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Abstract

In this paper the system reduction in nonlinear multibodyadyics of wind turbines is investi-
gated for various updating schemes of the moving frame efeete. In one case, the moving
frame of reference is updated to a stiff body, relative tochtithe elastic deformations are fixed
at one end. In the other case, the stiff body motion is defirseth@ chord line connecting the
end points of the beam, and the elastic deformations ardyssupported at the end points.

The system reduction is performed by discretizing the apatbtion into a set of rigid
body modes and linear elastic eigenmodes determined froREameam model complying to
the definitions of the stiff body motions. Moreover, certagnlinear effects have been included.
These encompass the non-conservative rotation of the yaeouc load during large elastic
deformations and application of the aerodynamic and ialddads in the deformed state.

To illustrate the method a numerical example of a wind twediade with a length of
45m attached to a rotor shaft supported by two bearings id. Udee reduced model based
on a truncated modal expansion has been compared with tHeuhodel in both linear and
nonlinear analyses. The updating based on an expansiog sisaply supported eigenmodes
turns out to be the most favourable in reducing the displacgsfrom the moving frame.

1. INTRODUCTION

The increasing size of wind turbine blades without a prapodl increase of stiffness results
in large displacements. Since the substructures are dedan their own moving frame of ref-
erence large rigid body motions are extracted from the strakdescription whereby linear or
moderate nonlinear structural theory are adequate. Aéedrconditions the tip displacement
of an MW turbine may exceed 20% of the blade lenftfor which reason geometrical nonlin-
earities may become important. In this respect multibodyadlyics offers an appropriate way
of formulating the nonlinear structural response of a winthine.

The regular floating frame of reference formulation has lwstribed by several authors
e.g. Nikravesh 1988, Garcia & Bayo 1993, Geradin & Cardor@ 2fhd Shabana 2005. Here,
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it is required that no rigid body motion between a given sulz$tire and its moving frame
takes place. The origin of the moving frame is defined usingf afsreference coordinat&s(t)
with respect to the fixed coordinate system, @, z3). The rotation of the moving frame of
reference relative to the global coordinate system is defiryethe rotation tensdR(60) where
0 is a parameter vector. The elastic displacemenisst) at the reference positiosirelative
to the moving coordinate system;( z,, x3) are described by a set of shape functiblis) of
dimensiom x n and the belonging generalized coordinates

u(s,t) = N(s)q(t) (1)

The shape functions represent piecewise polynomial iotatipn functions in the FE formu-
lation or linear eigenmodes. These parameke(s), 0(t) andq(t) represent the degrees-of-
freedom of the floating body. The deformable body inertia loarefined in terms of a set of
inertia shape integrals that depend on the assumed dispéatdield. The use of the mixed set
of reference and elastic coordinates leads to a highly neatimass matrix as a result of the
inertia coupling between the reference and the elastidatisments.

To circumvent these nonlinearities Kawamoto et al. 1999ested an alternative moving
frame formulation, which they named the Local Observer fer&mnmulation. The formulation
contains some of the same principles as the standard fotiorulaut no relation between the
rigid body motion of the body and the moving frame of refeeeirxcpostulated. In addition to
the elastic deformations the rigid body motion relativen® inoving frame must be included in
the formulation. Then the displacement vector of a mateoatt is described by

u(s.t) =N(S)(t) q<t>=lg;$§] @

whereN(s) is a3 x (n, + ny) dimensional interpolation matrix,.(t) is ann,-dimensional
vector describing the rigid body motion, denotes the number of independent rigid modes of
the body, i.en, = 3 for plane problems and, = 6 for space problemsjy,(¢) describes the
elastic deformations. In this formulation the referencerdmates of the moving frame do not
enter as unknown degrees-of-freedom attributed to themgdvody. The motion of the moving
frame of reference is independent of the motion of the substre, and determined from an
update scheme to prevent the body from floating too far away the moving frame such that
linear theory is adequate. This updating must not necég$eriperformed in each time step.
The actual degrees of freedom of the body are the generalizedlinates which define the
elastic displacements and rigid body motion relative tonttowing frame. Hereby, it is not nec-
essary to iterate the mass matrices which reduce the cotigputeme. The updating depends
on how the rigid body displacements of the body are selettdéigurela the updated moving
frame of referencér, 4, x5, 73 5) is determined as a fixed base at the left end where the updat-
ing in Figurelb is based on a connecting line between the end points. Irotheef case the
elastic deformations are clamped to the stiff body motionthle latter case the elastic defor-
mations are simply supported. The latter case will typyceiply smaller elastic deformations
and correspondingly reduce the effect of geometrical mealiities. Similarly, the kinematical
constraints become linear functions of the degrees-@idiven.
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Figure 1. Moving observer frame formulations. a) Clampexstt deformations. b) Simply supported
elastic deformations.

2. EQUATIONSOF MOTION BY USE OF A LOCAL OBSERVER FRAME

w denotes the spin matrix of the angular velocity vectoandv.. is the velocity vector of the
origin of the moving observer frame. Then the moving frammponents of the velocity vector
of a material point within the substructure are given as

V=V, +w(s+Nq)+ Ng 3)

The external loads referred to the shear centre and moments length are assembled
in p(s, t) andm(s, t), respectively. Typically, these encompass gravity anddyeramic loads.
Some of the components entering the load vector such as #véygload are most suitably
specified in fixed frame coordinates, whereas the aerodyniaading is specified in moving
frame coordinatep, andm,. p/, is acting perpendicular ami’, tangential to the deformed
beam axis. The components are conveniently specified in @haay co-rotated ¢}, z), ©%)-
coordinate system g8, andm’,. The corresponding components in moving frame coordinates

a) b) C)

Figure 2. a) Aerodynamic loagl, in the deformed beam axis. b) Fixed frame of reference in timel w
turbine. c) The numerical example.
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become
pA:R/p;‘ , mA:UXpA—i-R/m;‘:—f)AU—i—R/m;‘:—f)ANq—i—R/m;l (4)

In determining the transformation mati(q) small rotations are assumed. This will introduce
linear parametric excitations and quadratic nonlinessitin the description. Notice that the load
description §) is non-conservative, i.e. no potential function exists.

Constraints are introduced in order to incorporate rdgiris on the relative displace-
ments and rotations of the substructures. In relation to radviurbine the coupling of two
substructures can e.g. be of the blade and rotor shaft aethaitsupports of the rotor shaft
are introduced by bearings restricting the displacement fihe nacelle, see Figuge. All the
rotating substructures in a wind turbine rotate around fexad relative to each other whereby
the rotations can be integrated and the constraints becbthe bolonomic type. Further, the
assumption implies that the constraints become linear

&=Bq+b=0 (5)

whereB contains restrictions on the substructure relative to tbeing frame of reference and
b is introduced when restrictions in the fixed frame are foated e.g. when two substructures
are connected. In such cadeglescribes either the global position or global rotation e t
moving frame of reference.

The equations of motion are conveniently derived usingydital dynamics based merely
on scalar quantities such as the kinétie- 7'(q, ¢) and the potential enerdy = U(q) contain-
ing contribution from the strain energy and conservativiemal load€Q.(q) such as gravity,
in addition to vectorial quantities as the non-conseregidadsQ,..(q). The non-conservative
loads are caused by the follower character of the aerodymianils. The kinetic energy is most
convenient determined by use of the moving frame compordritse velocity vectov from
(3). The resulting constrained equations of motion for thetibotly system become

Moollg| |26 0lq| [K+G+D B" | q|_|-Mfa—Jf+JI+Qc(a)+Qne(a)
0 ofl A 0 Of| A B 0l A —b
whereK is the elastic stiffness matrix and
M :/ NTNpdV | MO:/ NpdV | D:/ N @&NpdV (7)
14 14 14
G:/ NT@GNpdV | JO:wT/édiV , ngwT/échpdV (8)
14 14 14

The Lagrange multiplier vectox stores the forces and moments acting at the kinematical con-
straints.M is the conventional symmetric mass matrix of the body in tleing frame of
referenceM is representing the effect of uniform translation. The @ffa centrifugal forces

are contained in the symmetric matfixand the gyroscopic forces are represented by the skew
symmetric matrixG. The remainingl-terms are couplings between the reference position and
the shape functions. The equations of motiéni¢ solved by means of a Newmark algorithm
with (6,~) = (3,1). Because the constraints in principle introduce infiniténgtss into the
system it becomes necessary to apply unconditional statdeimtegrators. The energy conser-
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vation of the indicated Newmark scheme is only guaranteedirfear systems. In the present
version of the algorithn®.(q) andQ,..(q) are simply determined by use of the previous cal-
culatedq. To avoid large deviations relatively small time steps aeducorresponding to 150
per period of the lowest eigenvibration. The size of the tsteps can be increased by use of
iterations in the equation of motion.

3. UPDATE OF MOVING FRAME OF REFERENCE

Whenever the moving substructure has drifted too far away fthe moving observer frame
the latter is updated to coincide with the present positiwh @rientation of the fictitious stiff

body (21 s, 2 5, x3,5)-cOordinate system shown in Figuta and Figurelb. The new position,

velocity and acceleration of the updated origin in fixed feacoordinates are

Xy = Xo + Xos = X+ RU(0) ,  V, = V. + R.u(0) + R.u(0) (9)
a, = a. + R.u(0) + 2R.0(0) + R.(0) (10)

whereu(0) is the rigid body displacement at= 0 andR. is the rotation matrix from the
moving frame(z;, x9, x3) to the fixed framéz,, z,, T3). Next, the orientation, angular velocity
and angular acceleration of the updated moving frame aegrdeted from the following Taylor
expansion type of extrapolations

0, = 90(0) + wcAt + %acAtQ y  Ws = 90(0) + we + acAt y Qs = 90(0) + Q. (11)

wherep(0), ¢(0) and¢(0) are the rotation, angular velocity and angular accelanatiothe
rigid body rotation as = 0 and At is the time increment. These rotations are determined from
the generalized degrees-of-freedgng andq. R,(6,) can then be determined and the rotation
matrix to the fixed frame of reference becoRe= R.R,. w, anda, are converted into spin
matrices and used i6) for the next time step. In9j and (L0) both R, andR. enter which are
determined by

Rc = Rc(‘:}c + cht) ) Iic = Rc(dc - RZRC> (12)

When the updating of the moving frame is performed all rigsdypmotions are initialized with
zero.

4. NUMERICAL EXAMPLE

In this section the theory is illustrated with a simplifiedssgm with 2 substructures and kine-
matic constraints as shown in FiguPe. The coordinate axes both start at the hub with the
moving frame coordinate axis; pointing in the longitudinal direction of the respectiveabe
structures. The blade and shaft are connected at the hulelyhtre displacements and rota-
tions of the two substructures at this point are equal. Meedhe shaft is supported by two
bearingsB; and B, where B; allows displacements in the longitudinal direction anddad-
placements are fixed &t,. The length of the blade i = 46 m with a total weight of 10t and it
is constructed by NACA 63-418 section profiles. The cross@@parameters and the mass dis-
tribution throughout the blade are presented in Larsen dgdie[6]. The numerical FE-model
is based on prismatic Bernoulli-Euler beam elements adooyfor shear and St. Venant tor-
sion with 6 degrees-of-freedom for each node. The rotortdtesf a length of. = 4m and
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diameter ofd = 0.4 m and the bearing3; is placed in the centre anfl, at the most far end
from the blade. The shaft has constant geometry and mapaniaimeters and is modelled with
the same type of element as the blade model. The followingatisment constrain®,; and
rotation constraint®,. defined in the fixed frame of reference are introduced to ety two
substructures

q)d = Rlul(O) + X1 — (R2u2(0) + )_(02) = RlNl(O)ql + X1 — (RQNQ(O)qQ =+ )_(02) =0 (13)
®, = Rip1(0) + 01 — (Rop2(0) + 62) = RiP1(0)qs + 61 — (RaP2(0)g2 + 62) =0 (14)

where X, and @ are the fixed frame position of the moving frame origin anduacalated
rotation-parameter of the moving frame, respectively. €hastraints are introduced in the
system of equation as described 8).(As seen, the constraints become linear in the degrees
of freedomq; andq; related to the 2 substructures. The displacement contsri@nthe two
bearings do not need to be formulated in the fixed frame bectney are not linked to other
substructures. The constraints for the beatfidecome

¢32 — UQ(LQ) - NQ(Lg)qQ — O (15)

and similar with the bearing; where only the components in the direction orthogonal to the
beam axis enter. Due to the homogeneity and small defornsati@ shaft substructure is in the
following simulations modelled merely by 4 beam elementsergas 20 elements are used for
the non-homogeneous blade. The reduced model of the bladeesl on undamped eigenmodes
®,. determined from the belonging consistent mass mariand the stiffness matriK from

the following eigenvalue problem

(K—w’M)®. =0 (16)

where the kinematic constraints to the fictitious stiff badlgtion have been included. The rigid
body modes are next addedd®q to have a full description of displacements and rotationlset
nodes. In the reduced model the shaft substructure is kept BE-model similar to the model
where both the blade and shaft are based on finite elemergsigdating of the moving frame
is performed in each time step.

To demonstrate the multibody formulation a linearly insieg tip load is applied in both
the blade and edge directions during the first 3s. The loagthan removed and the response
and the angular velocit§? are observed in Figur8a. Here, it is seen that the response from
the FE-model and reduced model are almost identical withld€tie modes. Several of them
especially those dominated by torsion around the longmaidilirection are not important. In
Figure 3b 2 is plotted for the two models and it is observed that they alsidentical. It
is chosen to load up in the edge direction to end up at appetein() = 1.6rad/s which
is the nominal velocity for this the considered turbine.sltalso observed th&? is almost
constant which is a sign of energy conservation. Next, til@ence of introducing the non-
linear correction on the load frond)(is examined. This is done by applying a load at the tip
of the blade in the deformed blade direction pg,,. To examine when this correction has an
influence the tip load is increased linearly during the first2the simulation and then removing
the load to examine eigenvibrations of the system. In Fidarieis seen that deviations between
the two loading methods are first visiblewat; /L ~ 0.09 where the response from the non-
linear correction becomes the largest. The reason for therdisplacement with the non-linear
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Figure 3. a) Tip displacement in the glolagldirection. b) Angular velocity of the rotofx ) FE-model.
(o) converged reduced model.
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Figure 4. a) Normalized elastic tip displacement for FE-elad« ) linear applied tip load(c) non-linear
applied tip load. b) Normalized elastic tip displacementrfon-linear applied tip load.c) FE-model.
(4+) 3 modes(x) 5 modes((J) 10 modes.

correction is mainly due to the moment contribution whichaspresent when applying the load
in linear theory. Increasing the load further results igéardeviations and therefore, it is chosen
to cut off the load atis; /L ~ 0.15. In the remaining part of the simulation the outcome of the
different motions at = 2 sis visible. In Figuretb itis seen that fon; = 10 the response is very
much alike to the FE-model during the loading stage. By usearid 5 modes the response is
predicted to be smaller. It can hereby be concluded that éytihe non-linear load correction
for large tip deflections it is necessary with 10 modes butescdbe eigenvibrations 3 modes
are sufficient. Next, the influence of using the moving framemulation based on simple
supported elastic deformations illustrated in Figlioeare investigated for the same non-linear
applied tip load as before. A 3rd formulation is investight®here the simple support at the tip
is placed at the 3/4 point. In both cases the axial rotationpmment is fixed at the hub when
determining the elastic modes. In Figusa it is seen that by use of the simple supports the
response during the loading stage is reduced compared fix¢ldemodels also used in Figure
4b but overall the response is very similar. However, as graied the displacements presented
in Figure5b from the moving frame is significantly reduced by using ¢hggpes of elastic
modes making linear theory more reasonable.



ICSV14 « 9-12 July 2007 « Cairns « Australia

a)

21 [m]

Figure 5. Tip displacement for a non-linear applied tip leadrixed frame coordinate. b) Moving frame
coordinates(x) FE-model with fixed baséo) reduced model with fixed baset) reduced model with
simple support at the 3/4 poirt<) reduced model with simple supports at the end points.

5. CONCLUSIONS

By use of a multibody formulated where the motion of the mgvirame of reference is pre-
dicted the equations of motion become linear, contrary ¢éostandard multibody formulation
where iterations are necessary. Moreover, it is only necgds update the moving frame of
reference when the body is displaced to far away that lirresory is adequate which speeds up
the simulations further. To account for loads being apphetie deformed position a nonlinear
correction has been implemented. It is shown that an effieitti® correction first is visible at
us/L ~ 0.09 compared to appliying the load in the undeformed positidre feduced model
of the blade performs in most situations identical to thé Rid-model of the blade. However,
when the nonlinear load correction is applied a larger armoflglastic modes are necessary due
to the more complex deflections which are not sufficientlycdesd by the lowest 3-5 elastic
modes. By use of elastic modes which better describe themespt is also possible to reduce
the overall displacements from the moving frame. In an upogrnwvork a more realistic load
model will be incorporated together with a criteria for whiae moving frame of reference
should be updated i.e. based on a certain deflection of tHietipthe moving frame.
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