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Abstract

In this paper the system reduction in nonlinear multibody dynamics of wind turbines is investi-
gated for various updating schemes of the moving frame of reference. In one case, the moving
frame of reference is updated to a stiff body, relative to which the elastic deformations are fixed
at one end. In the other case, the stiff body motion is defined as the chord line connecting the
end points of the beam, and the elastic deformations are simply supported at the end points.

The system reduction is performed by discretizing the spatial motion into a set of rigid
body modes and linear elastic eigenmodes determined from anFE-beam model complying to
the definitions of the stiff body motions. Moreover, certainnonlinear effects have been included.
These encompass the non-conservative rotation of the aerodynamic load during large elastic
deformations and application of the aerodynamic and inertial loads in the deformed state.

To illustrate the method a numerical example of a wind turbine blade with a length of
45m attached to a rotor shaft supported by two bearings is used. The reduced model based
on a truncated modal expansion has been compared with the full FE model in both linear and
nonlinear analyses. The updating based on an expansion using simply supported eigenmodes
turns out to be the most favourable in reducing the displacements from the moving frame.

1. INTRODUCTION

The increasing size of wind turbine blades without a proportional increase of stiffness results
in large displacements. Since the substructures are described in their own moving frame of ref-
erence large rigid body motions are extracted from the structural description whereby linear or
moderate nonlinear structural theory are adequate. At extreme conditions the tip displacement
of an MW turbine may exceed 20% of the blade lengthL for which reason geometrical nonlin-
earities may become important. In this respect multibody dynamics offers an appropriate way
of formulating the nonlinear structural response of a wind turbine.

The regular floating frame of reference formulation has beendescribed by several authors
e.g. Nikravesh 1988, Garcia & Bayo 1993, Geradin & Cardona 2001 and Shabana 2005. Here,
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it is required that no rigid body motion between a given substructure and its moving frame
takes place. The origin of the moving frame is defined using a set of reference coordinatesx̄c(t)

with respect to the fixed coordinate system (x̄1, x̄2, x̄3). The rotation of the moving frame of
reference relative to the global coordinate system is defined by the rotation tensorR(θ) where
θ is a parameter vector. The elastic displacementsu(s, t) at the reference positions relative
to the moving coordinate system (x1, x2, x3) are described by a set of shape functionsN(s) of
dimension3 × n and the belongingn generalized coordinates

u(s, t) = N(s)q(t) (1)

The shape functions represent piecewise polynomial interpolation functions in the FE formu-
lation or linear eigenmodes. These parametersx̄c(t), θ(t) and q(t) represent the degrees-of-
freedom of the floating body. The deformable body inertia canbe defined in terms of a set of
inertia shape integrals that depend on the assumed displacement field. The use of the mixed set
of reference and elastic coordinates leads to a highly nonlinear mass matrix as a result of the
inertia coupling between the reference and the elastic displacements.

To circumvent these nonlinearities Kawamoto et al. 1999 suggested an alternative moving
frame formulation, which they named the Local Observer Frame formulation. The formulation
contains some of the same principles as the standard formulation but no relation between the
rigid body motion of the body and the moving frame of reference is postulated. In addition to
the elastic deformations the rigid body motion relative to the moving frame must be included in
the formulation. Then the displacement vector of a materialpoint is described by

u(s, t) = N(s)q(t) , q(t) =

[

qr(t)

qf (t)

]

(2)

whereN(s) is a 3 × (nr + nf ) dimensional interpolation matrix,qr(t) is annr-dimensional
vector describing the rigid body motion.nr denotes the number of independent rigid modes of
the body, i.e.nr = 3 for plane problems andnr = 6 for space problems.qf(t) describes the
elastic deformations. In this formulation the reference coordinates of the moving frame do not
enter as unknown degrees-of-freedom attributed to the moving body. The motion of the moving
frame of reference is independent of the motion of the substructure, and determined from an
update scheme to prevent the body from floating too far away from the moving frame such that
linear theory is adequate. This updating must not necessarily be performed in each time step.
The actual degrees of freedom of the body are the generalizedcoordinates which define the
elastic displacements and rigid body motion relative to themoving frame. Hereby, it is not nec-
essary to iterate the mass matrices which reduce the computation time. The updating depends
on how the rigid body displacements of the body are selected.In Figure1a the updated moving
frame of reference(x1,s, x2,s, x3,s) is determined as a fixed base at the left end where the updat-
ing in Figure1b is based on a connecting line between the end points. In the former case the
elastic deformations are clamped to the stiff body motion. In the latter case the elastic defor-
mations are simply supported. The latter case will typically imply smaller elastic deformations
and correspondingly reduce the effect of geometrical nonlinearities. Similarly, the kinematical
constraints become linear functions of the degrees-of-freedom.
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Figure 1. Moving observer frame formulations. a) Clamped elastic deformations. b) Simply supported
elastic deformations.

2. EQUATIONS OF MOTION BY USE OF A LOCAL OBSERVER FRAME

ω̃ denotes the spin matrix of the angular velocity vectorω andvc is the velocity vector of the
origin of the moving observer frame. Then the moving frame components of the velocity vector
of a material point within the substructure are given as

v = vc + ω̃(s + Nq) + Nq̇ (3)

The external loads referred to the shear centre and moments per unit length are assembled
in p̄(s, t) andm̄(s, t), respectively. Typically, these encompass gravity and aerodynamic loads.
Some of the components entering the load vector such as the gravity load are most suitably
specified in fixed frame coordinates, whereas the aerodynamic loading is specified in moving
frame coordinatespA andmA. p′

A is acting perpendicular andm′

A tangential to the deformed
beam axis. The components are conveniently specified in an auxiliary co-rotated (x′

1
, x′

2
, x′

3
)-

coordinate system asp′

A andm′

A. The corresponding components in moving frame coordinates
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Figure 2. a) Aerodynamic loadp′

A in the deformed beam axis. b) Fixed frame of reference in the wind
turbine. c) The numerical example.
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become

pA = R′p′

A , mA = u × pA + R′m′

A = −p̃Au + R′m′

A = −p̃ANq + R′m′

A (4)

In determining the transformation matrixR′(q) small rotations are assumed. This will introduce
linear parametric excitations and quadratic nonlinearities in the description. Notice that the load
description (4) is non-conservative, i.e. no potential function exists.

Constraints are introduced in order to incorporate restrictions on the relative displace-
ments and rotations of the substructures. In relation to a wind turbine the coupling of two
substructures can e.g. be of the blade and rotor shaft and internal supports of the rotor shaft
are introduced by bearings restricting the displacement from the nacelle, see Figure2c. All the
rotating substructures in a wind turbine rotate around fixedaxis relative to each other whereby
the rotations can be integrated and the constraints become of the holonomic type. Further, the
assumption implies that the constraints become linear

Φ = Bq + b = 0 (5)

whereB contains restrictions on the substructure relative to the moving frame of reference and
b is introduced when restrictions in the fixed frame are formulated e.g. when two substructures
are connected. In such casesb describes either the global position or global rotation of the
moving frame of reference.

The equations of motion are conveniently derived using analytical dynamics based merely
on scalar quantities such as the kineticT = T (q, q̇) and the potential energyU = U(q) contain-
ing contribution from the strain energy and conservative external loadsQc(q) such as gravity,
in addition to vectorial quantities as the non-conservative loadsQnc(q). The non-conservative
loads are caused by the follower character of the aerodynamic loads. The kinetic energy is most
convenient determined by use of the moving frame componentsof the velocity vectorv from
(3). The resulting constrained equations of motion for the multibody system become

[

M 0

0 0

][

q̈

λ̈

]

+

[

2G 0

0 0

][

q̇

λ̇

]

+

[

K + Ġ + D BT

B 0

][

q

λ

]

=

[

−MT

0
ac − J̇T

0
+ JT

2
+ Qc(q) + Qnc(q)

−b

]

(6)
whereK is the elastic stiffness matrix and

M =

∫

V

NT NρdV , M0 =

∫

V

NρdV , D =

∫

V

NT ω̃ω̃NρdV (7)

G =

∫

V

NT ω̃NρdV , J0 = ωT

∫

V

s̃NρdV , J2 = ωT

∫

V

s̃ω̃NρdV (8)

The Lagrange multiplier vectorλ stores the forces and moments acting at the kinematical con-
straints.M is the conventional symmetric mass matrix of the body in the moving frame of
reference.M0 is representing the effect of uniform translation. The effect of centrifugal forces
are contained in the symmetric matrixD and the gyroscopic forces are represented by the skew
symmetric matrixG. The remainingJ-terms are couplings between the reference position and
the shape functions. The equations of motion (6) is solved by means of a Newmark algorithm
with (β, γ) = (1

4
, 1

2
). Because the constraints in principle introduce infinite stiffness into the

system it becomes necessary to apply unconditional stable time integrators. The energy conser-
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vation of the indicated Newmark scheme is only guaranteed for linear systems. In the present
version of the algorithmQc(q) andQnc(q) are simply determined by use of the previous cal-
culatedq. To avoid large deviations relatively small time steps are used corresponding to 150
per period of the lowest eigenvibration. The size of the timesteps can be increased by use of
iterations in the equation of motion.

3. UPDATE OF MOVING FRAME OF REFERENCE

Whenever the moving substructure has drifted too far away from the moving observer frame
the latter is updated to coincide with the present position and orientation of the fictitious stiff
body (x1,s, x2,s, x3,s)-coordinate system shown in Figure1a and Figure1b. The new position,
velocity and acceleration of the updated origin in fixed frame coordinates are

x̄s = x̄c + x̄cs = x̄c + Rcu(0) , v̄s = v̄c + Ṙcu(0) + Rcu̇(0) (9)

ās = āc + R̈cu(0) + 2Ṙcu̇(0) + Rcü(0) (10)

whereu(0) is the rigid body displacement ats = 0 and Rc is the rotation matrix from the
moving frame(x1, x2, x3) to the fixed frame(x̄1, x̄2, x̄3). Next, the orientation, angular velocity
and angular acceleration of the updated moving frame are determined from the following Taylor
expansion type of extrapolations

θs = ϕ(0) + ωc∆t + 1

2
αc∆t2 , ωs = ϕ̇(0) + ωc + αc∆t , αs = ϕ̈(0) + αc (11)

whereϕ(0), ϕ̇(0) andϕ̈(0) are the rotation, angular velocity and angular acceleration of the
rigid body rotation ats = 0 and∆t is the time increment. These rotations are determined from
the generalized degrees-of-freedomq, q̇ andq̈. Rs(θs) can then be determined and the rotation
matrix to the fixed frame of reference becomeR = RcRs. ωs andαs are converted into spin
matrices and used in (6) for the next time step. In (9) and (10) bothṘc andR̈c enter which are
determined by

Ṙc = Rc(ω̃c + α̃c∆t) , R̈c = Rc(α̃c − ṘT
c Ṙc) (12)

When the updating of the moving frame is performed all rigid body motions are initialized with
zero.

4. NUMERICAL EXAMPLE

In this section the theory is illustrated with a simplified system with 2 substructures and kine-
matic constraints as shown in Figure2c. The coordinate axes both start at the hub with the
moving frame coordinate axisx3 pointing in the longitudinal direction of the respective beam
structures. The blade and shaft are connected at the hub whereby the displacements and rota-
tions of the two substructures at this point are equal. Moreover, the shaft is supported by two
bearingsB1 andB2 whereB1 allows displacements in the longitudinal direction and alldis-
placements are fixed atB2. The length of the blade isL = 46 m with a total weight of 10 t and it
is constructed by NACA 63-418 section profiles. The cross section parameters and the mass dis-
tribution throughout the blade are presented in Larsen & Nielsen [6]. The numerical FE-model
is based on prismatic Bernoulli-Euler beam elements accounting for shear and St. Venant tor-
sion with 6 degrees-of-freedom for each node. The rotor shaft has a length ofL = 4 m and
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diameter ofd = 0.4 m and the bearingB1 is placed in the centre andB2 at the most far end
from the blade. The shaft has constant geometry and materialparameters and is modelled with
the same type of element as the blade model. The following displacement constraintsΦd and
rotation constraintsΦr defined in the fixed frame of reference are introduced to couple the two
substructures

Φd = R1u1(0) + x̄c1 −

(

R2u2(0) + x̄c2

)

= R1N1(0)q1 + x̄c1 −

(

R2N2(0)q2 + x̄c2

)

= 0 (13)

Φr = R1ϕ1(0) + θ̄1 −

(

R2ϕ2(0) + θ̄2

)

= R1P1(0)q1 + θ̄1 −

(

R2P2(0)q2 + θ̄2

)

= 0 (14)

where x̄c and θ̄ are the fixed frame position of the moving frame origin and accumulated
rotation-parameter of the moving frame, respectively. Theconstraints are introduced in the
system of equation as described in (5). As seen, the constraints become linear in the degrees
of freedomq1 andq2 related to the 2 substructures. The displacement constraints for the two
bearings do not need to be formulated in the fixed frame because they are not linked to other
substructures. The constraints for the bearingB2 become

ΦB2
= u2(L2) = N2(L2)q2 = 0 (15)

and similar with the bearingB1 where only the components in the direction orthogonal to the
beam axis enter. Due to the homogeneity and small deformations the shaft substructure is in the
following simulations modelled merely by 4 beam elements, whereas 20 elements are used for
the non-homogeneous blade. The reduced model of the blade isbased on undamped eigenmodes
Φe determined from the belonging consistent mass matrixM and the stiffness matrixK from
the following eigenvalue problem

(

K − ω2M
)

Φe = 0 (16)

where the kinematic constraints to the fictitious stiff bodymotion have been included. The rigid
body modes are next added toΦe to have a full description of displacements and rotations atthe
nodes. In the reduced model the shaft substructure is kept asan FE-model similar to the model
where both the blade and shaft are based on finite elements. The updating of the moving frame
is performed in each time step.

To demonstrate the multibody formulation a linearly increasing tip load is applied in both
the blade and edge directions during the first 3 s. The loads are then removed and the response
and the angular velocityΩ are observed in Figure3a. Here, it is seen that the response from
the FE-model and reduced model are almost identical with 16 elastic modes. Several of them
especially those dominated by torsion around the longitudinal direction are not important. In
Figure 3b Ω is plotted for the two models and it is observed that they alsoare identical. It
is chosen to load up in the edge direction to end up at approximately Ω = 1.6 rad/s which
is the nominal velocity for this the considered turbine. It is also observed thatΩ is almost
constant which is a sign of energy conservation. Next, the influence of introducing the non-
linear correction on the load from (4) is examined. This is done by applying a load at the tip
of the blade in the deformed blade direction i.e.p′

1,A. To examine when this correction has an
influence the tip load is increased linearly during the first 2s of the simulation and then removing
the load to examine eigenvibrations of the system. In Figure4a it is seen that deviations between
the two loading methods are first visible atuf,1/L ≈ 0.09 where the response from the non-
linear correction becomes the largest. The reason for the larger displacement with the non-linear
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Figure 3. a) Tip displacement in the globalx̄1-direction. b) Angular velocity of the rotor.(×) FE-model.
(◦) converged reduced model.

0 2 4 6 8 10
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0 2 4 6 8 10
−0.15

−0.1

−0.05

0

0.05

0.1

0.15a) b)

u
f
,1
/L

[−
]

u
f
,1
/L

[−
]

t[s]t[s]

Figure 4. a) Normalized elastic tip displacement for FE-model. (×) linear applied tip load.(◦) non-linear
applied tip load. b) Normalized elastic tip displacement for non-linear applied tip load.(◦) FE-model.
(+) 3 modes.(∗) 5 modes.(�) 10 modes.

correction is mainly due to the moment contribution which isnot present when applying the load
in linear theory. Increasing the load further results in larger deviations and therefore, it is chosen
to cut off the load atuf,1/L ≈ 0.15. In the remaining part of the simulation the outcome of the
different motions att = 2 s is visible. In Figure4b it is seen that fornf = 10 the response is very
much alike to the FE-model during the loading stage. By use of3 and 5 modes the response is
predicted to be smaller. It can hereby be concluded that by use of the non-linear load correction
for large tip deflections it is necessary with 10 modes but to describe eigenvibrations 3 modes
are sufficient. Next, the influence of using the moving frame formulation based on simple
supported elastic deformations illustrated in Figure1b are investigated for the same non-linear
applied tip load as before. A 3rd formulation is investigated, where the simple support at the tip
is placed at the 3/4 point. In both cases the axial rotation component is fixed at the hub when
determining the elastic modes. In Figure5a it is seen that by use of the simple supports the
response during the loading stage is reduced compared to thefixed models also used in Figure
4b but overall the response is very similar. However, as anticipated the displacements presented
in Figure5b from the moving frame is significantly reduced by using these types of elastic
modes making linear theory more reasonable.
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5. CONCLUSIONS

By use of a multibody formulated where the motion of the moving frame of reference is pre-
dicted the equations of motion become linear, contrary to the standard multibody formulation
where iterations are necessary. Moreover, it is only necessary to update the moving frame of
reference when the body is displaced to far away that linear theory is adequate which speeds up
the simulations further. To account for loads being appliedin the deformed position a nonlinear
correction has been implemented. It is shown that an effect of this correction first is visible at
uf/L ≈ 0.09 compared to appliying the load in the undeformed position. The reduced model
of the blade performs in most situations identical to the full FE-model of the blade. However,
when the nonlinear load correction is applied a larger amount of elastic modes are necessary due
to the more complex deflections which are not sufficiently described by the lowest 3-5 elastic
modes. By use of elastic modes which better describe the response it is also possible to reduce
the overall displacements from the moving frame. In an upcoming work a more realistic load
model will be incorporated together with a criteria for whenthe moving frame of reference
should be updated i.e. based on a certain deflection of the tipfrom the moving frame.
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