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Résumé

L’objectif premier des systèmes de contrôle tolérant les défaillances (FTC) est de manier les défaillances
ainsi que les divergences en utilisant des lois d’accomodation appropriés. L’objet d’obtenir des informa-
tions sur divers paramtres et signaux, qui doivent être manipulés dans le cadre de détection de défaillances,
devient une tâche rigoureuse en fonction de l’augmentation du nombre de sous-systèmes. L’approche
structurelle présentée dans ce raport, représente un cadre général pour fournir des informations quand le
système devient complex. En outre, pour l’utilisation de cette approche, on peut determiner la séquence de
calcul des résidues.

La méthodologie de cette approche est illustrée sur un bateau a propulsion ”benchmark”.

keywords Analyse structurelle, relations de redondance analytique, detection de défaillances et iso-
lation.



Abstract

The prime objective of Fault-tolerant Control (FTC) systems is to handle faults and discrepancies using
appropriate accommodation policies. The issue of obtaining information about various parameters and
signals, which have to be monitored for fault detection purposes, becomes a rigorous task with the growing
number of subsystems. The structural approach, presented in this paper, constitutes a general framework
for providing information when the system becomes complex. Furthermore, by using this approach, one
can determine the calculation sequences of the residuals.

The methodology of this approach is illustrated on the ship propulsion benchmark.

keywords Structural analysis, analytical redundancy relations, fault detection and Isolation.
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Chapter 1

Introduction

At the early stage of the design phase of a Fault-Tolerant Control (FTC) system for the process at hand,
there is a need for early assessment of detectability (and if possible isolability) of the faults which are
of interest. These faults can impose serious effects on the continuation of the process operation. This
goal can not be achieved in the early stage by using analytical redundancy due to the lack of detailed
information about the subsystems, for instance, lack of knowledge about the actual values of the involved
parameters involved or parameter variations, and so on. However, it will be highly advantageous to be able
to assess, at any stage of the design and with the available information, which part of the system can not be
used for detecting the interesting fault(s) and which part of the system can possibly be used for that purpose.

The structural approach is a powerful method to achieve the above-mentioned goal. The structural
analysis ([CLCS94], [SD27], [DS03]) is the analysis of the structural properties of the models, i.e., prop-
erties which are independent of the actual values of the parameters. Only links between the variables and
parameters which are resulted from the operating model are represented in this analysis. They are indepen-
dent from the operating model and are thus independent of the form under which this operating model is
expressed (qualitative or quantitative data, analytical or non-analytical relations). The links are represented
by a graph, on which a structural analysis is performed. In relation with this analysis only course initial
data are needed.

As the basic knowledge about the process/model is available in form of variables, parameters, and some
initial data, the structural analysis has following properties/advantages:� It can be applied to linear as well as non-linear models.� It does not need any kind of model accuracy.� It allows a homogeneous representation of different models by means of the incidence matrix of a

di-graph.

The report is formed in following chapters:

Chapter 1: Introduction.

Chapter 2: System description. The model of the ship propulsion benchmark, used in this report, con-
stitutes of two parts, the dynamic part and the static one. The former is mainly a linear version of
the benchmark while the later is represented by tables. As the result, the obtained overall model has
maintained the complexity of the plant. It should be mentioned that the used model is obtained from
the version of the benchmark which constitutes one engine + one propeller. Limitations (except one)
are not considered at the first stage. The reason behind it is, that in the beginning of the design stage,
there are no specific knowledge about the limitations/constraints in the system. So, having this lack
of knowledge, it would be advantageous to know whether the actual configuration is informative
enough for detection (and perhaps isolation) purposes.

Chapter 3: Structural Model and Canonical Decomposition The theory behind the structural approach
is described using examples mainly from the ship benchmark. This approach, using well-known
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di-graph theory, constitutes a general framework which shows its advantage when the number of
components/subsystems in a complex system increases. Moreover, using the structural analysis, one
can determine the calculation sequences of the residuals. The theory has been directly applied on the
ship benchmark in the same chapter. The soul purpose for doing it is to illustrate the stepwise im-
plementation of the theory on the system. Using canonical decomposition lead to obtaining residual
expressions for the ship benchmark at the end of this chapter.

Chapter 4: Fault Detection and Isolation The resulting Analytical Redundancy Relations (ARRs) ob-
tained by applying the approach are then considered in this chapter. Appropriate algorithms are used
to detect the faults, and the results are then discussed.

Chapter 5: Conclusion An overall conclusion of the structural analysis method applied on the propulsion
system is given in this chapter.



Chapter 2

Ship Benchmark

The chosen propulsion system, in this report, consists of one engine and one propeller. The original propul-
sion system consists of two engines + two propellers which are placed in parallel. However, the chosen
system has the same performance as the original one. The idea is to use this system in order to under-
stand the details and implemented functions and to try to design detector algorithms for it. Modifica-
tion/extension/redesign of FDI algorithms to detect the same faults in the original system, will afterward
be needed, since the engine/propeller sets in the original system are cross-coupled.

2.1 Description of the model

An outline of the propulsion system is drawn in figure 2.1. The dynamic part of the model is mainly a linear
version of the benchmark. The static part of the model consists of three different tables of real data. The
consequent overall model, therefore, maintains its complexity and nonlinearity of the model propulsion
system.
The dynamic and static part of the benchmark are detailed in the following by referring to [IZB97], and fig.
2.1:

2.1.1 Propeller pitch angle control loop

The linearized version of the pitch angle control system is described by following equations:�	��

��������������������� �
�"!$#��%'&(�)��	��
 #�� � 
*�+�,�.-��
�"!/�(���� is the proportional controller, ������� is the reference signal, �.� is the measured signal, and � � is the control
signal. ! #� %'&�� and !/� are incipient correspondingly sensor fault imposed on this system. �0- represents the
measurement noise.

2.1.2 Governor

Input to the Governor, which is a PI controller, is the difference between the shaft speed reference 1 �2�3� , and
the measured shaft speed 1 � . The output is the fuel index 4 � . The PI controller is described by following
functions: 1 � 
 1 �,��&	�5��! 1 ���#47698 
 � �: %9; � 1 �2�3��� 1 ��� � : %=< � 1 ����� � 1 � �<�> ?

47698 
 @A#47698(B <(> � 476985C4 �D
 EGF�H	��I0JKEML'N � 4O6 8 J=PQ�K�4 � 
 4 �R�S��T
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Figure 2.1: Diagram of the ship speed propulsion system

The dependence of the governor to the shaft speed is disregarded. Furthermore, in the real governor there
exists anti wind-up arrangements, which are disregarded in this report. 4U6982V is the initial value and depends
of the operating point of the system. 4 � is the measured fuel index. The term �WT represents the fact that
the calculated fuel index by the controller is transformed to physical actions by some actuators (motors)
and these generate some noises.

2.1.3 Diesel engine dynamics

The diesel engine dynamics can be divided in two parts. The first part, which describes the relation between
generated torque and the fuel index, is in linearized form given by following ordinary (linear) differential
equation: �(XY
*�(XZ�Q�[��!M��X.�\ �]� : � < \ �<(> 

��X B 4 �_^M` \ �


acb(dfeg5h �,�(X B 4 ��(XZ� is the diesel engine’s gain constant, : � is the time constant. The value of arbitrary parameter a is
calculated by inserting initial values of the ODE.

The second part is derived, when considering the applied torques to the shaft, by following differential
equation: i � #1 
 \ � � \ � \ �\ � [Nm] is the torque developed by the diesel engine,

\
[Nm] is the developed torque from propeller

dynamics, and
\ � [Nm] is the friction torque (not considered in this report).

The shaft speed can then be calculated by:1 
 @ #1jB <(> � 1 V
where 19V in the initial value.

2.1.4 Propeller Characteristics

There are two types of propellers: fixed pitch propellers (FP), where the pitch angle is fixed, and control-
lable pitch propellers (CP), where the pitch angle � can be changed. The pitch angle is the angle between
a single propeller blade and the direction it turns. The pitch angle can be changed from 100% (full ahead)
to -100% (full astern).
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The CP-propeller characteristics are represented in the benchmark by two tables of real data: the first
table characterizes the developed (consumed) propeller torque

\
, and the second table characterizes the

developed (produced) propeller thrust k :l�m � 1 J3�0J�nOopJ \ �q
*IMr ktspu)v bWPl�w � 1 J3�xJ2n7o�J k �j

Iyr ktspu)v b�z
where n o (m/s) is the velocity of the water that goes into propeller disc (also called the advance speed).
The magnitude of the advance speed n o is less than the ship speed { . This is due to the non-uniform shape
of the water flow under the ship hull. The water flow changes from the ship speed { under the ship to zero
far behind the ship. The velocity of the water at the propeller, n o , is therefor smaller than the ship speed.
The influence on the advance speed can be described by the wake fraction numbers | , in the following
equation: n o 
}��P~� | � {
Typical values for | are between 0.1 and 0.4. In addition to the wake another effect, the thrust deduction,
has to be mentioned. Due to propeller movement, the water flow in the area behind the ship is increased.
This disturbs the pressure balance between the front part of the ship, the bow, and the back part of the ship,
the stern. This disturbance causes an additional resistance to the ship, i.e. a part of the thrust produced by
the propeller is lost due to this additional resistance. This effect can be described by the thrust deduction
number �3P+� > w � . > w has typical values between 0.05 and 0.2.k ������
��3P~� > w � k
2.1.5 Ship speed dynamics

Following equations describe the ship speed dynamics:� B #{ 
 ����� k �2���{ 
 @ #{yB <(> � {�V{ � 
 { �S������ 
 �M� { ��r k�s�ucv b��
The hull resistant given by a table of real data, �M� { � , describes the resistance of the ship in the water and
is a negative quantity. � � is the measurement noise. � is the mass of the ship.
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Figure 3.1: A graphical representation of the benchmark

Detailed model of large scale industrial plants are often not available. Control engineers are in practice
provided by some graphical representations of the system which show the interconnections of a given
number of blocks, each representing a subsystem or component (tank, pump, valve,...). These subsys-
tems/components are described by different levels of available knowledge, for instance, transfer functions,
equations, rules, tables, etc..

In addition to the data describing the plant, it is also equipped with a given set of sensors. These sensors
are used for control, safety, and management purposes. They define, among the set of all variables which
characterize the evolution of the plant, those which are known. Figure 3.1 shows a graphical representation
of the benchmark (one engine + one propeller).

3.1 Defining the structure of the model

The model of the system is considered as a set of constraints which are applied to a set of known and
unknown variables. The selected set of variables describes the evolution of the process.
The known variables are, sensor measurements, control variables (signals), variables with known values
(constant, parameters), and reference variables (signals).
The set of constraints is given by the models of the blocks, see fig. 3.1, which constitute the system. The
term “constraint” refers to the fact that a technological unit imposes some relations between the values
of the variables, so that taking any possible value in the variable space except those compatible with the
physical laws applied to that technological unit, is not possible. As an example [SD27], a resistor � , as a
technological unit, introduces a constraint on the vector of variables ���UJK��� since their value can only lie in
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the subspace defined by Ohm’s law, i.e. ��������
*I .

The structure of the model is a di-graph which incidence matrix represents the links between variables
(known and unknown) and the constraints.

Lets define following sets:� 
�� l�� J l�� JZJZ�=�Z�	J l �Y� Set of constraints representing the system’s model� 
 ������
���� � JK� � J=JZ�Z�=�	JK��&7� Set of variables� Set of known variables� Set of non-measured variables (unknown variable)
The set of known variables can itself consists of different sets as outlined bellow��
 { � 4 ��� Set of known variables{ Set of control variables4 Set of measured variables� Set of variables with known values (f.x. constant parameters)
The structure of the model is described by the following binary relation:� r ����� �7� ��I0JZP��� l % JK�Z Q�¡�7� ¢ � � l %3JK�   �q
�P iff the constraint

l % applies to the variable �   J� � l %3JK�   �q

I Otherwise B
Using the above mentioned definitions, for the simple model of the propulsion system, we get the

following sets: { 
 � 1 �����0J3���2�3�0J 4 �/�4 
 � 1 �£J3���/J { �£�� 
 �Q�(XZ�Z�� 
 � 1 J #1 J3�0J 4 698 J #4 698 J 4 � J3� � J�� X J { J #{ J \ � J \ J k JK���q�
and� 
 �����¤

�]� { � 4 ���

and the constraints are defined as:l � �¥� �2�3� JK� � J3� � �q
*I : � � 

� �9¦ �¥� ����� ��� � � Pitch controller dynamics!l�� �¥�	�ZJK�(�q

I : ����
�§ -§ � ¨ �x� > �_

©/�	� <(> �ª� V Propeller pitch dynamicsl�« �¥���£JK�(��
*I : ���$
¬� Sensor measurementl�­ � 1 �����0J 1 �£J #4O6 8 ��
*I : #4O698 
¯®�°±�² ; � 1 ������� 1 �³�U� : % §=´ & °�µ5¶ d &.·j¸§ � ?
Shaft controller dynamicsl�¹ � #47698 J 47698 �_
ºI : 47698 
$©»#4O698 <(> � 476982V Shaft controller dynamicsl�¼ � 47698 J 4 �2�q

I : 4 �_
*EGF�H	��I0JKEML'N � 4O6 8 J=PQ�K� Shaft controller dynamicsl�½ � 4 � J 4 � ��
*I : 4 � 
 4 � Sensor measurementl�¾ �"� X J2� XZ� �q
*I : � X 
*� XZ� Diesel engine dynamicsl�¿ � 4 �ZJ���X�J \ ���q
*I :

\ �,� : � § m ·§ � 
$�(X 4 � Diesel engine dynamicsl � V � \ � J \ J § &§ � �q

I :

i � § &§ � 
 \ � � \
Shaft speed dynamicsl��2� � § &§ � J 1 �q

I : 1 
 © #1 <(> � 1	V Shaft speed dynamicsl��3� � 1 J3�0JQ��P+� | � { J \ �q

I : Table1 Developed propeller torquel��3« � 1 J3�0JQ��P+� | � { J k �j

I : Table2 Developed propeller thrustl ��­ � k JK���_J § �§ � 

I(� : � § �§ � 
 k ����� Ship speed dynamicsl��3¹ � { JW§ �§ � 
*I(� : { 
*© #{ <(> � {jV Ship speed dynamicsl��3¼ � { J { �³�q

I : { �

 { Sensor measurementl�� ½ �"� � J { �q

I : Table3 Hull characteristicsl�� ¾ � 1 J 1 ���q
*I : 1 �$
 1 Sensor measurement

The structural representation can be shown in a matrix format. This is illustrated in figure 3.2
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Figure 3.2: The structural representation of the benchmark in matrix format (incidence matrix)

3.1.1 Direct redundancy relations

Suppose that there exists a subset of
�

, À such that:Á lfÂ À J ÁMÃ Â �Är � � l J Ã �_
ºI
Let

� ® be the largest set which is characterized by this property.
This property can be understood as following: any constraint

l
in
� ® is only applied to known variables

and parameters and no unknown variable is involved. Each constraint, hence, constitutes a redundancy
relation which can be checked on-line for FDI and monitoring purposes.

x1

x2

x3

x1

x2

f1

f2

f3

.

Figure 3.3: An example of direct redundancy relation

Example1: Since in figure 3.3 �Å
Æ� Ã � J Ã � J Ã « � , the constraint
l�«

becomes a direct redundancy rela-
tions as it follows the abovementioned definition.

lp�
and

l��
can represent sensors while

l�«
can represent a
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linear equation with known parameters.
The set

� ® , therefore, constitutes a set of direct redundancy relations which are obtained in a straightfor-
ward way from the model of the plant and the instrumentation.
The complement set of

� ® in
�

is denoted
�tÇ

, i.e.� ® � �+Ç 
 �
3.1.2 Deduced redundancy relations

Let È �¥ÉU� denote the set of the subsets of a set É . The rows and columns structures are then defined by
following equations:È � �+Ç � m�7� È � � �À �7� \ � À �q
����  ³ÊQË l % Â À J such that

� � l %�Jx�   �q
�P.�È � � � Ì�7� È � � Ç �Í �7� �M� Í �q
Î� l   Ê�Ë � % Â Í J such that
� � l  �J0� % �q
ÎP��

Example 2: Lets choose a set of constraints (row structure) À ��Ï � Ç ��
¯� l � J l � J l « J l ¿ � , then by defi-
nition

\ � À ��
��Z� � JK�0J3� � J3� �2�3� J \ � J�� X J 4 � � . Similarly, if we choose a set of variables (column structure)Í ��Ï � �q
Ð� 1 �£J { JK�p� , by definition we get �M� Í �q
�� l�� J l.« J l�­ J l��3� J l��3« J l(��¹ J l��3¼ J l�� ½ J l�� ¾ � .
3.1.3 Subsystems characterization

Definition: A subsystem is a pair � À J \ � À �3� , where À is a subset of
��Ç

. Let\ � À �f
 \ ® � À � � \ Ç � À �
where

\ ® and
\ Ç

are the subset of the known, correspondingly unknown variables. Then the constraints
which define the subsystem are written as:À � \ ® � À �cJ \ Ç � À �K�f
ÑI
The subsystem À is characterized based on the number of existing solutions for

\ Ç � À � , given the known
values (or trajectories) in

\ ® � À � .
Definition: The subsystem À is said to be compatible if, for any given value of

\ ® � À � , the set of the
values of

\ Ç � À � which satisfy the constraints À is not empty.À is under-determined if, for any given value of
\ ® � À � , the set of values of

\ Ç � À � which satisfy the
constraint À is of cardinal larger than P and it is determined if the cardinal is equal to P .
A determined system is said to be over-determined ifËxÒ Ï À and ÒÎÓ
 À such that\ Ç � Ò �Ô
 \ Ç � À �
and for any of the variables

\ ® � À � the values of
\ Ç � Ò � which satisfy the constraints Ò are the same as

those of
\ Ç � À � which satisfy the constraints À .

A determined system which is not over-determined is said to be just-determined.

The interpretation of over, just, and under-determined subsystems is given in the following.� If the subsystem � À J \ ® � À �cJ \ Ç � À �3� is under-determined, then there exists several solutions for the
variables in

\ Ç � À � . Therefore, they can not be computed using the known values in
\ ® � À � and the

constraints in À . Under-determined subsystems exist due to existence of unobservable variables or
insufficient knowledge about the system/process which is reflected into the existing model.
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Figure 3.4: A Possible matching on the graph representing the ship control system’s structure� The subsystem � À J \ ® � À �)J \ Ç � À �3� is just-determined ¨ there exists a unique solution for the
variables in

\ Ç � À � , given known values
\ ® � À � and constraints À .� The subsystem � À J \ ® � À �)J \ Ç � À �K� is over-determined ¨ there exists a unique solution for the

variables in
\ Ç � À � and this solution can be computed in several ways by using the known values\ ® � À � and constraints À . Referring to the definition above, each subset Ò Ï À satisfying the

definition provides a mean for computation of
\ Ç � À � . Since all the results have to be the same, one

obtains deduced redundancy relations by writing the coherence conditions.

The next section shows how the structural analysis of graphs is used to find these three classes of
subsystems.

3.2 Canonical Decomposition

As mentioned before, the problem of finding the redundancy relations which can be obtained in a given
system is equivalent to the problem of finding the over-determined subsystems in the structure of the
system.

3.2.1 System’s structural graph

The structure of the system is represented by a di-graph. Recalling that
�

, represents the system (mani-
fested by its relations) and

�
are the variables in the system, a di-graph associates the sets

�
and

�
with a

set of links between their elements Õ�Ö , i.e.

� l J2�W� Â Õ Ö ^y` � � l J2�W�j
�P
3.2.1.1 Complete matching

Consider a graph × � À�Ø J3�ÙJ ÕtØ � representing a restricted part of the system’s structural graph to the set of
vertices � (for the variables) and À Ø 
*�y���Ú� (for the constraints). Õ Ø then represents the arcs connecting
(linking) À Ø to � .
Let s belong to Õ Ø , then �S� s � is called the extremity of s in � and À Ø � s � is called the extremity of s inÀ Ø , and s can be written as: s 
}� ÀRØ � s �)JK�S� s �3�

in another words, the arc (or link) s is defined by a pair, where the first element is a constrict and the
second element is an unknown variable and these two are connected through s .
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Definition: × � ÀRØ J3�fJ Õ � is a matching on × � À�Ø J3�fJ ÕtØ � iff:PQ� Õ Ï ÕtØ Jz�� Á s P(J s z Â Õ Ê s P Ó
 s z ¨ À Ø � s PQ� Ó
 À Ø � s z(��Û»�S� s P�� Ó
*�S� s z(�
A possible matching on the graph representing ship control system’s structure is shown in figure 3.4.

Definition: × � À Ø J3�fJ Õ � is a maximal matching on × � À Ø JK�ÙJ Õ Ø � iff:Á ÕtÜ Ý,Õ Ê ÕtÜ Ó
 Õ r × � ÀRØ J3�ÙJ ÕtÜ � is not a matching

Definition: × � ÀRØ J3�fJ ÕtØ � is complete with respect to À�Ø (respectively with respect to � ) iff:Á lÙÂ À Ø Ë s Â Õ r À Ø � s �q
 l J� resp.
ÁÐÃ Â � Ë s Â Õ rS�S� s �q
 Ã �

The basic condition for the existence of complete matching is given by the Könenig-Hall theorem:

Theorem [refer]: A complete matching with respect to ÀjØ exists on × � À�Ø JK�ÙJ Õ�Ø � iff:Á À Ü Ï À Ø Ê \ Ø � À Ü � Ê�Þ�Ê À Ü Ê
A dual result is also stated for the existence of a complete matching with respect to � .

3.2.1.2 Decomposition

The pair �"ß�JRàU� is an external support of × � À Ø J3�ÙJ Õ Ø � iff:P�� ßSÏ ÀRØ Ûáà�Ï]�z(� Õ�Ø,â �Qãß�J ãà��q
*ä
where ãß (resp.

ãà ) is the complement of ß in À Ø (resp. à in � ).
Let å Ø be the set of external supports of × � À Ø J3�ÙJ Õ Ø � . The external dimension of × � À Ø J3�fJ Õ Ø � is
defined by: æ L'EÙ� × � ÀRØ JK�ÙJ Õ�Ø �K��
 EMLçN´�´çèpéZê ¸5ë.ì�íR¸ � Ê ß Ê � Ê à Ê �
Minimal external supports are those external supports for which the minimum is obtained (or the dimension
is obtained).

Theorem [refer]: For any di-graph of finite external dimension, there exist two uniquely defined external
supports ��ßjî.JRà î � and ��ß î J à	îZ� such that, if ��ß_JRàU� is another minimal external support, then:PQ� ß î Ï¬ß or ß î 
$äz�� ßSÏ,ß î�(� à î Ï,à or à î 
$äï � àªÏ,à î
Definition: The three canonical components of the di-graph × � À�Ø JK�ÙJ Õ�Ø � are defined by:ð/ñ 
 × � ß î JUà	î�J Õ ñØ �ð d 
 × ��ßjî�J à î J Õ dØ �ð V 
 × ��ß î�ò ßjî�JUà î�ò à�î.J Õ V Ø �
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where Õ ñØ 
 Õ Ø â � ß î JUà�îQ�Õ dØ 
 Õ Ø â ��ßjî.J à î �Õ V Ø 
 ÕtØ]â ��ß î ò ß î J à î ò à î �
A canonical decomposition of the whole structure of the system including the di-graph × � À Ø J3�ÙJ Õ Ø �

and the known variables is shown in figure (3.5). An interpretation of the three canonical components are
given in following subsection.

Known β* β*\ β* β*

0 0

0

β*

α*

α*

α*\ α*

α*

Unknown (X)

C
onstraints

x

f1

fk
fk+1

fk+p

fk+p+1

fm

x1 xl

xl+1 xl+p

xl+p+1 xn

.

Figure 3.5: Canonical decomposition of the system into under-, just-, and over-determined subsystems.

3.2.1.3 Interpretation

A matching is a set of pairs � l   J Ã %5� such that any constraints
l   Â ÀUØ (resp. any variable

Ã % Â � ) belongs
at most to one pair. This leads to following hypothesis:

Hypothesis: The unknown variable
Ã % is computed using the constraint

l   , under the assumption that
all other variables

\ � lpó � ò Ã � are known.
Consider a complete matching with respect to � Ü and À Ü , where � Ü Ï�� and À Ü Ï �+Ç

. As the
matching with respect to both � Ü and À Ü is complete then by definition following equation is valid (true):Ê À�Ü Ê 
 Ê � Ü Ê
This statement/equation can be interpreted as following: The unknown variables in the set � Ü can be
computed by using the constraints in set À Ü under the assumption that all other variables are known. In
the case of numerical analysis, this represents the case of solving a system of 1 equations with 1 unknown
variables which has ”almost” always a solution 1.

3.2.1.4 Subsystem interpretation

Referring to figure 3.5 the subsystem � ß î JRà î � appears to be over-determined, as the maximum matching
is complete with respect to the variables but not with respect to the constraints. Expressing it in another
way, the number of constraints exceeds the number of unknown variables, i.e.:ß î 
Î� l�� JZ�Z�=�9J l ® �fJUà î 
Î� Ã � JZ�=�Z�9J Ãxô �õÛ¯��ö v

1The existence of the solusion depends on the values of the parameters in the involved relations.
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The variable à î can be computed using a subset of the constraints ß î and the values of the known variables
and then substituted into the remaining constraints in order to obtain deduced redundancy relations.
Since different complete matchings with respect to the variables can be constructed, there are different
possible sets of deduced redundancy relations.
The subsystem � ß î J�à î � constitutes the monitorable part of the system (for a given partition into known
and unknown variables) since it presents two fundamental properties:

1. It is computable: the variables à î can be deduced from the known variables.

2. It is redundant: some coherence relations (i.e. the deduced redundancy relations) must hold.

The subsystem ��ß î ò ß î J�à î ò à î � is a just-determined subsystem, as the maximum matching is complete
with respect to both the variables and the constraints, i.e.:

ß îQò ß�ît
Ð� l ® ñ � JZ�Z�=�	J l ® ñ7÷ �fJ à î�ò à�î+
�� Ã ô ñ � J=�Z�=�	J Ã ô ñ7÷ �
Having knowledge about the known variables and the variables in à î , the variables in the subset à î ò à î
can be calculated by solving the constraints ß î ò ß î . Notice that the obtained solution will be unique.

Since no redundancy does exists, the subsystem can not be monitorable, i.e. a malfunction which
would occur within any of the constraints ß î ò ß î , or in any sensor providing a known variable ø such that�M� ø ��Ï¬ß î ò ßjî could not be detected. �M� ø � is the set of relations which contain the known variable ø .

The subsystem ��ßqî.J à î � is under-determined, since the maximum matching is complete with respect
to the constraints but not the variables, i.e.:ß î 
Î� l ® ñ7÷Zñ � JZ�=�Z�	J l �Y�ÚJ à î 
�� Ãxô ñ7÷Zñ � JZ�=�Z�	J Ã &��õÛù���ª��ú 1 � v

This means that the system is neither computable nor monitorable as the number of constraints is clearly
less than the number of variables.

3.3 Matching under Causal Constraints

Using the definition for matching one can state that if × � À Ø J3�ÙJ Õ � is a matching on × � À Ø J3�ÙJ Õ Ø � thenÕ Ï Õ Ø J which means that if � l  �J Ã % � Â Õ then
� � l  .J Ã % ��
ÄP or in another words

Ã % belongs to the
structure of

l   . However, it does not by itself guarantee that the hypothesis in subsection 3.2.1.3 is valid:Ã % ÂS\ � l  Q� is a necessary but not a sufficient condition. This is illustrated by following simple example
from the benchmark:

Example: Consider the constraint
l � �¥� � J3�(�/
�I�rU� � 
 § -§ � which shows the relation between the

control signal � � and pitch angle in propeller pitch control loop. Obviously, the control signal � � can be
computed by knowing the values of � through constraint

l �
. But the opposite is not true: � can not be

computed exactly using the values of � � since � is given by �/
 © ��� <(> �ª� V and the initial value � V is not
known (recall that � Â � ). The possible and impossible matching is shown in figure 3.6. It also shows the
matrix representation for the example. The

�
indicates the considered causality in the constraint.

This simple example shows that in order to use the interpretation in subsection 3.2.1.3 some calculabil-
ity conditions has to be fulfilled (by the matching). This has led to introduction of causality in the structure
of the system.

The causal graph for the systems’ structure is a graph × � ÀqØ JK�ÙJ Õ �Ø � such that:PQ� Õ �Ø Ï Õ Ø Jz�� � l   J Ã %[� Â Õ �Ø iff
Ã % is computable in a unique way, using the constraint

l   ,
under the assumption that all the other variables

\ � l   � ò Ã % are known.
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θ uc θ uc
a) Possible matching b) Impossible matching

f2 f2

uc θ

f2 1 x

c) Matrix representation of systems’  structure .

Figure 3.6: An example of possible and impossible matching due to causality effect.

The causal matching on the graph × � À Ø JK�ÙJ Õ Ø � is defined as a graph × � À Ø JK�ÙJ Õ � such that:PQ� Õ Ï Õ �Ø Jz�� Á s P(J s z Â Õ Ê s P Ó
 s z ¨ ÀRØ � s PQ� Ó
 ÀUØ � s z(��Û»�S� s P�� Ó
*�S� s z(�
A causal matching and causal complete matching will be defined as before, with the restriction Õ Ï Õ �Ø
in stead of Õ Ï Õ Ø and all previous results will hold.

Taking the causality into considerations for the ship benchmark, the structural representation can be
shown in a matrix format shown in figure 3.7. The causality constraints are highlighted by replacing
1’s by

�
’s. The circles around P ’s illustrate how the matching is been performed to obtain the di-graph

representation in figure 3.4. These circles represent the solid lines.
It should be mentioned that the possible matching in figure 3.4 is in fact a causal matching as well.

3.3.1 Residual expressions for the ship propulsion benchmark

Taking the causality constraint
l ¼

under considerations, the structural model of the ship which is shown
in figure 3.4, can be decomposed into an under-determined subsystem and an over-determined subsystem
. The existence of the under-determined subsystem is due to constraints

l ¹
and

l ¼
where the unknown

variable 4 698 can not be explicitly determined as function of variables 4 � and #4 698 .
In the over-determined subsystem, three constraints:

lW�
,
l.¿

, and
l���­

are not used to perform the matching
and thus can be used to generate three ARRs.

Further simplifications Additional examination of the system’s dynamics shows that the normal opera-
tion of the system mainly lies on the linear part of the constraint

lW¼
, i.e. 4 �~
 47698 . This leads to defining

an additional ARR by replacing the dashed line (arc) connecting the third unknown variable in figure 3.4 to
the sixth constraint with a solid line (arc). Then the constraint

l�¹
can be used to generate an additional ARR.

The way to obtain ARRs can be represented graphically as shown by the figure 3.8: the over-determined
subsystem is further decomposed into smaller subsystems each representing one ARR. These graphs are
oriented ones since they take into account calculability constraints which express that functions can or can
not be inverted. The big dark circles in the figure represent the available data at any time, i.e. they are
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Figure 3.7: Matrix representation of the system’s structure with causality constraints.

information sources, i.e. they belong to the set
ã� .

As mentioned before, the ARRs can be directly deduced from the decomposed (over-determined) sub-
graphs sequentially. This is exemplified by considering one of the subgraphs, for instance case a) in figure
3.8. The two unknown variables �9� and � can respectively be calculated using

lW�
and

l�«
. The ARR

expression is obtained using the function
l(�

:< � �<�> �ª� � B �¥� ����� ��� � �_
ºI
A residual is the result of the calculation of an ARR when the known variables are replaced by their
values. Two residual expressions can thus be deduced: the calculation form, which allows to calculate
the residual value and the evaluation form, which allows to explain this obtained residual value. The
calculation expressions for residuals û � JZ�=�Z�9J û ­ , deduced from subgraphs s �cJZ�=�Z�	J < � in figure. 3.8 are:û � 
 < � �<�> �ª� � B �¥� ����� ��� � �

û � 
 P� �"� � ·,� l.w � 1 �yJK���/J=�3P~� | � Bü{ ��� B ��P+� > w �K� ��< { �<(>û « 
 < 4 �<(> � ���: % � 1 ������� 1 �,� : % < � 1 �2���Y� 1 ���<(> �
û ­ 
 < � 1 �<(> �ý� < l.m � 1 �/J3���/J=�3P~� | � Bþ{ ���i � <(> � l�m � 1 �yJ3���YJQ��P+� | � Bþ{ �³�i � : � � �(X 4 �i � : � � < 1 �: � <(>

where
l.w

,
l.m

, and � � represent three different tables.



3.3 Matching under Causal Constraints 17

f1

f3

f2

uc

θ

.

f3

f16

θ

U

n
f18

.

T

f15

f13

f14

f3

f7

f16

Yc

θ

U

n

f18

n
.

Q
f11

f12

Qm

f10

f9

U
f17

RU

(a)

(d)

(b)

ky
f8

f4

f7

f5

YPI

.

(c)

f6Yc YPI

.

Figure 3.8: The over-determined part of the system (represented by graphs)

A summary of evaluation form for the abovementioned residuals are given bellow:û � 
 < !/� �<(> �S���3!/���º��! #��%ç&��û � 
 À w �[! 1 �£J�!£���yJ | J > w �û « 
 � �: % �"! 1 �*� : % < ! 1 �<(> �û ­ 
 À m �[! 1 �yJ�!£���/J | J�!M��X��
Using the evaluation form one can obtained the sensitivity expression of one residual to each fault by taking
partial derivatives w.r.t. variables or parameters. However, because of the tables (functions

lx��� J l��3« J andl�� ½
, indicated by unknown numerical functions À w and À m , these sensitivities can’t be calculated for the

residuals b) and d). Only simulation tests can be performed to evaluate these. An evaluation procedure has
been carried out for the first residual:

< û �< � � 
 < � § -�·§ � �< � � �,�.�< û �< � � 
 ��PI otherwise

The evaluation shows that the first residual is directly affected by incipient fault ( ! ÿ� %ç&�� ) and the sensor
fault ( !/� � ).

The table bellow shows which fault affects different residuals. The table also shows that some of the
residuals are sensitive to parameter uncertainties. This existence of tables of real data prevents an analytical
calculation to be carried out. It should be noticed that the sensitivity degree of residuals with respect to
corresponding faults (and uncertain parameters) are not considered in this table.
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! #��%'&(� !/��� ! 1 � !M��X > w |û � 1 1û � 1 1 1 1û « 1û ­ 1 1 1 1

Table 3.1: Evaluation table showing the possible effect of faults and uncertainties on different residuals



Chapter 4

Fault Detection and Isolation

In this chapter two types of algorithms have been used for detection purposes. These are originally adapted
from [BN94]. The one is originally an off-line change detection in jump method which is adapted for on-
line fault detection. The other one is the known generalized likelihood ratio test. Two sets of signals have
been tested: residuals where faults have small magnitude and residuals with faults with big magnitude. A
conclusion is given at the end of this chapter. The residuals are iterated in the following:

û � 
 < � �<�> �ª��� B �¥�������������³�
û � 
 P� �"� � ·,� l.w � 1 �yJK���/J=�3P~� | � Bü{ ��� B ��P+� > w �K� � < { �<(>û « 
 < 4 �<(> � ���: % � 1 ����� � 1 � � : % < � 1 �2���Y� 1 ���<(> �
û ­ 
 < � 1 �<(> � �}< l m � 1 � J3� � J=�3P~� | � Bþ{ � �i � <(> � l m � 1 � J3� � JQ��P+� | � Bþ{ � �i � : � � � X 4 �i � : � ��< 1 �: � <(>

where
l w

,
l m

, and ���W· represent three different tables.

4.1 Change detection

The problem of change detection is transformed into the following statistical problem. Lets consider a
stochastic process ( 4 � ), with conditional distribution �9-.� ø � Ê ø � d � JZ�Z�=�	J ø V � . Given a record � ø � � ´ V�� � � &.¸
decide between the two hypothesis: � V rÄ�£
º� V (4.1)

and � � r Ë û J�P�� û � 1 r�� �/
º� ÜV for I	� û � û �]P�/
º� � for û � û � 1 (4.2)

where the case � ÜV 
¬� V is often considered for on-line approach [BN94].

Let ��
 & � & be a white noise sequence with variance � � , and let � ø & � & be the sequence of the residuals
such that: ø &G
�
9&���
�& (4.3)

where: 
 & 
�� 
 V if 1 � û �,P
 � if 1 Þ û (4.4)
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The problem is to detect the change in the mean 
U& , to estimate the change time û and possibly the mean
values 
 V and 
 � before and after the jump. Of interest is the case where 
 � is not known in advance and
is most actual in practice:

4.1.1 Known means before and after jump

The detection problem consists of testing between the no change hypothesis:� V r û ö 1
and the change hypothesis: � � r û � 1
The likelihood ratio between these two hypothesis is:&�®�� � � � � ø ® �� V � ø ® � (4.5)

where � % is the Gaussian probability density with mean 
 % �¥��
*IxJZPQ� . The algorithm is thus:� &	� û �D
 
 � ��
 V� � &�®�� ��� ø ® � 
 � ��
 Vz �
 P� � � &� ��
 V J2�0�
where �  % ��
jJ2�0�_

�  � ®�� %�� ø ® ��
 � � z�� (4.6)

and �G
�
 � ��
 V
is the magnitude of the jump.

Replacing the unknown jump time û by its maximum likelihood estimate (MLE) under
� �

, namely:�û & 
 F �"!qEGF.H� � � � & # � d ��®$� V � V � ø ® � &�®�� � � � � ø ® �&%
 F �"!qEGF.H� � � � & � &� ��
 V J2�0� (4.7)

The following change detector is then obtained:' &	( � & � �û & �q
ºEGF.H� � &� ��
 V J��0� � �)� V+* (4.8)

where * is the threshold. In other words, decide
� �

whenever ' & exceeds * , and
� V otherwise.

Using Page-Hinkley stopping rule (also called cumulative sum algorithm), a jump in the mean at the
first time 1 is detected when: ' & 
 � &� ��
 V J��0��� EMLçN� � ® � & � ®� ��
 V J2�0��ö * (4.9)
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This equation can be recursively computed in following manner:' & 
 � ' & d � � ø & ��
 V � � z�� (4.10)

It may be used more generally to detect any change between two known probability lows � - C and � -", . In
this case we shall compute: �  % �-� - C J�� -", ��
  � ®�� %/.10 ! � - C � ø ® ��7- , � ø ® � (4.11)

Further discussions on the theoretical properties and related subjects are discussed in [BN94] and the
references herein.

4.1.2 Unknown jump magnitude

The more realistic case where the jump magnitude � is unknown is considered in this section. Assume that
 V is known, but not 
 � . Two approaches may be used in such a case.

Approach 1: Two tests are run in parallel using equation (4.9), corresponding to an a priori chosen
minimum jump magnitude ��� and to two possible directions (increase or decrease in the mean). The
corresponding stopping rules are as follows,
For an increase: 2333333333334 333333333335

k V 

I
k &G
 &�®�� � � ø ® ��
 V � ���z��6 & 
 EMF.HV7� ® � & k ®
alarm when

6 &/� k &�ö *
(4.12)

and for an decrease: 2333333333334 333333333335
{ V 
*I
{ &M
 &�®�� � � ø ® ��
 V � � �z��� & 
 EyLçNV�� ® � & { ®
alarm when { &/�Ú��&�ö *

(4.13)

The decision is taken when the first alarm is generated by one of the stop rules (Equ. (4.12) or (4.13)). The
estimate of the jump time û is the last maximum (respectively minimum) time before detection.

Approach 2: The unknown jump magnitude � is replaced with its MLE. The likelihood ratio test is
hence: EGF�HV�� � � & EGF�H8 � &� ��
 V J2�x� � �)� V * (4.14)

Using Equation (4.6), we obtain:�� & � û � ( F/�9!� EGF�H � &� ��
 V J2�x�q
 P1 � û �*P &�®�� � � ø ® ��
 V � (4.15)
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On-line calculation of � : The equation 4.15 can not be used in on-line approach as it is dependent of
the jump time û which is not known in advance. To avoid this problem, the minimum jump magnitude : �
can be on-line detected based on a number, | , of past observations of the data (measurements). In other
words, �.� is detected on the basis of a moving window of the size | . This is computed in the following
way: �� � � > �/;;; < 
 P| � ��®�� � d < ñ �/= ø �"�0�j��
 V?> �
 ����y� > �]PQ�/;;; < � P| = ø � > ��� ø � > � | � > (4.16)

where > denotes the actual time instant. For the time instants less than the window’s size, i.e. > Â ; Pq�Z�=� | ? ,
following method can be used:�� � � > � 
 P > � ��®�� �@= ø �[�0����
 VA> �
 ��.�/� > �]PQ�9� P> = ø � > ����
 V � ����/� > �,P�� > (4.17)

with the initial value chosen as
��	�"I(�q
�
 V .

4.1.3 Generalized likelihood ratio (GLR) test
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Figure 4.1: The generated residuals when magnitude of the faults are small.

This approach consists of the monitoring of the innovations of a Kalman filter. In general, as the distribution
of the innovations are given by a conditional distribution, the change detection function is calculated in the
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following manner: '�& 
 � '�& d � � .B0 ! � -9, � ø � Ê ø � d � JZ�=�Z�	J ø � dDC ��7- C � ø � Ê ø � d � JZ�=�Z�	J ø � dDC � � (4.18)
 ' � d � ��E �
where E=� is the cumulative sum value at time > and F denotes the number of past observations. Assume
that following hypothesis are given (under the assumption that the innovations (residuals) are Gaussian
distributed): � V r ø � Â	G ��
 V J � �V � r � V 
Î��
 V J � �V �� � r ø � Â	G ��
 � J � �� � r � � 
Î��
 � J � �� �
In this case, the distribution of the signal/residual is not conditioned to its past values, i.e.� - � ø � Ê ø � d � JZ�=�Z�	J ø � dDC �_
H� - � ø ��� . The cumulative sum value at time > , i.e. E�� is hence become:E=�j
 . N � �0V� � � � Pz � �VJI ø �R��
 VAK � � Pz � �� I ø �U��
 � K � (4.19)

The decision function can recursively be calculated due to following function:' � 
 24 5 '.� d � ��E=� if '.�_ú ** if '.� Þ * alarmI if '.�_ú]I (4.20)

4.2 Application

Both methods are implemented and tested on two sets of residuals. The first set, which is shown in figures
4.1 (a-d), includes the residuals generated for the system when the magnitude of the faults are small.
The other set of the residuals, figures 4.2 (a-d), are generated in the case of faults with big magnitudes.
The implementation results are shown in corresponding subsections. In order to compare the results and
discussing their validity the time intervals for different fault events are shown in the following table. The
total simulation time is �@L�I�I sec..

Event Fault type Start time End time
Angle measurement fault ( !/� MQ%-N$M ) High P�O(IPE z0P=IQE
Leakage ( !Ð#��%ç&�� ) Incipient O�I(IPE PSR�I�IJE
Angle measurement fault ( !/� ôBT < ) Low PAO U�IVE P�U(z�IPE
Angular velocity measurement fault ( ! 1 MQ%BN$M ) High W O(IPE RpP=IVE
Angular velocity measurement fault ( ! 1 ô1T < ) Low z W ï IVE z W R.IPE
Gain fault ( !y�WX ) �(I�I(IPE �@L�I�IPE

4.2.1 Results using Unknown jump magnitude

This method, represented by equations (4.12), (4.13), (4.16), and (4.17), is applied to the first and the third
residual since they are “ideal” residuals for this method. The results of FDI on the first residual are shown
in table 4.1 .

Comment on the results in table 4.1: Surveying the results, following statements can be given:� it becomes obvious that the FDI algorithm in this case can not detect the small faults (rows 1 to 4).
On the other hand, the FDI algorithm is quite efficient for detecting big faults (last three rows) and
can also be used on-line by using equations (4.16), and (4.17). * is been chosen to cover the variation
of the residual in the interval ; � ï ¦ � � ï ¦ � � ? where � � is the variance of the residual in non-faulty
case. The interval is the X U U B U@U confidence interval for the residual in non-faulty case.
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Figure 4.2: The generated residuals when magnitude of the faults are big.

Type of Trial 
 V � | � � * 1. detection 2. detection 3. detection
fault number time time time

Small 1 0 - z.IYE - 0.4 z0P�PZE - P?L.�(zQE
Small 2 0 - L.IYE - 0.4 z0P�PZE - PAU(zpPZE
Small 3 0 0.1 - - 0.4 zpP(PZE - P�UWzpP[E
Small 4 0 I B I0P - - 0.26 PAO UJE P?L.���JE PAO U(zQE
Big 1 0 - z.IYE - 0.26 PAO0PZE P ï ���JE PAO U�IJE
Big 2 0 - P=I(IJE - 0.26 PAO0PZE P ï ���JE PAO U�IJE
Big 3 0 I B I0P - - 0.26 PAO�IJE P?L.���JE PAO U�IJE
Table 4.1: Detection results on the first residual using equations (4.12), (4.13), (4.16), and (4.17)� It should be noticed that the occurrence of the small faults in the residuals in the reality shows the

case where the propeller pitch has the “right angle”. In other words, the small fault situation indicates
the cases where the propeller pitch is close to its maximum positive (or maximum negative) angle in
no-fault situation and the sensor fault occurs in the same direction, i.e. sensor generates maximum
(or minimum) signal in faulty situation. From operational and safety point of view, these situations
are not considered to have a high severity level as they do not pose any danger to either the ship or the
crew. It should also be noticed that, these faults are still detectable as their behavior on the propeller
system resembles the one of the incipient fault.� Detection results on the signals with big faults, shown in the last three rows of the table 4.1, are quite
satisfactory, as they meet the fault detection requirements: both sensor faults in closed loop (1. and
3. detection) are within 2 sample times. It should be noticed, that the real detection times occur 1
sample later than the ones shown in the table. This is due to calculation of the first residual where
one future sample of the measurement is been used. The detection time for the incipient fault, i.e.
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Type of Trial 
 V � | � � * 1. detection 2. detection 3. detection
fault number time time time

Small 1 0 - z.IYE - 0.4 - R�I@UQE z W@W ï E
Small 2 0 - L.IYE - 0.4 - R�I@UQE z W@W ï E
Small 3 0 I B I@L - - 0.4 - R�I@OQE z W@W �QE
Small 4 0 I B I0P - - 0.053 - R�IxP[E z W L�IQE
Big 1 0 I B I0P - - 0.053 P�U(IJE W R/UQE z W ï IQE
Big 2 0 - P=I(IJE - 0.1625 P�U�IYE W R/UQE z W ï IQE
Table 4.2: Detection results on the third residual using equations (4.12), (4.13), (4.16), and (4.17)

2. detection time, does not meet the time requirement which is set to be less than PQI�I samplings
time. However, as the incipient fault occurs very slowly, it take quite a number of samples to detect
a change in a mean value of the residual. A way to detect this fault would be to lower the threshold* . But it is already chosen to meet the criteria of missed detection ( úÆI B I�IxP ) and hence can not
be lowered further. The result suggests that the time requirement for detection of the incipient fault
should be relaxed.

Figure (4.3) depicts the results of the FD algorithm using a window of the length 20 sampling times,
i.e. | 
$z.IQE applied on the first residual with imposed big faults.

The results of FD algorithm on the third residual are shown in table 4.2.

Comment on the results in table 4.2: Surveying the results, following statements can be given:� The FD results show the same pattern as the results for the first residual: The FD algorithm is able to
detect the small fault but on the cost of the time. However, it can be argued (as in the case of the first
residual) that this case in not serious and by relaxing the detection time requirement the performance
of the algorithm will be acceptable.� For big faults the, results of the FD algorithm, shown in the last two rows, indicate that time require-
ments for fault detection in closed loop are met ( ú�z E ). The last two column show that the sensor
faults (with big magnitudes) on the shaft speed are detected within 1 sample.� The FD algorithm also detects one fault which occurs in the propeller pitch angle control loop ,i.e.!£�/MQ%BN�M , but does not detect !/� ôBT < , which stems from the same source, namely, the pitch angle sensor
measurement!. This fault is detected too late ( P�P\E ) later than the occurrence of the fault. If the
applied FD algorithm on the first residual is reliable, then this fault can be automatically disregarded
using a simple logic. The reason behind the FD algorithm’s ability to detect !/�]MQ%-N$M while missing
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the fault !/� ôBT < , is due to the physical limitations imposed on the Fuel system (constraint
l�¼

). In
this specific case, the imposed fault, !/� ôBT < , will put a demand on the system to generate negative
fuel. As this is not possible, the system will not react to this fault and hence the residual will not be
affected. It should be emphasized that, this is a special case and on the other occasions, when it is
possible, the system will react and we can detect the fault.

Figure 4.4 depicts the results of the FD algorithm using a window of the length 100 sampling times,
i.e. | 
»P=I(IYE applied on the third residual with imposed big faults. Notice that the variation of � during
the first P=I(I samples is quite large and causes false alarm generation. When this algorithm is implemented
on the real plant, the results in the first samples (equal to the used time window) should therefore be disre-
garded. * is been chosen to cover the variation of the residual in the interval ; �QL ¦ � � L ¦ � � ? where � �
is the variance of the residual in non-faulty case.
Since the second and the forth residual involve tables and some parameter variations, the actual FD algo-
rithm is not appropriate for application.

4.2.2 Assumptions for using GLR test (CUSUM test)

Following assumptions/simplifications are used for the implementation of equations (4.19) and (4.20).

First assumption: It is assumed that the variance of the signal is the same in both the no-fault situation
as well as faulty one, i.e. � �V 
 � �� 
 � � . In this case the the equation (4.19) will become simplified to:EZ� 
 Pz � � # I ø �R��
 V K � � I ø �U��
 � K � % (4.21)
 Pz � � # z ø � I 
 � ��
 V K � I 
 � � ��
 �V K %
 �� � # ø �U��
 V � � z %
where � is the magnitude of the jump. The recursive decision function given by equation (4.20) shall be
used directly.

Second assumption: In most of the real cases the magnitude/mean value of the residual in the faulty case
is not known. Furthermore, if the residual is sensitive to some slow parameter variations, its mean value
will (slowly) change. This situation is quite actual for non-linear systems. In this case the mean values can
be recursively calculated using similar equations as the equation (4.16) and (4.17). They are given in the
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following: �
9%K� > � ;;; < ² 
 P| % ��®$� � d < ² ñ � ø �[�0�
 �
9%K� > �,P�� ;;; < ² � P| % = ø � > �R� ø � > � | %5� > (4.22)

where > denotes the actual time instant, � Â �QIxJZP.� indicates the situation (no-fault and fault). The size of
the windows are given by | V , and | � where | � ú | V . For the time instants less than the window’s size,
i.e. > Â ; Pq�=�Z� | % ? , following method can be used:�
 % � > �Ô
 P> ��®�� � ø �"�0�
 �
 % � > �,P��9� P> = ø � > �R� �
 % � > �,P�� > (4.23)

Third assumption: It is assumed that the variance is known and is constant. This will not hold for the
case where there are slow changes in the mean value of the signal and the variance of the signal due to
that1. This requires an on-line estimation of the variance as well, which is implemented in the following
manner: �� � � > � ;;; < C 
 P| V �]P ��®�� � d < C ñ � I ø �[�0��� �
 V �"�x� K �
 �� � � > �]PQ�S;;; < C � P| V �]P � I ø � > ��� �
 V � > � K � � �� � � > �,P��S;;; < C � (4.24)

where the |�V is the size of the window which was chosen for calculating
�
 V . > Þ |�V is the time instant and�
 V is calculated by using equation (4.22). For time instants > r P�ú > ú |tV following equation should be

used: �� � � > � 
 P> �,P ��®$� � I ø �[�0�R� �
 V �"�0� K �
 �� � � > �,P��9� P> �]P � I ø � > �j� �
 V � > � K � � �� � � > �,P�� � (4.25)

where
�
 V in this case is calculated using equation (4.23).

4.2.3 Results using GLR test (CUSUM test)

This method, represented by equations (4.18)-(4.20), is applied to the second and the fourth residual. There
was a need for on-line calculation of mean values and the variance of the signals as they change due to some
parameter variations. Hence, equations (4.21)-(4.25) are applied as well. The results of FD on the second
residual are shown in table 4.3 .

Comment on the results in table 4.3: Surveying the results, following statements can be given:� Observing the detection results for the small faults, it is noticed that the residual does not contains
information enough to detect the faults in a proper way. In fact, the results are not truth-worthy at all:
the FD algorithm detect the faults far too late to be used for anything. When the means are calculated
on-line, (trial 2, Small), the FDI algorithm hasn’t detect the real faults. It has, in fact, detected the
transient of the system which has taken place due to removing the faults.

1It should be noticed that these are not related in principle. In other words, a slow change in the mean value does not mean that
the variance will change as well. However, in most realistic cases this is the case and therefore can justify using an on-line estimation
of the variance.
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Type of Trial 
 V 
 � � |�V | � � � * 1. det. 2. det. 3. det. 4. det.
signal nu. time time time time

Small 1 0 ^ I B I@L ^ I B I@L - - I B I�I_L�z 6 z�I UQE R�IWz`E P�U(I ï E z W W RaE
Small 2 - - - L.IJE ï OJE I B I�I_L�z 1 z0P�OQE R.z0P[E P�UWz W E z W OxP[E
Big 1 0 ^ I B I@L ^ I B I@L - - I B I�I_L�z 5 PAU�IQE W O@UQE P�O@U(z`E -
Big 2 - - - L.IJE ï OJE I B I�I_L�z 1 z0PQz`E R�PAOQE P�UWz/OQE -

Table 4.3: Detection results on the second residual using equations (4.18)-(4.20), and (4.21)-(4.25)

Sig No 
 V 
 � � | V | � � � * 1. d. 2. d. 3. d. 4. d. 5. d.
time time time time time

S 1 - - - L�I ï O I B z O W ï 1 zpPQ� W O0P PAU(z0P z W R�I �0PAO ï
B 1 - - � P?L.I P ï O I B z O W ï 6 z.IxP RpP ï z�I W z z W R�I �0PAO ï
B 2 - - - L�I ï O I B z O W ï 7 P�U ï R.I U PAU(z0P z W R�I �

Table 4.4: Detection results on the fourth residual using equations (4.18)-(4.20), and (4.21)-(4.25)� The results with the big faults show the same pattern and are unreliable for detection. The final
conclusion is that this residual is not useful for detection.
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Figure 4.5: FD result on the second residual with big faults. * 
ÎP , | V 
bL.IYE , | � 
 ï OQE .
Figure 4.5 depicts the results of the CUSUM algorithm applied on the second residual with imposed

big faults with estimated mean values (the last row in the table).
The results of CUSUM algorithm on the forth residual are shown in table 4.4 .

Comment on the results in table 4.4: Surveying the results, following statements can be given:� When the faults are small the detector can detect all the occurred faults on the system, as the residual
is detected by all of them. The same statement is also valid when the sensor faults are big and the
size of the windows ( |~V and | � ) is big as well. This case is shown by the results in the second row.� When the size of the windows decreases, the FD algorithm looses it’s ability to detect the engine fault
which is a multiplicative fault. Furthermore, since the mean value and the variance of this residual
varies rapidly, the magnitude of the FD algorithm’s result varies accordingly. This is depicted in
figure 4.6.� Non of the results in neither small fault case nor big fault case meet the time requirements. From this
point of view, the detector’s performance is not satisfactory.

Figure 4.6 depicts the results of the CUSUM algorithm applied on the fourth residual with imposed big
faults with estimated mean values (the last row in the table).
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Figure 4.6: FD result on the forth residual with big faults. * 
bR , |�V 
bL.I`E , | � 
 ï O`E , and � � 

I B z/O W ï .

Sig No 
 V 
 � � |�V | � � � * 1. d. 2. d. 3. d. 4. d. 5. d.
time time time time time

B 2 - - - L.I ï O I B z O W ï 7 P�U ï R.I U PAU(z0P z W R�I �
B 3 - - - L.I ï O � ^ I B P?L P�OxP W O�I PAO UxP z W ï I ��I(I O
B 4 - - - L.I ï O � 1 P�OWz W O�I PAO UxP z W ï I �

Table 4.5: Detection results on the fourth residual based on the variations on the estimated jump magnitude
and variance

Detection based on the estimated jump magnitude and variance: As the mean value and the variance
of this residual changes and since the CUSUM algorithm did not generated a satisfactory result, it was
decided to base the test on the variation of the estimated jump, i.e.

��Ð
 �
 � � �
 V , and the calculated
variance given by equations (4.24) and (4.25). The results are shown in table 4.5. The results based on
the estimated jump magnitude shows that, this simple method can actually detect all sensor faults and the
gain fault as well. The detection times shown in the table do not represent the actual time as the residual is
obtained by numerical calculation. This introduces delay in the obtained residual. In the case of the fourth
residual the time delay is z samplings time and should hence be added to the results in the table. The results
are discussed in the following:� Results of the test on the estimated jump magnitude (Trial 3, second row) shows that (big) sensor

faults on the angular velocity measurements, i.e. ! 1 MQ%BN�M and ! 1 ôBT < , are detected with two samples
delay (due to calculation time). This test can, therefore, meet the requirements.
Angle measurement faults, !/� MQ%BN�M and !/� ôBT < , are also detected. However, the detection time is 3
samples which does not meet the closed loop detection requirements.
The gain fault !M� X is detected after 10 sampling times. This, also, does not meet the requirement
which is 5 samplings time. However, as this residual is the only one which contains detectable
information about this fault, the time requirement has to be relaxed in order to use this FD method.� Results of the test on the estimated variance (Trial 4, third row) show the same pattern for the un-
known jump. The difference is that, it can not detect the gain fault.

The results of the detection by estimated jump magnitude and variance are depicted in figures 4.7a and
4.7b.

4.3 Discussion

The results of the detection methods applied on the different residuals are summarized in table 4.6. Thec indicates that the corresponding fault has been detected, but the result is useless since it does not meet
the time requirements (too late fault detection). As it is shown in table, it is possible to detect and isolate
the defined faults, although one of the residuals, namely the second residual, does not provide any reliable
result. The fault isolation, however, should be performed in an intelligent manner:
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Figure 4.7: The generated residuals when magnitude of the faults are small.

The fault !/� MQ%-N$M !$#� %ç&�� !/� ôBT < ! 1 MQ%-N$M ! 1 ô1T < !M� X
Occurrence time P�O(I O�I(I P�O U(I W O(I z W ï I ��I(I�Iû bSE=� < � P�OWz P ï � ï PAO UxPû bSE=� < � c c cû bSE=� < « c c W O�I z W ï Pû bSE=� < ­ c c c c������ P�O(� PAO U(� W O(z z W ï z ��I�I@O�� ���� P�O ï PAO U(� W O(z z W ï z

Table 4.6: The summary of the detection results on the 4 residuals, The last two rows are test on the 4th
residual based on the estimated jump magnitude and the variance.� Detection of the faults in propeller pitch control loop: As it is shown in the first row of the table,

the sensor faults ,i.e. !dM=%BN$M and !/� ôBT < can be detected while meeting the time requirement. On the
other hand, since the same detector can also detect the incipient fault ! #� %'&�� , there will be need for
additional information. For that purpose, the results of detection on the

�� � � , and
�� �� � can be used. As

they do not meet the time requirement (they occur 1 sample later than allowed) following strategy
should be used:
The sensor faults have the highest severity level [referencesafeprocess] so they should be handled
immediately. When the detector on the first residual detects a fault, it should be handled, under all
circumstances, as if there is a sensor fault and remedy action should be taken. If the fault is really a
sensor fault, then it can be verified by checking

��(��� and
�� ���� . Otherwise, the remedy action should be

terminated/modified to handle the resulting incipient fault.� Detection of the sensor fault in shaft speed control system: This fault can be very effectively detected
using û bSEZ� < « , �� � � , and/or

�� �� � by following rule:

if û b?E=� < « 
�
+egf Û �������
�
�egf
Then Shaft sensor has failed.

Other combinations are also possible.� Gain fault: The gain fault can be easily detected by using the following logic:

if
�������
�
+egfÔÛ û bSE=� < � 
�
�e À�À Û û b?E=� < « 
�
+e À�À Û �� ���� 
�
�e À�À

Then Gain fault has occurred.

It should be noticed that, the time requirements for the incipient fault and gain fault can not be held and
there is a need for the relaxation of them. Furthermore, the detection time of the incipient fault, which is
due to leakage in the pitch control system, is quite dependent on the magnitude of the leakage.
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4.3.1 Establishing a relation for finding optimal windows for hiDj9k
During the performed detection test using

�� � � , it became interesting to establish a way of deciding the size
of windows for

��.��� . Following approach was used:

The calculation of the unknown jump in residual 4 is based on the estimation of two mean values, 
 V
and 
 � . The former one is estimated on a window with size |tV and another window with size | � is used
to estimate the later one. They are iterated in the following equation:�
 V � > � ;;; < C 
 P|�V ��®$� � d < C ñ � ø �"�0� (4.26)�
 � � > �/;;; < , 
 P| � ��®$� � d < , ñ � ø �"�0� (4.27)

where | V ö | � . The difference between the size of the windows are denoted by < , i.e. < 
 | V � | � . �
 V
can be written as: �
 V � > �q
 P|�V � � d < ,�®�� � d < C ñ � ø �[�0�9� | � �
 � � > � �
Using the definition of unknown jump, we get:��	� > �D
 �
 � � > ��� �
 V � > �
 P| � � � d < ,�®�� � d < C ñ � � ø �"�0��� �
 V � � (4.28)

where where the variations of
�
 V are assumed to be negligible. Equation (4.28) shows that the unknown

jump is actually estimated over a small window with the size < . The equation can hence be written as:��G
 P| � � §�®�� � � ø �[�0� � �
 V � � (4.29)

In no-fault condition the following statement is valid:�
 VJl �
 � ^y` �� l IMúm

where 
 is a small value. There are actually two parameters to decide. The one is < and the other one is| � which is the size of the shortest window. A relation can be established between these two variables by
choosing the value of 
 and defining the following:
Assume 
 and | � are given. Choose < in order to fulfill the following requirements:� � �`
~ú P| � = §�®$� � � ø �"�0�j� �
 V � > úm
@nõöVo (4.30)

where ø �"�0� ÂmG ��
 V J � � � . The value of o should be chosen so that it fulfills the requirement for false
detection. Typical values for o are I B U U0JªI B U@U@L , or I B U U U . Since each observation is independent on the
previous observations, equation (4.30) can be written as (under the white noise assumption):�p� �`
 | �< ú ø �"�0�j� �
 V ��ú 
 | �< n öVo (4.31)

Since we assumed that ø �[�0� ÂqG ��
 V J � � � , then
Ã 
 � ø �[�0����
 V � ÂrG ��I0J � � � . The value of the � should

be known in advance. under this assumption we can obtain:�s��� u ú Ã ú u n 

z À � u �R�]Pt
�o (4.32)
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where À � u �q
t�vu Ã ú u/w J and u 
 
 | �< �À � u � can be calculated from equation (4.32), and u can thus be found by looking up in given statistical
tables. The relation then will be u 
 
 | �< � or |�V 
 I P_� u��
 K < (4.33)

Where this relation can be used: This relation can be used for the residuals with slow mean values and
constant variance, which in other words means that they should closely resemble normal distributed noises.
This was not the case for the forth residual (both mean value and variance varied quite a lot). Furthermore,
the residual was affected by several colored noise stemming from different measurement sources in the
closed-loop control system and the uncertainties from the table. However, it did provide some heuristic
guidelines for choosing the windows’ size. Additional tests (with different residuals) are needed to verify
the obtained relation.



Chapter 5

Conclusion

The structural approach methodology has been applied on the ship control benchmark. The essential part
of the theory which is used in this approach is reviewed in the report. The structural approach employs
well-defined di-graph theory, which makes it possible to develop a software tool that can fully support
design engineers. One of the main advantages of this approach is that with even course information
available about the system, the monitorable part (the over-determined part) of the system can be found.
It hence enables design engineers to use the structural approach during at any step of the design phase
while using the available information. However, detailed information is needed to compute the residuals
(ARRs).

Using this approach it was possible to generate 4 analytical redundancy relations (residuals). Two
different fault detection algorithms were used to detect the defined faults. The algorithms are: change
detection in jump algorithm and generalized likelihood ratio test (CUSUM test) algorithm. The first
algorithm which originally is an off-line algorithm was modified slightly for on-line fault detection
purposes. This algorithm showed to be quite efficient in detecting faults (both incipient and sensor faults)
under the condition that the mean value (and variance) of the residual does not change (in no-fault case).
The second algorithm was used on residuals with slight variation in their mean value and variance. It was
necessary to calculate the mean value and variance on-line in order to obtain reliable results.

The results of implementing the structural approach on the ship benchmark and the following FDI
methods can be summarized in the following:� Structural approach: showed to be a powerful approach that can be used during all the steps of

the design phase. The structural approach was used to determine the parts of the system on which
four ARRs could be generated and also was used to obtain the calculation sequences of the ARRs
(residuals). Two of the obtained four residual expressions contained tables of real data. Because
of these tables it was not possible to calculate the sensitivity of these two residuals w.r.t. different
faults. In such cases only simulation tests can be used to evaluate the sensitivity.
The third residual is an interesting residual. The evaluation form of this residual (showed
in table 3.1) indicates that this residual is only sensitive to sensor fault ! 1 � . However, the
simulation showed that this residual is also sensitive to sensor fault !£� . The cause of this
phenomenon showed to be due to cross-coupling effect: there is a coupling between the pitch
angle control loop and the shaft speed control loop. An unpredicted change in the sensor output
can be caused either by occurrence of a fault in it or by sudden change in the pitch angle control loop.

This example emphasizes the need for having a deep knowledge about the system and to understand
its behavior during the FDI design phase in order to acquire relaible results.� Time requirements: There are two possible ways of dealing with this issue:

1. Developing of advanced (and possibly specialized) FD algorithms to detect the specific faults
in the system with the aim that time requirements are met. Since these algorithms should also
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be robust to uncertainties in the real system, it becomes quite time consuming (and expensive)
to achieve this objective.

2. The other way is to use more simple and robust methods which are known and then relax the
time requirements. This leads to another problem that is to achieve bump-less transition from
faulty to non-faulty state in the close loop. Therefore, a controller adjustment (or eventually
controller redesign) will be needed to avoid the new problem. .

As there is no requirement on the bump-less transition for the ship benchmark, an slight relaxation
of time requirements will be necessary in order to isolate the faults properly� Fault isolation: A complete design of the logic aimed at isolating the faults normally requires a set
of models representing the system’s behavior under different operational situations. The isolation
logic presented in this report covers only the normal operation of the ship (move forward, moderate
acceleration).

The FDI results for the defined model of the benchmark are satisfactory and meet most of the time
requirements.
Alternative methods for generating residuals (f.x. non-linear observers) and performing FDI should be
explored in order to compare and evaluate the obtained results.
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