy, e.g., a diagnosis hierarchy where one diagnosis is part of several diagnosis groups, it is
not permissible to use the aggregate results for the diagnosis groups to compute the result for the entire dimension,
as the same admissions will then be counted more than once. We use the aggregation types to prevent this. Problems
related to summarizability also occur when we extend the queries over SDBs to include data from external ODBs,
see Section 5 for details.



3.3 TheSummary Query Language

The query language of the SDB component is termed SumQL and is meant to be language that makes it easy for
the user to pose aggregate queries over SDBs. We have chosen to define a separate summary language rather than
attempting to augment the object query language, OQL, for querying SDBs because we wish to refer explicitly to
the special data structures in SDBs.

Using OQL, or some variant thereof, for querying SDBs would mean that we would have to overload some of
the language constructs, re-using them with a different meaning. This is undesirable, as it confuses the meaning of
statements in the language. Also, we would have to introduce OLAP constructs such as measures, dimensions, and
hierarchies, which would conflict with the generality of the object model. Finally, the focus of this paper is to allow
integrated querying of existing SDBs which do not use ODB technology and existing ODBs, rather than providing
OLAP-style querying over object databases only.

SumQL is reminiscent of SQL, but includes constructs that reflect SDB concepts such as measures, dimensions
with hierarchically organized categories, and automatic aggregation, thus supporting naturally the expression of
aggregate queries over summary databases. Using SumQL enables us to concisely and precisely define the extensions
for referencing object data.

The general format of a SumQL query is displayed below and explained in the following. Symbol “+” indicates
one or more occurrences and square brackets denote optional parts. The formal syntax and semantics of SumQL are
given in Appendix A.

SumQL query ::= SELECT measure™
INTO summary_database
BY_CATEGORY category™
FROM summary _database
[ WHERE predicate_clause ]

The SELECT clause contains a list of measures for which a result is to be computed. Unlike in SQL, aggregate
functions such as SUM need not be specified; rather, the default aggregation function specified in the schema is
automatically applied to aggregate the data. An INTO clause follows that specifies the SDB into which the result of
the query is stored. Thus, SumQL queries take SDBs as arguments and return an SDB.

The BY_CATEGORY clause specifies the aggregation level at which the measures are to be computed. For
each dimension not mentioned in this clause, the measures are aggregated over the whole dimension, i.e., the
same behaviour as SQL GROUP BY clauses. Effectively, all dimensions and measures not mentioned in the
BY_CATEGORY and SELECT clauses are ignored.

The FROM clause specifies the SDB from which to aggregate. For simplicity, we only consider queries over one
SDB, and no “drill-across” or “union” functionality is provided. However, the data model and query language can
easily be extended to handle this (see [26] for an example). The optional WHERE clause specifies predicates that are
applied to the SDB before aggregation occurs. The predicates can include standard constructs such as comparison
operators, set operators, and string operators. These constructs are equivalent or similar to those found in SQL and
OQL [4].

Example 7 The following SumQL statement computes the “Total Admissions” measure from the “admissions”
SDB, aggregated to the level of Year and State, for the years after 1997. The resulting SDB is called “testdb.”

SELECT TotalAdmissions INTO testdb BY _CATEGORY year, state FROM admissions WHERE year > 1997

3.4 The Object Mode and Query Language

This section briefly reviews the object data model and query language used by the ODB component of the federation.
We use the Object Data Management Group’s object data model, ODMG 2.0 [4], and its associated query-language,
OQL. The ODMG data model includes constructs such as object class definitions, attributes, object identifiers,
set-valued attributes, reference attributes, tuple attributes, inverse attributes, inheritance structures, and object class
unions. An in-depth coverage of the ODMG data model and the OQL language may be found in the literature [4].
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Example 8 Data definitions for the demographic (left column) and epidemiology (right column) databases from the
case study are shown in Figure 3. Keyword “INVERSE” indicates that the contents are the inverse of a relationship
in another class. The “:” denotes a sub-class relationship, while “Set<X>" specifies a set-valued relationship

Demographic ODB

Epidemiology ODB

INTERFACE State
EXTENT states
KEY name
ATTRIBUTE STRING(30) name
ATTRIBUTE UNSIGNED LONG area
RELATIONSHIP Set<City> cities
INVERSE City::in_state

INTERFACE City

EXTENT cities

KEY name

ATTRIBUTE STRING(30) name

ATTRIBUTE UNSIGNED LONG population

RELATIONSHIP State in_state
INVERSE State::cities

RELATIONSHIP Mayor current_mayor
INVERSE Mayor::city

INTERFACE Mayor
EXTENT mayors

INTERFACE Symptom
EXTENT symptoms
KEY name
ATTRIBUTE STRING(50) name
ATTRIBUTE STRING(255) description
RELATIONSHIP Set<Diagnosis> diagnoses
INVERSE Diagnosis::symptoms

INTERFACE Diagnosis
EXTENT diagnoses
KEY code
ATTRIBUTE STRING(10) code
ATTRIBUTE STRING(100) text
ATTRIBUTE UNSIGNED LONG deaths_pr_year
ATTRIBUTE UNSIGNED LONG incidences_pr_year
ATTRIBUTE STRING(1) lifestyle_disease
RELATIONSHIP Set<Symptom> symptoms

INVERSE Symptom::diagnoses

KEY name

ATTRIBUTE STRING(30) name . . . .
ATTRIBUTE UNSIGNED LONG age INTERFACE ContagiousDiagnosis:Diagnosis

RELATIONSHIP City city EXTENT contagiousdiagnoses

INTERFACE NonContagiousDiagnosis:Diagnosis
EXTENT non-contagiousdiagnoses

Figure 3: Data Definitions for the Demographic and Epidemiology Databases

The OQL query language has constructs such as path expressions and class selectors. Path expressions are used
to navigate through reference attributes to other classes using dot-notation, while class selectors restrict queries to
operate only on a certain subclass.

Example 9 The following query uses a path expression to select the city name only for cities where the current
mayor is more than 40 years old. The path expressions navigates from cities to mayors via reference attribute

“current_mayor.”
SELECT C.name FROM C IN City WHERE C.current_mayor.age > 40

Example 10 The next query navigates from symptoms to the diagnoses that exhibit those symptoms using a path
expression and then applies a class selector (the square brackets) to select the attribute “transfer_mode” of the Diag-
nosis sub-class “Contagious Diagnosis.” Thus, only transfer modes for contagious diagnoses with the the symptom
“Cough” are returned:

SELECT S.diagnoses[ContagiousDiagnosis]transfer_mode FROM S IN Symptom
WHERE S.name = “Cough”
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4 Linking Databases

This section defines the links that are used to connect SDBs and ODBs. As mentioned in the introduction, we use
explicit links to connect the databases, rather than relying solely on implicit knowledge of relationships among the
databases when formulating queries.

Explicit links are preferable for several reasons. First, even if the data in the SDB is derived from source data in
an ODB, the complete mapping may be unknown because of substitutions for missing data and other types of data
cleansing, interpolation, etc. Second, explicit links are needed when linking an SDB to an unrelated ODB, i.e., an
ODB other than the base data from which the SDB was extracted. Third, the source data may be sensitive and thus
unavailable to the SDB user. So, we propose to explicitly link even summary data to the base data from which it was
derived.

Links are considered separately from the federated databases to better capture their special semantics and to aid
the optimization of queries involving links. However, links can be physically implemented as part of these databases.

Formally, a link L from a category C to an object class O is a relation L = {(c,0)}, where ¢ € C and o € O.
All links have a name to distinguish them. This is because each category and even pair of category and object class
may have several links.

Links may be specified in several ways. An equivalence link is specified by a predicate C' = O.a, where C is a
category, O is an object class, and a is an attribute of O that uniquely identifies instances of O, i.e., a is a candidate
key for O in relational database terms. Equivalence links occur when a category in the SDB represents the same
real-world entities as does some object class in an ODB. An attribute link is specified by the same type of predicate,
the only exception being that a does not uniquely identify instances of O. An enumerated link is given by a link
relation L = {(c,0)}, where pairs of dimension values in C' and object ids from class O are explicitly enumerated.
Therefore multiple dimension values may be assigned to the same object. Enumerated links are typically used for
linking a category in an SDB and an object class that do not represent the same real-world entities.

Example 11 In our case study, we can specify an equivalence link between the Diagnosis category in the Admis-
sions SDB and the Diagnosis Class in the Epidemiology ODB by the predicate “Diagnosis = Diagnosis.Code,” as
the values of the Diagnosis category are the codes of the diagnoses. In subsequent examples, we term this link
“diag_link.”

Example 12 An enumerated link from the Hospital category in the SDB to the City class in the Demographic
ODB may be specified by explicitly assigning hospitals to cities based on where the hospitals are located. The
contents of the link relation is L = {(“Alta Bates”,”Berkeley”), (“Portland General Hospital”,”Portland”), (“Portland
Kaiser”,”Portland™) }. We will use the name “city_link” for this link.

The cardinality of a link is an important property, as the cardinality may affect summarizability. The cardinality
ofalink L = {(c, o)} between category C and object class O is [1—1] if |L| = |r¢(L)| = |wo(L)|, where 7 denotes
relational projection and |.| denotes relation cardinality; the cardinality of L is [n — 1] if |L| = |7¢(L)| > |mo(L)];
and the cardinality is [1 — n] if |L| = |ro(L)| > |rc(L)|. Finally, if the cardinality of L is not [1 — 1],[1 — n],
or [n — 1], its cardinality is [n — n]. For some link properties, only the cardinality of the object side of a link is
interesting. As a short-hand notation, we say that the cardinality of a link is [—1] if the cardinality is [1 — 1] or
[n — 1]. Similarly, the cardinality of a link is [—n] if the cardinality is [1 — n] or [n — n].

Example 13 The cardinality of link “diag-_link” is [1 — 1] and the cardinality of “city_link” is [n — 1].

It is also necessary to capture whether some dimensions values or objects do not participate in a link. For that
purpose, we define that a link L = {(c, o)} from category C to object class O covers C if C = w¢(L). Similarly, L
covers O if O; = mo(L), where O; is the set of object ids for O. If L covers both C' and O, L is complete; otherwise,
L is incomplete.

Example 14 The “diag_link” link is complete, while the “city_link” link covers the Hospital category, but not the
City class. For example, the city of Oakland is not present in the link.
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In Section 5 we will explore the effect of these link properties on the semantics of queries. Specifically, we
shall see that incomplete links and [—n] links, which are analogous to non-summarizable hierarchies, require special
attention. Interestingly, an attribute link always has a link cardinality that is [—], while an equivalence link always
has a [1 — 1] cardinality.

In some situations, it is desirable to have links that are more powerful than enumerated links. For example, the
database designer may want to annotate links with what may be termed metadata, €.g., the reason why the link was
added, who added the link, or the time interval when the link is valid.

Such annotated links do offer additional modeling capabilities, but are nevertheless excluded. The reason is that
offering a general solution along these lines—which allows general annotations, including complex object structures
with set-valued attributes, references to other classes, embedded objects, etc.—would amount to the reinvention of a
complete object model, an unnecessary complication.

Instead, we propose that annotations be stored in a separate ODB, and we propose to store the potentially
complex link information in a separate ODB using a link class that represents the instances of the link. We may then
create a normal link from the desired category to this link class. The link class would also be linked to the desired
object class that we wanted to link to originally.

We do not consider links between ODBs, as this is supported by object database federation systems, e.g., the
“OPM*QS” multidatabase system [7].

5 The Federated Data Model and Query Language

Having described the data models and query languages of the SDB and ODB components to be federated, as well
as a minimal mechanism for linking SDBs and ODBs, the next step is to provide language facilities that enable
OLAP-type queries across the entire federation. Specifically, we extend SumQL.

The federation approach presented here has the distinguishing feature that it uses the aggregation semantics of
the data to provide aggregation-safe queries, i.e., queries that do not return results that are incorrect or meaningless
to the user. This section describes how the previously defined concepts of aggregation types, summarizability, link
cardinality, and link coverage combine to provide aggregation-safety for queries.

5.1 TheFederated Data M odél

The federation consists of a collection of independent components, supplemented with additional information and
components that enable functioning of the federation. Specifically, the federation consists of an SDB, a number of
ODBs, and links that interrelate information in the different databases. Formally, a federation F' of an SDB S and
a set of ODBs O = {0y, ..,0,} is a three-tuple F = (S,0, L), where L = {Lq,.., L, } is a set of links from
categories in the dimensions of S to classes in O, .., O,

We assume only a single SDB. Permitting multiple SDBs introduces additional challenges, e.g., the matching of
categories and dimensions, which are not covered here. The case of a single SDB is very useful, as typical queries to
a federation naturally centers around one SDB: Typical queries concern SDB measures, grouped by SDB categories,
and involving selection criteria relating to data from the ODBs; or queries retrieve ODB data along SDB data; and
in some cases, it is desirable to actually group SDB data by categorical ODB data.

Rather than requiring that the SDB and ODB data comply with one common data model, the federation adopts a
multi-paradigm approach [14, 1], where the data remain in their original data models. This approach has previously
been advocated in programming languages, where research has been done on how to allow programs to be written
that exploit imperative, object-oriented, functional, and logical programming paradigms in a single program [2].

Allowing multiple data models (or paradigms) to co-exist in the federation enables us to exploit the strengths of
the different data models and query languages when managing and querying the data. In particular, the availability
of multiple paradigms allows a problem solution to take advantage of the fact that certain subsets of a problem are
often well suited for one solution paradigm, while other problem subsets are better suited for other paradigms.

Like the arguments to queries are federated databases, the results are also federated databases, i.e., query results
may have SDB, ODB, and link components. This closure property mirrors those of the well-known relational,
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object, and multidimensional data models and query languages, and permits the result of one query to be used in a
subsequent query. We allow the sets of ODBs and links, O and L, to be empty. Thus, an SDB in itself is a federation.

5.2 The SumQL++ Language

As our objective is to allow more powerful OLAP queries over SDBs by allowing the queries to include data from
ODBs, we take SumQL as the outset and extend this language. The new, extended language is termed “SumQL++"
as it introduces object-oriented concepts into its predecessor, akin to the C++ successor to the C programming
language.

The queries we are interested in are the typical OLAP queries that select a set of measures from an SDB, grouped
by a set of categories. Three extensions of SumQL are useful in this respect. First, we introduce path expressions
in selection predicates, in order to integrate ODB data. Second, we introduce so-called decorations [12] of SumQL
results, which enable ODB data to be returned along with the SumQL result. Third, SumQL is extended to enable
SDB data to be grouped by data belonging to ODBs, i.e., attributes of object classes, rather than just the built-in
SDB categories.

5.2.1 Extended Selection Predicates

The first extension of SumQL is to allow selection predicates that reference ODB data. The basic idea is to allow
the use of standard OQL path expressions, as described in Section 3.4, in the category expressions in the selection
predicates, using the well-known dot-notation for path expressions.

The link that is used to get to the ODB is included in the category expression. A category expression always
starts with an SDB category, and is followed by an optional part consisting of the link name and a path expression.
Inside the path expressions, class selectors may occur that restrict predicates to work on selected (sub)classes. The
syntax is shown below. The square brackets in single quotes in the “class_connector” rule denote (sub)class selection
and are part of the language being defined. Nonterminals not defined below are strings.

category_exp .= category [ . link object_path attribute ]

object_path ;= class_connector | path_list

class_connector n= .| [ class T

path_list ::=  class_connector path_element | path_list path_element
path_element .= reference_attribute class_connector

Example 15 We want to use the Epidemiology ODB to get the total admissions by year for only the diagnoses for
which cough is a symptom. We use the “diag_link” link to do so in the following the SumQL++ statement.

SELECT TotalAdmissions INTO testdb BY _CATEGORY Year FROM Admissions
WHERE Diagnosis.diag_link.symptoms.name = “Cough”

Example 16 We use a class selector in the Epidemiology ODB to get the total admissions by year for only conta-
gious diagnoses with the transfer mode “Air,” with the following SumQL++ statement.

SELECT TotalAdmissions INTO testdb BY CATEGORY Year FROM Admissions
WHERE Diagnosis.diag-link[ContagiousDiagnosis]transfer_mode = “Air”

To describe the semantics of this extension to SumQL, we first need some additional definitions. Given a category
expression E of the form E = C.L.OP.a, where C is a category, L is a link, OP is an object path (as defined in the
syntax above), and a is an attribute of an object class, the cardinality of E is defined next.

Let R be the set of attribute values resulting from the OQL query “SELECT X.k, X.OP.a FROM X INY”
where Y is the class that L links to, k is the attribute that L links to in Y, and OP and a are as above. Let L' be the
link relation obtained by performing a natural join of L with R, i.e., L' = L X R, where X denotes natural join. We
say that L’ is the link specified by E. The cardinality of E is defined as the link cardinality of L'.
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Informally, the cardinality of a category expression is the combination of the cardinalities that we encounter
as we go through the link and the subsequent (possibly set-valued) reference-attributes, i.e., going through a [—1]
relationship in a link or a reference attribute does not change the running cardinality, but a [—n] relationship causes
the total cardinality to be [—n].

Using the definitions above, and following the definitions given for links, we say that E covers O, does not cover
O, covers C, does not cover C, is complete, and is incomplete, if L’ covers O, does not cover O, covers C, does not
cover C, is complete, or is incomplete, respectively. Above, O is the object class that « is an attribute of, i.e., the
last object class reached in the category expression. We say that O is the final class of E. C is the category in the
beginning of E. We say that C is the starting category of E.

Example 17 The cardinality of the category expression “Hospital.city _link.locatedin.name” is [n — 1] as we only
go through [n — 1] relationships and the state name is a key attribute. The cardinality of the category expression
“Diagnosis.diag_link.symptoms.name” is [n — n] because the “symptoms” reference attribute is set-valued.

The cardinality and covering properties of a category expression affect the meaning of a SumQL++ statement. If
the cardinality is [—1], the predicate will only reference one attribute value and the meaning is clear. However, if the
cardinality is [—n], the predicate will reference more than one attribute value, leading to several possible semantics
for the query.

For example, the category predicate “Diagnosis.diag_link.symptoms.name = “Cough” in Example 15 has a [—n]
cardinality. One possible interpretation of this is that all the referenced attribute values must match the predicate,
e.g., that all symptoms must have name “Cough.” Another interpretation is that at least one attribute value must
satisfy the predicate, e.g., that at least one symptom has name “Cough.” This is the interpretation chosen in the OQL
language, and as we also think it is the most sensible to end users, we will also adopt this interpretation.

Similar problems may arise when a category expression E does not cover its starting category C, because L’
then will be undefined for the uncovered dimension values of C'. However, if we adopt our previous interpretation,
that at least one attribute value must match the predicate, the meaning is well-defined. The values in C not covered
by E will then be excluded from the selection. There are no problems if E does not cover its final class O, as L’ will
be defined for all the instances of O referenced by E.

Formally, the semantics of the extended SumQL++ predicates are as follows. We are given a SumQL++ query
@ with a number of category predicates Py, .., Py of the form P, = E; POP; V;. The E, .., E, are category
expressions of the form E; = C;.L;.OP;.a;,i = 1,..,n, where C; is a category, L; is a link, OP; is a object path,
and a; is an attribute of the final class of E;. The POP; are the predicate operator parts of P;, i.e., comparison and
BETWEEN, IN, and MATCH operators. The V; are the value parts of the predicates.

For each E;, let R; be the set of attribute values resulting from the OQL query “SELECT X,;.k; FROM X; IN
Y; WHERE OP;.a; POP;,” where Y; is the class that L; links to, and k; is the attribute that L; links to. For each
predicate P;, we now form a modified predicate P; = C; IN (ey,, .., e, ), Where {e1,, ..,ex, } = 7¢; (Li X R;) (X
denotes natural join). Informally, we obtain the attribute values for the link class for which the predicate holds, then
obtain the corresponding dimensions values by joining with the link, and finally form a (pure) SumQL predicate
with the resulting dimension values using the “IN” notation.

With @' being the query obtained from @ by substituting all the P;s with the P/s, the result of evaluating @ on
a federation F' = (S, O, L) is the federation F' = (S’,0,0), where S is the SDB resulting from evaluating @’ on
S. This federation has no ODB or links components, which makes sense as the ODB data was only used to select a
subset of the SDB for evaluation.

Example 18 We evaluate the query from Example 15. First we get the result of the query “SELECT D.code FROM
D IN Diagnosis WHERE D.symptoms.name="Cough.” The result of this is the set R = {“N12”} (the code for
pneumonia). We then join R with the link relation “diag_link,” which is the identity relation, and project over the
Diagnosis category, obtaining the dimension value “N12”. We then form the pure SumQL query: “SELECT Total-
Admissions INTO testdb BY_CATEGORY Year FROM Admissions WHERE Diagnosis IN (“N12”),” evaluating it
over the Admissions SDB.
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5.2.2 Decorating the Query Result

It is often desirable to display additional descriptive information along with the result of an SDB query. This is
commonly referred to as decorating the result of the query [12]. For example, when asking for the number of
admissions by hospital, it may be desirable to display the name of the city and the name of the city’s mayor along
with the hospital name.

This can be achieved by extending the SumQL with features for decorating the result. One possibility would be
to allow category expressions with path expressions in the SELECT clause, but we advise against this as it would
then be unclear which parts of the SELECT clause referred to measures and which parts referred to decorations.
Instead, we extend SumQL with an optional “WITH” clause. The extended syntax is shown below.

SumQL query ::= SELECT measure™
INTO summary_database
BY_CATEGORY category™
[ WITH expression™ ]
FROM summary _database
[ WHERE predicate_clause ]

Example 19 Using this extension, we select the number of admissions by hospital, decorated with the names of the
city and its mayor.

SELECT TotalAdmissions INTO testdb BY _CATEGORY Hospital
WITH Hospital.city_link.name, Hospital.city _link.current_mayor.name FROM Admissions

It only makes sense to decorate the result with data that is correlated to the original query result, so the categories
referenced in the WITH clause MUST be part of the BY_CATEGORY clause.

Formally, assume a SumQL++ query @ with category expressions E+, .., E, in the WITH clause of the form
E; = C;.L;.OP;.a;,1 = 1,..,n, where C; is a category, L; is a link, OP; is a object path, and a; is an attribute
of the final class of F;, the semantics is as follows. For each E;, let R; be the result of the OQL query “SELECT
X;.k;, X;.0P;.a; FROM X; IN Y;,” where Y; and k; are the class that L; links to and the attribute that L; links to,
respectively. Then form a new object class Z; from the set of tuples L; X R; using the concatenation of the category
C; and the attribute a; as its object identifier. Let Q' denote @, but without the WITH clause. The result of evaluating
Q over a federation F = (S, 0, L) is the federation F’ = (S’,0’, L"), where S’ is the result of evaluating Q" over
F,0" = {{Z;}} and L' = {L}}, where L] are attribute links specified by C; = Z,.C;.

Thus, the decoration data is returned in the ODB and link parts of the federation and is not integrated into the
result SDB. This loose coupling of decoration data and SDB data is essential in avoiding semantic problems, which
might otherwise occur if the category expressions F; do not cover the categories C;. In this case, we just return
decoration data matching a subset of the C;, i.e., we perform an operation equivalent to an outer join. Similarly,
no cardinalities for the E;s cause problems. If the cardinality of E; is [—n], e.g., for the expression “Diagno-
sis.diag_link.symptoms.name,” the object class simply contains several objects for each C; value, e.g., there will be
two objects, with the symptom names “Cough” and “Fever,” with Diagnosis value “N12” (pneumonia).

Example 20 For the query in Example 19, we get two object classes in the result, CityName with the attributes
“hospital,” “name,” and “citychospital,” with the latter as the object identifier, and MayorName with the attributes
“hospital,” “name,” and “mayorohospital,” again with the latter as the object identifier. The links have the specifica-
tions “Hospital = CityName.Hospital” and “Hospital = MayorName.Hospital.”

5.2.3 Grouping By Object Class Attributes

The last extension is to allow the measures of an SDB to be grouped by attribute values in ODBs, enabling aggrega-
tion over hierarchies outside the SDB. This feature will be used when aggregation requirements change suddenly.

16



To achieve this, we allow category expressions instead of just categories in the BY _CATEGORY clause. The
syntax of the extension is given below. The only difference from the previous syntax is that the BY CATEGORY
clause now is a list of category expressions rather than just a list of categories. Remember that a category expression
is either a category or a category followed by a link, an object path, and an attribute.

SumQL query ::= SELECT measure™
INTO summary_database
BY_CATEGORY expression™
[ WITH expression™ ]
FROM summary _database
[ WHERE predicate_clause ]

Example 21 The number of admissions grouped by symptoms may be retrieved as follows.

SELECT TotalAdmissions INTO testdb
BY_CATEGORY Diagnosis.diag_link.symptoms.name FROM Admissions

This type of SumQL++ queries will return SDBs where one new dimension is added for each category expression
in the BY _CATEGORY clause, thereby reflecting the hierarchy specified by the category expression, and aggregation
will occur over these new dimensions.

Formally, given a SumQL++ query,

Q = “SELECT M, .., M}, INTO db BY_CATEGORY E;, .., E, FROM S WHERE P,

with the category expressions in the BY CATEGORY clause being of the form E; = C;.L;.OP;.a;,i = 1, ..,n,
where C; is a category, L; is a link, OP; is a object path, and a; is an attribute of the final class of E;, the result of
Q on federation F' = (S, O, L) may be specified as follows.

First, let S = (S, D', M") be the SDB obtained from S as follows. For each E;, add a new dimension type to
S with the category types T, A%, and _L}. Category type A; represents the attribute values of a;, while category type
L% represents the dimension values of the bottom category in S. The ordering of the types is T, > A, > .. Thus,
S' is specified.

For each dimension type, new dimensions D/ are added to D’. The categories of D, correspond to the category
types. The T; category has just the T value. If L} is the resulting link of E;, category A} has the values given
by 7, Li. Let R; be the relation specified by (e1,e2) € R; < e1 € L Aex € C; Aer <; ey, ie., the relation
specified by the partial order between _L; values and C; values. Let B; = R; X L} (X is the natural join). Then
the values of the category L} is the set 7, ,(B;). The partial order on dimension D}, <!, is specified as follows:
e1 <ley e =T Ve =ezV (e1,e2) € B;. This completes the specification of D’.

The set of measures M’ is identical to the original set of measures M as the measures operate on the same
categories.

The result of evaluating the SumQL query “SELECT M, .., M, INTO S” BY_CATEGORY A/, .., A/ FROM
S” WHERE P~ is the federation F' = (S”,(,(). The ODB and links components are empty, as the ODB data has
been turned into dimensions in this result.

Example 22 For the query in Example 21 we get one new dimension type “SymptomName” with the category
types “T symptomName,” “SymptomName,” and “Diagnosis.” The new “SymptomName” dimension has the cate-
gories specified by the category types. The partial order on the new dimension is given by joining the “Diagnosis,”
“Diagnosis_Symptom,” and “Symptom” tables from Table 3 and then projecting on the “Code” and “Name” at-
tributes. We note that the resulting hierarchy is non-strict, as the “Acetone Breath” symptom occurs for both “Insulin
Dependent Diabetes” and “Non Insulin Dependent Diabetes.”
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Depending on the properties of the E;s, problems may occur in the aggregation process. If E; does not cover
C;, some of the data in the SDB (the data characterized by the non-covered subset of C;) will not be considered in
the aggregate result. Reversely, if E; does not cover its final class O;, there will not be any measure data associated
with the non-covered objects in O;. This means that the result of the aggregation function will be undefined for
multidimensional tuples containing the non-covered objects. To remedy these problems, we require that the E;s be
complete.

Even when the category expressions are complete, special attention is needed to ensure summarizability. Prob-
lems may occur when the cardinality of an E; is [—n], in which case the same measure data, e.g., the same admis-
sions, will be accounted for more than once in the overall result, e.g., for different symptoms.

This result is meaningful and correct in itself because the data belongs to several groups. However, the result
should not be used for further aggregation as the same data may then be accounted for more than once for the same
group, e.g., we may not aggregate over all symptoms to get the total number of admissions. To avoid this, we set
the aggregation type for all measures to ¢, i.e., we disallow further aggregation on the data, if the cardinality of E; is
[—n]. If the cardinality of E; is [—1] the aggregation types are not changed.

53 Summary

Although the extensions to SumQL were described separately above, they can be used together in one SumQL++
statement. Assuming an SumQL++ statement that contains all three extensions, query evaluation proceeds as fol-
lows. First, the rules for handling grouping by object attributes are used, producing a statement without object
attribute grouping. This statement is then processed using the rules for the WITH clause described in Section 5.2.2,
resulting in a statement without a WITH clause, which can then be evaluated using the rules for extended selection
predicates as described in Section 5.2.1. The statement produced by the extended predicate rules is a pure SumQL
statement which may be evaluated following standard SumQL semantics.

6 Implementation Overview

This section briefly describes the prototype implementation of the federated system capable of answering SumQL++
queries. The overall architecture of the federated system is seen in Figure 4. The parts of the system handling object
and link data are based on the commercially available OPM tools [22, 10] that implement the Object Data Man-
agement Group’s (ODMG) object data model [4] and the Object Query Language (OQL) [4] on top of a relational
DBMS, in this case the ORACLE8 RDBMS. In-depth descriptions of the OPM toolset exist in the literature [5, 6].
The OLAP part of the system is based on Microsoft’s SQL Server OLAP Services using the Multi-Dimensional eX-
pressions (MDX) [24] query language. The graphical user interface (GUI) is implemented as Java classes running
in a standard Web browser for optimal flexibility. A description of the user interface may be found elsewhere [13].

The system has six major components: the GUI, the ODB systems, the link DB system, the SDB system,
the federation coordinator, and the metadata database. The ODB, link DB, and SDB components are treated as
independent units by the federation system; only their published interfaces are used, and no assumptions about their
internal workings are made. The link component stores enumerated links and is placed in an independent “link”
DB, as it cannot generally be assumed that these links may be stored in some ODB component. Should this be
possible, we can choose to do so, e.g., to obtain better performance. The operation of the prototype is entirely based
on federation metadata specified in the metadata database. This allows for a very flexible system that may adapt
quickly to changes. For example, if a new connection to an outside ODB is desired, appropriate links just needs to
be specified and stored as metadata, after which queries can start using the new ODB.

Queries are generated by the GUI and sent to the federation coordinator which then parses the query. Based
on the content of the query, the system looks up the relevant metadata (link specifications, ODB names, etc.) in
the metadata database and processes the query according to the metadata by issuing queries to the DB components.
Example 23 below explains how a particular query is processed.

Example 23 The query below selects the total admissions by diagnosis, state and year, restricted to diagnoses with
“Cough” as a symptom and years later than 1997.
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Figure 4: Architecture of the Federated System

SELECT TotalAdmissions INTO testdb BY _CATEGORY Diagnosis,State, Year FROM Admissions
WHERE (Diagnosis.diag-link.symptoms.name ="Cough”) AND (Year > 1997)

This query is processed as follows. The Federation Coordinator (FC) parses the query and identifies the link and
ODB parts of the query. Based on the link name (diag_link), the FC looks up in the metadata which ODB, object
class, and attribute the link is to and the type of the link, i.e., equivalence, attribute, or enumerated. For this query, the
ODB is the “Epidemiology” DB, the class is “Diagnosis,” the attribute is “code,” and the link type is “equivalence.”
The object path to be followed is “.symptoms,” and the final attribute is “name.”. Based on this information, the FC
forms the OQL query seen below.

SELECT code = @n001 FROM @n000 IN SUMDB:Diagnosis, @n001 IN @n000.code
WHERE @n000.symptoms.name = "Cough”;

The OQL query is then executed against the Demographic ODB, giving as result the single diagnosis code “N12”.
Based on the result of the OQL query, the FC now forms the SumQL query seen below, which is executed against the
SDB component of the federation to obtain the final result. The reason for using the intermediate SumQL statements
is to isolate the implementation of the OLAP data from the FC. As another alternative, we have also implemented a
translator into SQL statements against a relational ”star schema” design.

SELECT TotalAdmissions INTO testdb BY CATEGORY Diagnosis,State, Year FROM Admissions
WHERE (Diagnosis IN ( ’N12’ ) AND Year > 1997)

The SumQL query is now translated into the MDX statement seen below and executed against the SDB managed
by MS SQL Server OLAP Services.

SELECT [Measures].[TotalAdmissions] ON COLUMNS, INTERSECT (CROSSJOIN
(CROSSJOIN([Diagnosis].[N12], [Place].[State]. MEMBERS), [Time].[Year]. MEMBERS),
CROSSJOIN(CROSSJOIN([Diagnosis].[Diagnosis]. MEMBERS, [Place].[State]. MEMBERS),
FILTER([Year]. MEMBERS, [Time]. CURRENTMEMBER.NAME > "1997")))

ON ROWS FROM Admissions

19



This example was intended to illustrate the amount of work that a user will have to go through without the
aid of the user interface and the federated translation tools. In particular, we wish to emphasize the usefulness of
the OLAP-object database links to generate the combined result. Also, the users are spared the verbosity of MDX
(which is hidden from them).

7 Conclusion and Future Work

Motivated by the increasingly widespread use of OLAP technology, we have presented the concepts and tech-
nigues underlying a prototype system that logically integrates data in OLAP databases with data from outside object
databases, without requiring physical integration of the data.

Summary data is best handled using OLAP technology, while complex detail-level data structures are best han-
dled with object database technology. The enables the handling of the data using the most appropriate data model
and technology, while still allowing queries to reference data across the different databases and data models. No
attempt is made to map data into one common data model, which would be sub-optimal for some of the data. To our
knowledge, this is the first example of a “multi-model” federation that includes a dedicated summary data model.
We also believe this study to be the first that considers the impact on core OLAP concepts, e.g., summarizability,
when federating with external data. In contrast to earlier works, the approach presented here uses the aggregation
semantics of data to guard against meaningless or incorrect queries.

More specifically, as a vehicle for presenting the paper’s contributions, a high-level language for summary
databases, SumQL, has been introduced. This has then been extended to support queries that reference data in
separate object databases. The resulting language, SumQL++ embodies the concept of links that connect an SDB to
ODB:s in a general and flexible way, in addition to object-oriented concepts. SumQL++ permits selection criteria
that reference data in the ODBs using path expressions, facilities for decorating the aggregate results of SDB queries
with external object data, and the ability to group data in the SDB according to object data. We have focused on the
extension of aggregate queries over SDBs to also include data from ODBs. The formal semantics of SumQL++ is
given in terms of a formal multidimensional data model and the ODMG data model and OQL query language. It
is possible to use other languages such as SQL, OQL, and MDX in the place of SumQL++ once these are enriched
with the necessary SumQL++ constructs that they do not already offer.

Interesting research directions include extending the approach to handle federations with several SDBs, as well
as the federation with XML databases, which offer less structure than object databases and thus may benefit even
more from the enforcement of aggregation semantics by the federation. Next, it would be of interest to investigate the
dynamic restructuring of the OLAP schema, enabling the use of measures as dimensions and vice versa. Yet another
interesting direction would be to consider the optimization of queries over the federation. For example, it may in
some situations be advantageous to perform aggregation before selection, to take advantage of OLAP techniques
such as pre-aggregation.
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A Formal Definition of SumQL

This sections formally defines the syntax and semantics of the SumQL language.

A.1 Syntax of SumQL

We now list the syntax for SumQL. The following notation is used in the syntax below: lower case letters are used for
variable names; upper case letters are used for keywords; | denotes ’or’; [ ] is used to designate optional expressions.
To save space, we have not included definitions of strings, reals, and integers, as their definitions are obvious.

select_query ::= SELECT measure_list
INTO summary_database
BY_CATEGORY category _list
FROM summary_database
[ WHERE predicate_clause ]

measure_list ::= measure | measure_list measure

measure .:= string

summary_database ::= string

category _list ;1= category | category _list category

category = string

predicate_clause = predicate_factor | predicate_clause boolean_op predicate_element
predicate_factor  ::= predicate_element | ( predicate_clause )

boolean_op = AND | OR

predicate_element ::= category_predicate | NOT category _predicate
category_predicate ::= category_exp predicate_op value | category exp BETWEEN (value, value) |
category_exp IN value_list | category_exp MATCH ’ string ’

category_exp ;1= category

predicate_op == > >=<] <=
value ;= integer | real | * string ’
value_list ::= value | value_list value

A.2 Semanticsof SumQL

To describe the formal semantics of SumQL, we first specify a formal algebraic query language on the multidi-
mensional data model. The algebraic query language is rather low-level and not for end-users, but is convenient
for describing semantics. Next, we specify the semantics of SumQL by translation to the algebraic language. The
algebraic language presented here is not meant to be computationally complete. We only include the operators that
correspond to standard OLAP functions, such as aggregation and selection, while other operators such as union are
left out. This is done purposefully, to make sure that the computational power of the language will not surpass that
of any commercial OLAP tool, rendering the results presented here widely applicable to commercial OLAP tools.

selection: Given an SDB S = (S, D, M) and a predicate p on the dimension types D = {7;}, we define the
selection ¢ as: o[p](S) = (S, D',M"), where ' = S, D' = D, M' = {M],i = 1,...,k}, M/(e1,..,en) =
if (p(e1,..,en)) then M;(e1, .., en) else null. The aggregation types are not changed by the selection operator.

Thus, the schema and the dimensions are retained, while the measures are restricted to the part of the multidi-
mensional space where predicate p holds.

Example 24 If selection is applied to the sample SDB with the predicate Year = 1998, the resulting SDB has the
same schema and dimensions, but the Total Admissions measure is restricted to only return non-null values for the
multidimensional combinations where the days d < rime 1998 and where the original measure returned non-null
values for those combinations. All other combinations return the null value.
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projection: Givenan SDB S = (S, D, M), where S = (F, D), a set of measures M, , .., My, € M, and a set of
dimension types {7;,,..,7},.} C D such that 7; = ({T 7}, identity, T7;, T7;) fori & {41, .., im}, we define the
projection 7 as: @ [Tj,, .., Ty Mgy, -, My, ](S) = (§', D', M"), where ' = (F',D'), F' = F, D' = {Tj;, -, Tju }
D' = {D; € D | Type(D;) € D'}, M' = {M],i € {qi,.,qp}}, and M](e1,..,em) = M;(€},..,€l,), where
e;- =if (5 € {j1,..,Jm}) then e; else T. The aggregation types are not changed by the projection operator.

Thus, we require that the dimensions left out in the projection are “simple,” having only the T categories. We
then keep only the dimension types specified in the projection and their corresponding dimensions. The measures
are modified to take only the remaining dimensions as arguments. Only the measures specified in the projection
are kept. Note that we do not have to perform any other modifications (such as aggregation) on the measures, as
the requirement on the dimensions left out makes sure that the measures have well-defined results, even when the
number of dimensions is reduced.

Example 25 Imagine having a version of the example SDB, S’, where the Reason and Time dimensions have only
the T category. This could for instance be the result of aggregating along these dimensions (see the aggregation
operator below). The result of the projection 7| Diagnosis, Place, Total Admissions](S') is the SDB where Reason
and Time are removed from the set of dimension types and dimensions, making the SDB 2-dimensional, and the
new “Total Admissions” measure gives the same values for the combination (d, p) as the old measure gave for the
combination (d,p, T, T).

aggregation: Given an SDB S = (S, D, M) and a set of categories C1, .., C,, such that C; € D;,i = 1,..,n, we
define aggregation « as: a[Ch, ..,Cy,](S) = (§', D', M'), where 8’ = (F',D'), F' = F, D' = {T/,i = 1,..,n},
T = (€<%, T, L), G = {Cij € Ti | Type(Ci) <7; Ciz}, <. = <Tiler» L% = Type(Cy), T3 = T,
D'={D},i=1,.,n}, D =(C, <)), C! = {Ci; € D; | Type(Cy;) € Ci}, < = <ilp M' ={M;,i=1,..,k},

7
Mi(e1,..,en) = far,({Mi(€l,...ep,) | € € Lp, A ANej, € Lp, Nel <1 e1 AL A eZ;L <n en}) (the set on the
right-hand side of the last equation is a multi-set, or bag).

If the hierarchies up to the grouping categories are summarizable, the aggregation types for the new dimensions
are the same as for the original. If one or more of the hierarchies in the dimensions being aggregated over are not
summarizable, then the aggregation types for all dimensions are set to ¢, as no further aggregation should be based
on the data.

Example 26 On the example SDB, S, we apply the operation «[Diagnosis, Hospital, T geasons T Time)(S), 1.€., We
aggregate over all of the Reason and Time dimensions, but not over the Diagnosis and Place dimensions. This gives
us the SDB described in the previous example. To make the new SDB, for each (diagnosis,hospital) combination
(di, h), we find the group of (diagnosis,hospital,reason,day) combinations (di, h,, da) such that 7 < geason T Reason
and da <7ime T Time, i.€., all the 4-dimensional combinations that di and h are part of. For each (di, h,r, da), we
apply the “Total Admissions” measure, M, to the combination to get the corresponding measure value. We store
the measure values for each (di, h) combination in their own multiset, to which we apply the default aggregation
operator, SUM. The measure values for the new “Total Admissions” measure, M for a combination (dz, h) is thus
M(di,h) = SUM <, T revsonsda< zime T rime AM (diy by 7, da) }), i.e., the sum over all the (di, h, T, da) combina-
tions that (di, h) is a part of. Note that the set on the right-hand side of the equation is a multi-set, or bag.

We can now give the formal semantics of a SumQL statement in terms of the algebraic query language. The
semantics are as follows. Given an SDB S = (S, D, M), categories C}, , .., Cj,, in dimensions Dj,, .., D;, . with
dimension types 7;,, .., 7;,, and measures M, .., M, the result of the SumQL statement:

SELECT Mj,.., M, INTO S’ BY CATEGORY C},, .., C;,, FROM S WHERE p is :
S =Ty ey Tims M1, -, Mp](a[C1, .., Cr](a[p](S))), where C; = if(i € {41, .., jm }) then C}; else Tp,.
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