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Abstract

This report describes a comparative study between two approaches to fault detection and isolation in dy-
namic systems. The first approach uses a parametric model of the system. The main components of such
techniques are residual and signature generation for processing and analyzing. The second approach is
non-parametric in the sense that the signature analysis is only dependent on the frequency or time domain
information extracted directly from the input-output signals. Based on these approaches, two different fault
monitoring schemes are developed where the feature extraction and fault decision algorithms employed are
adopted from the template matching in pattern recognition.

Extensive simulation studies are performed to demonstrate satisfactory performance of the proposed
techniques. The advantages and disadvantages of each approach are discussed and analyzed.
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Chapter 1

Introduction

Fault detection and isolation have increasingly become an important issue in modern and complex auto-
mated manufacturing and process plants. Any malfunctioning and performance degradation of equipment
and instrumentation can lead to a substantial increase in the plant operation and maintenance cost. As the
complexity of the new process plant increases, the traditional approach of hardware redundancy in fault
monitoring techniques becomes uneconomical and inefficient. This trend is particularly evident in safety
critical systems where hardly any fault can be tolerated.

The above considerations have lead to significant growth of research in the area of Fault Detection and
Isolation (FDI) in recent years. Through the concerted efforts of many researchers a number of promising
FDI techniques have emerged[1-4]. In contrast to the traditional techniques that rely upon hardware re-
dundancy, these modern approaches are based on the analytical and/or heuristical redundancy. To achieve
analytical redundancy, these schemes employ various signal processing techniques, such as, state estima-
tion, systems identification, adaptive filtering and statistical decision theory. Comprehensive surveys of
all these methods can be found in [1, 3]. The heuristic redundancy methods are based on the qualitative
information extracted from human expert operator. These information are usually represented by linguistic
variables and fuzzy based techniques are employed for approximate reasoning and further processing. The
latter technique is not discussed in the present report.

In general the current research effort has concentrated on two main approaches. One is based on a
mathematical model of the process under study. The main components of such techniques are residual and
signature generation to be further processed and analyzed by suitable fault decision algorithms [4]. The
advantage of this approach is that information related to the structure of the plant can be easily obtained
and analyzed. The drawback is that the performance of these techniques depends highly on an accurate
mathematical model and the underlying identification method utilized to collect and collate information.
Furthermore for high order complex systems, added problems of parameter convergence and heavy com-
putation burden are also significant. On the other hand the non-parametric based techniques are usually
simpler and easily implementable in practice. A major disadvantage is that the extracted information is
only restricted to the input and output of the plant and internal plant information can not be easily obtained.

Two techniques are developed in this report in order to compare the above two approaches. The Para-
metric Technique (PT) is based on the AutoRegressive eXogeneous (ARX) modeling technique which has
been found to be very useful in many applications such as spectral analysis [5], coding of speech and im-
ages [6, 7], modeling and classification of two-dimensional shapes [8] and adaptive signal processing [9].
Also, because of its conceptual simplicity and easy implementability, use of (AR) modeling techniques
for FDI has been advocated in [1, 3]. Parametric modeling techniques form a powerful approach to signa-
ture analysis. Usually such techniques consist of autoregressive (AR) or AutoRegressive Moving Average
(ARMA) modeling of the input-output data sequence. The estimated input-output model may then be used
to check the healthiness of the device or process under study. Alternatively, the model coefficients may be
used as a template that characterizes a particular signature of the process. Subsequently, for the purpose
of classification, an unknown signature may be compared with the set of stored templates, and the most
similar one chosen as the destination class.

The Non-Parametric Technique (NPT) is based on Fourier analysis. This technique is developed by
forming Fourier descriptors of the discrete input-output sequence to represent a template which charac-
terize a particular signature of the process. Subsequently for the purpose of classification, this signature
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is compared with a set of prestored signatures, associated with no fault and various faulty conditions. A
difference function expressed as an Euclidean metric norm between the normalized test signature and those
of the input-output signature is formulated as a basis for this comparison. The matching process is carried
out by finding a prestored template which gives minimum distance to the test template.

In both approaches, it is proved that the information utilized by fault classification and fault decision
algorithm is invariant under input scaling.

In order to investigate the performance of the proposed techniques, simulation studies are performed
on a closed loop system comprises an armature DC motor connected in unity feedback, series compensa-
tion configuration.Non-additive faults are considered and lumped parameter model of the system is used,
thus, parameter variations are treated as faulty conditions. A comparison is then made between the two
approaches using the theoretical and simulation results presented in this report.

The organization of this report is as follows. In Section 2 the ARX of fault signatures is presented.
Model order selection and parameter estimation are developed and discussed in Section 3. Section 4 de-
scribes the FDI scheme based upon ARX model, and pattern classification technique. The spectral rep-
resentation of fault signature is given in Section 5. The formulation of the difference function and the
normalization of the fault signature are given in Section 6 and 7, respectively. Experimental results and
simulation studies are presented in Section 8. A comparison of the two techniques is given in Section 9
and the conclusion is drawn in Section 10.Finally, recommendations are outlined for further investigation
in section 11.



Chapter 2

Parametric Method

2.1 Autoregressive Modeling of Fault Signature

Consider a system represented by a linear transfer operator
�

, which transforms the input signal ������� into
an output signal �	�
��� . The usual methods of signature analysis involve spectral analysis of the signals,������� and �	�
��� , for detection and identification of faults .

The input-output data sequence collected from a device or a process is usually non-stationary (in the
statistical sense). One of the commonly used technique for handling such signals involves block (or batch)
processing [6, 7]. Supposing � denotes the length of each data block, the problem of concern here consists
of modeling ��������
����
��� , ��������� by a stochastic black-box type model. A possible model, known as
AutoRegressive with external input (ARX), has the following form:� �������������������! "�������#���������%$!& ')(*�����+$-, (2.1)

where � ��� �%� � and  "��� ��� � are polynomials of order . and / , , is a bias term and (*�
��� denotes a zero-
mean white noise sequence with variance equal to ' . We assume that both no-fault as well as all the fault
signatures admit such representation.

Suppose the estimates of the parameters are available and denoted by 0��1 
 0 32 , 0, and 0' , respectively. For
FDI application, we are interested in constructing a feature set from these estimates, which is invariant
under input scaling. Such a feature set is established in the following Lemma:

Lemma 1
Consider an input-output data sequence 45�6�
����
7�������8
3�9�:�;
3<�
#=>=?=>
7�A@ that corresponds to either no-fault
or a fault signature. If the sequence is modeled by the ARX model 2.1, then the following feature set is
invariant under any scaling of the input sequence, �6�
��� :B � � 
 ��C 
#=>=?=>=>
 �ED 
F � 
F C 
�=?=>=>=?
F 7GE
 ,H 'JI (2.2)

Proof:
Let 4��������8
��������8
3���K�;
3<�
#=>=?=>
7�A@ denote the input-output data sequence corresponding to the original
signature, and 4ML�)�
����
;L�	�
����
F�N�O�P
F<Q
#=>=>=?
3�A@ denote the same for a modified signature obtained by scaling
the input i.e., setting: L�6�����R�TS�������� where S is the scaling factor. Since the system under consideration is
linear, this also implies that: L�	�������US�������� .

Suppose the modified signature obeys the following ARX model:L� ��� ��� �VL��������� L "�W� �%� �VL�6�
���+$!X L'%(Y�����6$ZL,R= (2.3)

Substituting for L�	����� and L������� yields:L� �W�����#����������� L,S $ L  "�������8�[�6�
���+$ & L'S (*����� (2.4)

Comparing equations 2.1 and 2.4 gives:

L� �������#�\� � �W���%�#� L "�������8�R�T "�������8� L,S �T, & L'S ��& '�=
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2.1.1 Model Order Selection and Parameter Estimation

The parameter estimation problem may be formulated by minimizing the variance of the ARX model
prediction error. The predictor of ������� , given the past input-output samples, can be expressed as 0�������]�0^P_a` ����� where

`
is the regression vector and 0^ is the vector of parameters.

Therefore, the prediction error may be written as:b �������T�������6c 0^ _ ` ����� (2.5)

The estimate 0^ that minimizes the least squares criterion is given by:0^ � Bedgfh�i � ` ����� ` ����� _ I ��� B dgfh8i � ` �
�������
��� I (2.6)

An estimate of the bias term is obtained from the sample mean estimate:0,j� �� d f h�i � B �������ac 0^ _ ` ����� I = (2.7)

The model residual error variance can then be found with the sample covariance estimate as: 0'k��f d f h�i � B ���
���6c 0^;_�` �
����cZ0, I C .The least square technique is adopted here for several reasons. First of all, it is very simple to implement
and has been found very reliable and useful in many applications [10, 11]. Furthermore, the least squares
Levinson algorithm, being recursive in order, is particularly suitable for model order selection. Such a
selection can be based upon Akaike Information Criterion (AIC).

The parameter estimated vector is also invariant under input scaling. The proof is similar to Lemma 1.

2.2 FDI Scheme Based Upon ARX Model

In any FDI scheme, two tasks are involved; namely, Detection and Isolation of faults. The main goal of
the ARX modeling scheme is to perform Isolation and classification of faults. However, as shown below, a
slight modification of the technique allows detection of the faults as well.

2.2.1 Fault Detection Scheme

In principle, the fault detection scheme consists of continuous monitoring of a residual error sequence
for detection of any jump in its mean value. For generating the residual error sequence, the input-output
data sequence is continuously modeled by an ARX model of the form (1). With the availability of a
new pair of input-output data sample, the model parameter estimates are updated using the recursive least
squares technique. At each instant the residual error sequence is computed from (5). For detecting a jump
in the mean value of the residual error sequence any of the standard algorithms, such as, filter derivative,
Shiryaev’s, or Hinkley’s can be used [2, 12]. Any jumps in the mean of the residual error sequence signifies
onset of a fault. Upon detection of such a fault, the following procedure is used for its classification.

2.2.2 Pattern Classification Techniques

Although there are a wide variety of possible approaches to the development of classifiers for fault Isolation
problems, the first line of approach is generally to consider discriminant analysis, and in particular, the
linear case. The reasons for this choice are many, but most pervasive ones are the freedom from the
need for specific class statistics, and the simplicity of automated classifier implementation. Specifically,
discriminant based classification assumes that the functional form of the decision boundary is selected a
priori. This differs from the traditional Bayesian methods which describe detection boundaries based on the
shapes of the respective sample probability distribution. Detail discussions of linear discriminant classifiers
can be found in [13, 14]. For purpose of brevity only the main ideas are summarized here.

A linear discriminant classifier, also known as a linear machine, is characterized by l linear discrim-
inant functions corresponding to l classes, m 1 
n�o�qpr�ql . These discriminant functions have the
following form: s 1 �utj���T(wvg$ dwx2 i � 
7( 1 2�y�2z�{�|p��|l (2.8)
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where t}� B y � 
�y C 
#=>=?=>
�y x I _ denotes the feature vector and ~ 1 � B ( 1 � 
�( 1>C 
�=?=>=?
7( 1 x I _ is known as the p��W�
weight vector. The term (Jv serves as a threshold. The decision rule assigns t to class m 1 if

s 1 �ut��g� s 2P�ut��
for all ����Tp . By this method the feature space is partitioned into l decision regions:� 1 ��4�tq� s 1 �Wtj�g� s 2 �Wtj��
n���9���|la
�����op3@�
��{��p\�|l (2.9)

An important special class of linear machine which is proposed to be used here, is the minimum distance
classifier. If two prototypes reference signatures, t � and t C , are given for the classes m � and m C , a
minimum distance classifier assigns a test sample t to the class which corresponds to the nearest of the
two prototypes. The simplest distance measure is the squared Euclidean distance from the sample t to t 1 .
The discriminant functions can now be represented as:s 1 �Wtj����t _ t 1 c �< t _1 t 1 
n�{��p\�|l (2.10)

Other, more sophisticated minimum distance classifiers are formed by weighting the features or subjecting
them to linear transformation so as to improve the clustering and separation of the various classes. One
such method, known as the Feature Weighting (FW) method, is employed in the simulation study.

The feature weighting method [8, 14] attempts to minimize the mean squared distance between mem-
bers of the same class by applying a metric which emphasizes those features that are closely clustered, and
de-emphasizes the features which vary widely. Given a feature vector of unknown class, a similarity mea-
sure which is a weighted sum of the Euclidean distances between the unlabeled vector and all the training
vectors in a particular class is calculated. This cumulative distance function is calculated for each class of
interest, and the most similar class is chosen. Sebestyen [14] has shown that the optimal feature weights
for a particular class are inversely proportional to the standard deviation of each of their associated feature
vector elements. The weighted cumulative distance measure between an unlabeled feature vector � and
the training vectors 4�t9@ of class m can be written as:,R�
��
#4�t9@"��� B ��x2 i ��� 2 IF�� B �����{���%$-� I (2.11)

where �T� B
��� �6�� �� �q
 � � �6�� �� � 
�=?=>=?=>=>
 � � ���� �� � I _ = Here Lt denotes the class sample mean vector, � 2 is the standard

deviation of the ���W� feature elements, � is the dimension of the feature vector, and
B = I � denotes the conjugate

transpose of
B = I .One of the drawbacks of FW method concerns the implicit assumption that the feature elements are

mutually uncorrelated. More accurate, albeit computationally complex, minimum distance classifiers may
be used if necessary. In particular, mention may be made of the Rotated Coordinate System (RCS) method.
Neural Networks paradigms have also been used for fault clssification.

The fault classification scheme presented is based upon two implicit assumptions that each fault signa-
ture admits a unique ARX-model representation and the faults belonging to the same class but differing in
severity or magnitude, form a cluster in the feature space.

The two main steps of the fault pattern classification scheme may then be summarized as follows.
Step 1: Off-line training scheme.

This involves simulation of known faults of varying degrees, collection of input-output training data se-
quences, ARX model fitting, and construction of training feature sets.

Step 2: On-line classification scheme.
Following detection of either an incipient or an abrupt fault, this step involves collection of fault signature
samples, ARX model fitting, and finally, classification using a pattern recognition scheme previously de-
scribed. If the training features are de-correlated and clustered, use simple Euclidean distance classifier(9).
Otherwise, if the features are de-correlated but require clustering, use FW method (10). If, in addition to
clustering, de-correlation is also necessary, use RCS method.



Chapter 3

Non Parametric method

3.1 Spectral Representation of Fault Signature

Consider the function: �M�
���\�!�6�
���+$��;������� which can be exactly represented as the convergent sum of a
complex Fourier series [15]: �M�
���a� dJ 1 i v �¡�Wl+� b 2 C3¢   _ where�¡�Wl+��� �£!¤ _v �M�W¥�� b � 2 C3¢   _)¦ ¥�= (3.1)

For a known input-output sequence ������� and ������� , �§����� may be used in either time or the frequency
domain to represent a template that characterizes a particular signature of the process. Subsequently, for
the purpose of classification, an unknown signature may be compared with the set of stored templates and
the most similar one selected as the destination class [16]. The proposed criteria as a basis of comparison
is a difference function expressed as an Euclidean metric norm between the normalized test signature and
those of the discrete input-output signature prior to comparison. It is shown that the normalization of the
process signatures provides a difference function which is invariant under any input scaling.

3.1.1 Formulation of the Difference Function

Consider the difference function between a test signature � � and a template � C to be defined as:� C � �< £T¤ _v � � � �u¥���c9� C �u¥���� C ¦ ¥©¨«ª � C � �< dw¬v � � � �Wl+��c�� C �ul+�#� C (3.2)

where � � and � C are corresponding Fourier coefficients. If these Fourier coefficient are band-limited, that
is for some ­ , � � �Wl+�®�Z¯ and � C �ul+�®�Z¯ for all � l\���©° C then the sampling theorem guarantees that all
the information can be retrieved from a sequence of ­ distinct samples.

Assuming that the exact co-ordinate of the signal is determined at a sequence of � points where �}±­ . Defining the following sequence for integer p , � B p I �T�6�
����
²���Tp _f , the Discrete Fourier Transform
(DFT) can then be written as; � B l I � �� d f �%�1 i v � B p I b � 2 C3¢   1 f (3.3)

with the corresponding inverse transform as:� B p I � d f ���  i v � B l I b 2 C3¢   1 f (3.4)

The coefficients given by equation(14) exists for all values of l and are cyclic with period � . It is not
difficult to modify these expressions to be able to use any consecutive � terms, particularly the � terms
symmetrically disposed about zero that is;

� B p I � d®³ f �%�[´�µ C� ³ f ����´Wµ C � B l I b 2 C7¢   1 f (3.5)



3.1 Spectral Representation of Fault Signature 10

for odd � (modification for even � is straight forward). These values can be specified in terms of
continuous Fourier coefficients given in equation(12).� B p I � dgf  i �*�ul+� b 2 C3¢V1 f (3.6)

Since �¡�Wl+���T¯ for � l\�E� ³ f ����´C it follows that:� B p I � d ³ f ����´Wµ C� ³ f ����´Wµ C �*�ul+� b 2 C7¢   1 f (3.7)

Subtracting equation (16) from (18) gives:d ³ f ����´Wµ C� ³ f �%�[´Wµ C �
�*�ul+�6c-� B l I b 2 C3¢   1 f ´a�!¯ (3.8)

Therefore d f ���1 i v � d ³ f �%�[´�µ C� ³ f ����´Wµ C � �¡�Wl+�6c9� B l I b 2 C3¢   1 f � C �!¯ (3.9)

expanding equation (20) and interchanging the order of summations leads to the result that �*�ul+����� B l I
for all l in the range � l\��� ³ f ����´C . Outside this range the values of �*�ul+� are zero and those of � B l I are a
cyclic continuation.

The difference function can now be expressed in terms of DFT;� C � �< d f ���  i v � � � B l I c-� C B l I � C (3.10)

or by Parseval’s identity for the DFT we have� C � �<V� d ³ f ����´1 i v � � � B p I cA� C B p I � C (3.11)

Where � � B l I 
F� C B l I 
7� � B p I 
3� C B p I are the corresponding discrete forms of terms used in equation(14). Using
only a finite set of samples equations(21) can be employed to calculate the difference function between two
given sequences without errors. If the tow sequences are not sampled at identical number of points then
prior to calculation of the difference function, the shorter sequence may be padded by zeros.

3.1.2 Normalization of Fault Signatures

It is required that the signatures be normalized such that the difference function remain invariant with
respect to a given transformation [15,16,17]. For the FDI application of time-invariant and deterministic
systems it is sufficient to establish that the derived difference function is invariant with respect to scaling.
This property is established by the following lemma.

Lemma 2.
Consider input-output sequence �6�
����
7�	�
����
3¶©���;
3<Q
�=?=>=>= � that corresponds to either no fault or a fault
signature. If the sequences are represented by the complex DFT as in equation(14) and the difference
function is derived as in equation(22), then

� C
is invariant to any scaling.

Proof.

Consider the effect of introducing scale factors S � and S C� C � �<P� d®³ f ����´1 i v � S � � � B p I c9S C � C B p I � C (3.12)

Minimizing equation ?? with respect to S � and S C respectively and combining leads to:S C� d f ���1 i v � � � B p I � C �US CC d f ���1 i v � � C B p I � C (3.13)
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If the scaling factors are to be the chosen independently both sides of equation(24) must be equal to an
arbitrary constant. A value of � can be chosen to give:S � ��· �d f ���1 i v � � � B p I cUL� � � � �� � (3.14)

Where � � is the standard deviation and L� � � �f d f ���1 i v � � B p I is the mean of the signature coordinates. Rep-
resentation of these results in the frequency domain is;L� � � � � B ¯ I (3.15)� C� � d f ���  i � � � � B l I � C (3.16)

Note that the difference function that have been normalized for scaling has a maximum value of unity.



Chapter 4

Experimental Results

The plant chosen for simulation study is a closed-loop feedback control example taken from [18]. As
illustrated in Figure 4.1, it consists of an armature controlled DC motor, connected in unity feedback,
series compensator configuration. The transfer function, of the closed-loop system is given by:¸ ��¹«�º ��¹«� � » ��¹«��R$ » �
¹«� (4.1)

» ��¹«�¼� ¶���¹g$�½ � �¹���¹R$�½ C �8�
¹g$�½®¾5� (4.2)

The nominal values of ¶r
7½ � 
3½ C and ½�¾ are given as: ¶K�¿�P
À½ � �Á<�= ¯�
À½ C �Â¯�= Ã�
À½�¾N�¿�P= ¯
First the parametric modeling approach in conjunction with pattern recognition technique is used and the
following results are obtained. In order to ensure an accurate and efficient parameter convergence in the
least square estimation, the external excitation, �6�W¥�� , was chosen to be:���u¥����U<Q=�Ä B ¹�p
l�� £ �%$�Å8¨V¹���< £ �	$�¹�p�l��WÆ £ � I (4.3)

It is apparent that overall closed-loop system is of order 3. Thus, it should be represented by a third order
ARX model. However, in order to illustrate the power of the proposed FDI scheme, we deliberately chose
the following second order ARX model to represent the input-output behavior of the closed-loop system:�������)$ � � ���
�*c|�5�)$ �EC ���
�*c9<P���!,Ç$� � �����Yc|�5�+$� C �6�
�*c9<P� (4.4)

Four different kinds of faults were simulated; namely, changes in ½ � 
7½ C 
3½®¾ and ¶ respectively. A rough
spectral analysis of the no-fault as well as the fault signatures indicated presence of dominant frequency
components below <PÈ � � . Thus, providing for an adequate safety margin, we chose the sampling frequency
to be �5¯P¯ � � .

The task of the pattern classification involved categorization of the input-output signatures into five
different classes; namely, no fault, fault in ½ � , fault in ½ C , fault in ½ ¾ , and fault in ¶ respectively. Five
training samples pertaining to each class, that is, a total of twenty five training samples, were used to train
the classifier. In case of the no-fault class, the training samples were generated by introducing minor (less
than ¯�= È�É ) variations in the system parameters and collecting the resulting input-output signatures. In
case of fault in ½ � , the training samples were generated by introducing $�È;É�
�c�Ã�É�
F$Y�5¯�ÉÊ
�c{�5<;É�
�$Y�5È;É
changes around the nominal value of ½ � , and collecting the resulting input-output signatures. This proce-
dure was repeated for the remaining three fault classes as well. Next for each class, five sets of ARX model
parameters were estimated from the five training samples. Five feature vectors were generated; their mean
was computed and stored. The mean feature vectors pertaining to the five different classes were found to
be as given in Tabel 4.1.

In order to test the performance of the overall scheme, four different faults were simulated; namely,Ë �]Ì $Y��¯EÉ change in ½ � (from its nominal value)Ë C Ì $�ÍEÉ change in ½ C (from its nominal value)Ë ¾ Ì c�ÎPÉ change in ½ ¾ (from its nominal value)Ë)Ï Ì c®<V¯EÉ change in ¶ (from its nominal value).
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s(s+A3 )
K

s+A2

s+A1+
-

U(s) E(s) Y(s)
PlantCompensator

Figure 4.1: Configuration of the Armature Controlled DC motor.

Feature No Fault Fault in ½ � Fault in ½ C Fault in ½ ¾ Fault in ¶
Elements t � t C t ¾ t Ï t�Ð� � 1.98 1.86 1.97 1.45 1.84�EC -0.99 -0.85 -0.97 -0.99 -0.86 � �;= <ÊÄ���¯ � C Ñ =?�5ÆÊÄj�5¯ � C ÍM= Ò;ÃYÄ���¯ � Ï Ñ =e<ÊÄ���¯ � C �P=>�5<YÄj�5¯ � C C �P= ÆPÃÊÄ���¯ � C c Ñ =e<V¯YÄ���¯ � C c Ñ =e<V¯ÊÄj�5¯ � ¾ c Ñ = ÈP¯ÊÄj�5¯ � C c�Ò�= ÈP¯*Ä���¯ � CÓÔ Õ 1.26 136.50 123.41 131.07 143.37

Table 4.1: Mean feature vectors pertaining to five classes of signature

All faults were detected successfully using the technique described in Section 4. Both Shiryaev’s and
Hinkley’s methods were tested. The performance of Hinkley’s was found to be slightly superior to that
of Shiryaev’s. Following successful detection, the performance of the classifier was tested. Although
we could have used feature weighting method for more accurate classification, we deliberately chose the
simple Euclidean minimum distance classifier. Even this simple scheme allowed all the fault signatures
to be correctly classified. This attests to the usefulness of the proposed FDI scheme. Tabel 4.2 shows
the computed distances of the test sample features from the stored training features pertaining to the five
different classes. The asterisks in each row point out the minimum distance.

The same example was used for the non-parametric approach and similar simulation studies have been
performed. In this case two different test inputs was used namely a unit step and a summation of sinusoids,
i.e. ���u¥����U<Q= B ¹�p�l��WÆ £ ��$AÅ8¨V¹���Æ £ �§$A¹#p�l�� £ � I . A sampling time of 0.01 seconds and blocks of 400 samples
were examined.

Four different kinds of fault were simulated as in the parametric method. The task of pattern recognition
is to categorize the input-output signatures into five different classes. Similarly five different training
samples pertaining to each class were used. In case of no-fault class, the training samples were generated
by introducing minor(less than 0.5%) variation in system parameters and storing the mean input-output
signatures. The training samples were generated for each input signal separately by introducing the same

Distance From
Test t � t C t�¾ t Ï t Ð

Feature No Fault Fault in ½ � Fault in ½ C Fault in ½ ¾ Fault in ¶Ë � 18912.0 �;= ÈP¯ÊÄj�5¯ � C×Ö ��¯�ÈQ= ¯ 12.70 44.71
10 % change in ½ �Ë C 16338.0 91.56 ¯�= Æ;¯VÍ Ö

37.50 268.4
4 % change in ½ CË ¾ 17511.0 25.59 25.60 <Q=eÈP< Ö

141.03
-7 % change in ½ ¾Ë Ï

22650 171.86 539.60 273.74 Æ;Ò�= Ñ ¯ Ö
-20 % change in ½ Ï

Table 4.2: Distance of the test feature vectors from prestored templates t 1 
n�{�|p��oÈ
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changes around the nominal values of each parameters and storing the mean in each case.
Similar experiments to the parametric technique were carried out. For a particular input the fault signa-

ture was compared with all of the corresponding stored signatures by calculating the Euclidean distances� � C � . The most similar one corresponding to maximum
� C

was then selected. The results for unit step
input is shown in Tabel 4.3. and those for the sinusoidal summation in Tabel 4.4, where the asterisks in
each row indicates the maximum value of

� C
, that is the minimum distance. In all cases the faults were

detected and isolated successfully using the proposed scheme.

Stored Signature
Test

Signature No Fault Fault in ½ � Fault in ½ C Fault in ½�¾ Fault in ¶Ë � 2.05 ¯�= Í;Ã Ö
5.65 113.30 1.35

10 % change in ½ �Ë C 0.99 6.88 ¯�=?�;� Ö
126.70 8.30

4 % change in ½ CË ¾ 256.10 253.20 254.98 ��ÃVÍM= ¯;¯ Ö
256.10

-7 % change in ½ ¾Ë Ï
2.20 1.10 4.50 112.40 ¯�= Ã�< Ö

-20 % change in ½ Ï
Table 4.3: The distance of the simulated fault signatures from the trained templates (

� C Ä9��¯P¯;¯ ) for unit
step input signal �6�W¥������
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Stored Signature
Test

Signature No Fault Fault in ½ � Fault in ½ C Fault in ½ ¾ Fault in ¶Ë � 11.39 �P= Æ�� Ö
27.43 35.24 4.34

10 % change in ½ �Ë C 3.82 28.42 ¯�=eÈVÆ Ö
2.31 29.62

4 % change in ½ CË ¾ 134.86 131.79 15.10 Æ�= Ò Ñ Ö
294.00

-7 % change in ½ ¾Ë)Ï
10.10 2.47 19.04 23.40 �P= ¯PÆ Ö

-20 % change in ½ Ï
Table 4.4: The asterisk in each row indicates the minimum distance



Chapter 5

Comparison

The performance of the two fault monitoring schemes is compared for a number of commonly observed
problems encountered in practice. In the simulation study, the classification technique is deliberately kept
similar in order to make the comparison more realistic. The following issues are discussed:

Model Complexity The PT requires an accurate mathematical model of the system. The complexity of
the model is proportional to the square of the plant order. Therefore, this approach is not suitable
for high order systems unless decentralized or parallel algorithms are used. In contrast, the NPT
approach requires very little modeling effort.

Parameter Convergence One major problem with the PT is the control of the rate of convergence of the
parameter estimation algorithm. It is well known that these algorithms should be periodically made
active by resetting the initial parameters and techniques such as forgetting factor should be used to
monitor the convergence problem.

Structural Information One of the main advantage of the PT is the possibility of extracting information
about the structure of the plant. This information is very useful to locate and isolate faults in the
system. This characteristics make the technique appropriate for closed loop feedback systems where
the control structure comprises actuator, plant and sensor. By relating the parameters to each of these
components, the faults may be easily localized and isolated.

Detection Algorithm An advantage of the PT is that it automatically provides a detection scheme through
monitoring the residual error. While for the NPT, a detection scheme independent of the classification
algorithm should be used.

Decision Algorithm The complexity and problems of fault decision algorithm are very similar in both
approaches. In principle the reliability of these decision depends on the accuracy and validity of the
information extracted and the parameter supplied. These are the parameter estimates in the PT and
the Fourier coefficients in the NPT.

Computational Requirements The computation requirement is in general higher for PT. This is mainly
due to parameter estimation algorithm.

False Faults Both techniques require extensive testing and simulation in order to identify the no fault and
faulty templates. Based on the assumption that the stored information is sufficient to cover all possi-
ble faults, the false fault rate for each technique will then depend on accuracy of parameter estimates
for PT and Fourier descriptor for NPT. Although no firm conclusion can be drawn, simulation studies
shows that this rate is higher for PT.

Robustness Defining robustness as the insensitivity of the fault monitoring scheme to unpredicted internal
or external disturbance, the NPT is more robust since it only depends on the input and output sig-
nals. A major change in the dynamics of the plant does necessitates the change of model order and
structure for the PT.



17

Multi-Input Multi-Output Systems A major problem with the fault monitoring system for MIMO sys-
tem is the identification and isolation of the interaction dynamics between each pair of inputs and
outputs. Although no attempt is made to extend the present techniques to MIMO systems, but it
intuitively obvious that the interaction can be handled much easier in PT.

Application Areas In general PT is more appropriate for systems where it is necessary to localize the
faults. It is usually difficult to model high frequency dynamics because of its random nature. There-
fore, the PT is better suited to systems where faults occurring in low frequency range. The NPT can
handle faults of high frequency nature but the problem of high frequency sampling and limited word
length should be resolved. The NPT is therefore recommended for systems where the location and
nature of likely faults are known.



Chapter 6

Conclusion

Two FDI schemes based on the parametric and non-parametric approach have been presented. Both tech-
niques are invariant under input scaling and use template matching for fault classification. The parametric
technique uses the estimate of an ARX model while the non-parametric uses the Fourier descriptors to
construct feature sets.

The PT is not suitable for high order systems unless decentralized or parallel algorithms are used.
This is due to the high computation requirement and convergence problems with the parameter estimation
algorithm. The main advantage of the PT is its flexibility to extract information about the internal structure
of the plant including the interactions between different subsystems. This is very useful to locate any
isolate faults in the system. It is therefore more appropriate for dynamic systems with closed loop feedback
configuration.

On the other hand the computation requirement is much smaller for NPT. Simulation studies shows
that the false fault rate is also lower and the algorithm is more robust to random disturbances. Finally, this
technique can detect and identify faults in any frequency range provided the problem of high sampling rate
and limited word length can be resolved.

6.1 Further Investigations

(i) Comparison with observer based techniques.

(ii) Modeling the fault as additive signals.

(iii) Extension to disturbuted parameter systems.

(iv) Extension to nonlinear systems, continuous differentiable as well as hard nonlinearities.

(v) Application of Neural Networks for faults classification.

(vi) Use of heuristic information and fuzzy systems.
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