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Summary

With the rise in automation
the increase in fault detection and isolation & reconÞguration is inevitable.

Interest in fault detection and isolation (FDI) for nonlinear systems has grown
signi�cantly in recent years. The design of FDI is motivated by the need for
knowledge about occurring faults in fault-tolerant control systems (FTC sys-
tems). The idea of FTC systems is to detect, isolate, and handle faults in such
a way that the systems can still perform in a required manner. One prefers re-
duced performance after occurrence of a fault to the shut down of (sub-) systems.
Hence, the idea of fault-tolerance can be applied to ordinary industrial processes
that are not categorized as high risk applications, but where high availability is
desirable. The quality of fault-tolerant control is totally dependent on the quality
of the underlying algorithms. They detect possible faults, and later recon�gure
control software to handle the effects of the particular fault event. In the past
mainly linear FDI methods were developed, but as most industrial plants show
nonlinear behavior, nonlinear methods for fault diagnosis could probably per-
form better.

This thesis considers the design of FDI for nonlinear systems. It consists of
four different contributions. First, it presents a review of the idea and the the-
ory behind the geometric approach for FDI. Starting from the original solution
for linear systems up to the latest results for input-af�ne systems the theory and
solutions are described. Then the geometric approach is applied to a nonlin-
ear ship propulsion system benchmark. The calculations and application results
are presented in detail to give an illustrative example. The obtained subsystems
are considered for the design of nonlinear observers in order to obtain FDI. Ad-
ditionally, an adaptive nonlinear observer design is given for comparison. The
simulation results are used to discuss different aspects of the geometric approach,
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vi Summary

e.g. the possibility to use it as a general approach. The third contribution consid-
ers stability analysis of observers used for FDI. It gives proofs of stability for the
observers designed for the ship propulsion system. Furthermore, it stresses the
importance of the time-variant character of the linearization along a trajectory.
It leads to a different stability analysis than for linearization at one operation
point. Finally, the preliminary concept of (actuator) fault-output decoupling is
described. It is a new idea based on the solution of the input-output decoupling
problem. The idea is to include FDI considerations already during the control
design.



Sammenfatning

Stigende automationsgrad medfører stigende behov for fejldiagnose og fejltole-
rant regulering.

Diagnose af fejl i ikke-lineære systemer er vigtigt for en række tekniske anven-
delser. Området er generelt genstand for en generelt stigende opmærksomhed på
internationalt plan, og speciel interresse knytter sig til anvendelsen af resultatet
af en teknisk diagnose til aktiv indgriben i et automatisk styret system.

Når resultat af en fejldiagnose udnyttes til automatisk at foretage en påkrævet
ændring i en regulator eller en nødvendig omkobling i den regulerede proces,
indgår diagnosen i et koncept, der bredt benævnes fejltolerant styring og regu-
lering. Denne anvendelse af fejldiagnose stiller en række krav til diagnoseresul-
tatets kvalitet, herunder sandsynligheden for forkert detektion og til den tid der
hengår fra en fejl indtræder til diagnosens resultat foreligger. Kvaliteten af det
samlede fejltolerante koncept bliver helt afhængig af kvaliteten af den foretagne
diagnose idet en forkert diagnose kan føre til et fejlagtigt indgreb fra styresys-
temets side.

Anvendelse af fejldiagnosens resultat til aktiv indgriben gør det muligt at opnå,
at en reguleret proces kører videre på trods af fejl, men eventuelt med nedsat
reguleringskvalitet eller til kontrolleret nedlukning hvis nødvendigt. Et velfunge-
rende fejltolerant system vil kunne forhindre, at banale fejl fører til driftstop eller
at de udvikler sig til ulykker. Anvendelsesområdet for det fejltolerante koncept
er den brede klasse af industrielle systemer, hvor stop i regulerede delsystemer
indebærer sikkerhedsmæssige eller økonomiske risici. Anvendelsesområdet er
ikke høj risiko anvendelser, hvor fuld tilgængelighed og styrekvalitet er krævet
uanset enkeltfejl. I den industrielle sammenhæng er ulineariteter en kilde til
forkert diagnose, og forbedring af diagnosekvalitet for systemer med væsentlige
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ulineariteter vil kunne forbedre det samlede fejltolerante koncept.

Teorien for ikke-lineære systemer har taget en ny og væsentlig drejning inden for
det seneste årti, hvor de såkaldte geometriske metoder fra matematikken er un-
der forandring til at kunne benyttes i teknisk videnskabelig sammenhænge. Der
er desuden sket fremskridt indenfor anvendelse af observerteknik til diagnose på
ulineære systemer. Det har været formålet med nærværende forskningsarbejde
at belyse anvendelsen af nyere metoder til diagnose af tekniske systemer med
væsentlige ulineariteter.

Denne afhandling behandler derfor fejldiagnose for ikke-lineære systemer. Af-
handlingen har �re hovedbidrag. Først præsenteres en oversigt over resultater fra
den geometriske teori, og anvendelse på diagnoseproblemet introduceres. Med
udgangspunkt i den geometriske løsning på det lineære diagnoseproblem be-
handles nyere teori og metoder, herunder de seneste resultater for input-af�ne
systemer. Den geometriske metode anvendes herefter på styringen af et skibs
fremdrivningsmaskineri, et realistisk eksempel som har været anvendt i inter-
nationale sammenhænge til studiet af fejldiagnose. Fejldiagnosen for fremdriv-
ningssystemet er gennemgået i nogen detalje for at tjene som et illustrativt ek-
sempel på beregninger og resultater. Omfattende simuleringstest illustrerer rele-
vante aspekter af design og resultater. Hovedvægten er her lagt på ikke-lineære
fejldetekterende observere. En adaptiv observer er designet for at kunne sam-
menligne resultater.

Det tredie bidrag er stabilitetsanalyse af observere anvendt til fejldiagnose.
Specielt fremhæves betydningen af korrekt linearisering af et tidsvarierende sys-
tem langs en trajektorie, hvilket giver et andet resultat end traditionel analyse om
et ligevægtspunkt. Den teoretiske gennemgang er igen illustreret med anvendel-
sen på skibsfremdrivning, og et formelt stabilitetsbevis er udarbejdet for dette
system. Som et fjerde bidrag foreslås en ny metode til aktuator fejl-afkobling.
Dette er en idé som udspringer af løsning af input-output afkoblings problemet.
Kernen i den nye idé er at kunne tage hensyn til fejl-diagnose allerede ved første
design af regulatorsløjfer i et automatiseret system.
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Nomenclature

Symbols

In the following all symbols are listed that are used in this thesis. Some of them
have several meanings, however, the correct meaning is always obvious from the
context.

a

ij

Coef�cients, matrix elements

A , A

0

, A , A ( � ) Matrix, map, system matrix

A

� n

, A

� �

Matrix, to implement sensor faults as pseudo-actuator faults

A

e Matrix, system matrix of cascaded system

A

0

Dual map ofA

� ( A ) Spectrum (eigenvalues) ofA

A � S A is a subset or equal of/toS

A : S Restriction ofA to S

A

� k

K er C = f x : A

k

x 2 K er C g

h A jB i In�mal A -invariant subspace containingB , i.e. the reachable
subspace of( A; B )

h K er C j A i SupremeA -invariant subspace contained inK er C , i.e. the un-
observable subspace of( C ; A )

B ; B ( � ) Matrix, map, input matrix

B

e Matrix, input matrix of cascaded system

B

� l Left inverse ofB (i.e. B

� l

B = I )

I mB Image (range) ofB , I mB = B

B Subspace, image (range) ofB , B = I mB

B

e Subspace, image (range) ofB

e ,B

e

= I mB

e

C , C ( � ) Matrix, map, output matrix

C

� n

, C

� �

Matrix, to implement sensor faults as pseudo-actuator faults
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C

� r Right inverse ofC (i.e. C C

� r

= I )

K er C Kernel of C

I mC Image (range) ofC , I mC = C

C Complex space

C

1 Class of differential functions

d ( X ) Dimension ofX

D ; D

0

; D

1

Matrix, map, feedthrough matrix, controller feedback matrix

D Domain

D

x

Differential operator

D ( W ) Set of allD such that( A + D C ) W � W

e Estimation error

e

n

Estimation errore
n

= n � ^n

e

U

Estimation errore
U

= U �

^

U

E Matrix

f ( � ) ; f

e

;

~

f Smooth vector �eld

f
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Fault signal

f
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Function of classC

1

F Matrix

F

x
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Fault signature matrix

g

i

; g

e

i

; ~g
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g

k

Decision funtion

G Matrix
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e

;

~
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h

j

Smooth function

h

r

Function of classC

1

H ; H C Output matrix

H (Observability) space

H

e Output matrix of cascaded system

H

0

, H

1

Statistical hypotheses

i Index number

inf In�mum, the greatest lower bound

I

m

m � m identity matrix

I

m

Inertia of the ship’s shaft system

j Index number
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k Dimension of� or number of faults

k

i

Dimension of�

i

, in generalk
i

= 1

k Finite setf 1 ; : : : ; k g

k

r

Governor gain

k

t

Gain
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Diesel engine gain

K Matrix

K Anti-windup gain
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e Feedthrough matrix of cascaded system
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^n
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y
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^
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� k

y

Observer gain

K

^

�
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Observer gain

l Dimension ofy or number of outputs
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l ( x ) ,l

i

( x ) Smooth vector �eld, fault signature

l

e
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e

) Smooth vector �eld, fault signature

l
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L
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Fault signature of thei th fault

L
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L
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h Lie derivative ofh alongX

L
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Fault signature in the transformed system
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L
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1
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m
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Time-variant threshold

M , M
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u
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�
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M
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Vector space for fault�

i

, d ( M

i

) = k

i

m Dimension ofu or number of inputs
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m (Mass) weight of the ship

n Dimension ofx or number of states
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n Finite setf 1 ; : : : ; n g

n Shaft speed

n

m

Measured shaft speed

n

max

Maximal shaft speed

n

r ef

Shaft speed reference

^n Shaft speed estimate

N , N

� Matrix

N Neighborhood of the origin inR

n

N

e Neighborhood ofx e

= ( x; z ) = (0 ; 0)

O ; O

e Observation space, observability subspace

d O ; d O

e Observability subspace

p Dimension ofr or number of residuals
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p Adaptive observer gain
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p
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p

�
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Probability density

P Canonical projectionP : X ! X = S

�
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� r Right inverse ofP (i.e. P P

� r

= I )
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q Dimension ofz , order of residual generator

Q Involutive conditioned invariant unobservability distribution

Q Torque

Q
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Engine torque

Q
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Propeller developed torque

Q

f

Friction torque

Q

0

Propeller torque coef�cient
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Propeller torque coef�cients

r ,r

y

,r

�

Residual vector[ r

1

: : : r

p

]

T , output vector of the cascaded sys-
tem ,r 2 R

p

r

i

i

th residual ori

th component of residual vectorr

R
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Fault signature

R ( U ) Hull resistance

R ( ^ x; u ) Observer gain
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R Real space

R

n n-dimensional real space

R

+ Positive real space

s Dimension ofw or number of disturbances

s , s

i

Log-likelihood ratio

sup Supremum, the least upper bound

S Observer gain

S
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Cumulative sum

S Subspace

S ( L

i
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i

denoted byL
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S
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S
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= inf S ( L

i
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i
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S ( L ) Set of all ( C ; A ) -unobservability subspaces containing the sub-
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t Time

t
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Initial time or starting point of time

t

T

Thrust deduction number

T Thrust

T

pr op

Propeller developed thrust

T

ext

External force (due to wind and waves) imposed on the ship
speed

T

d

Detection time

T

s

Sampling time

T

j n j n

, T

j n j V

a

Propeller thrust coef�cients

T ( � ) Coordinate transform

u Input vector[ u

1

u

2

: : : u

m

]

T , whereu 2 U

u

r ef

Reference signal for the inputu

u

e Input vector of cascaded system,u

e

2 U

e

= U � M

2

u

i

i

th input or i

th component of input vectoru

u

_

�

Output of pitch controller

U Ship speed

U

m

Measured ship speed

U

max

Maximal ship speed
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^

U Ship speed estimate

U Input vector space

U

e Input vector space of cascaded systemU

e

= U � M

2

V Lyapunov function
_

V Time derivative of the Lyapunov function

V

a

Max. advanced speed

w Disturbance vector[ w

1

w

2

: : : w

s

]

T , wherew 2 R

s

w

i

i

th disturbance signal

w , ~w New input vector

w

new New/changed disturbance vector

w Wake fraction

W ( C ; A ) -invariant subspace

W ( L ) Set of all( C ; A ) -invariant subspaces containing the subspaceL

W

1

, W

2

, W

3

Continuous positive de�nite functions

x; ~x State vector[ x

1

x

2

: : : x

n

]

T , wherex 2 X

x

0

Initial conditionx

0

= x ( t = 0)

^x Estimate of the state (vector)x

x

e

; ~x

e State vector of cascaded system,x

e

2 X

e

= X � Z

_x ( t ) time derivative ofx ( t )

x

i

i

th state ori

th component of state vectorx

X

_

U

Added mass in surge

X Vector space

X

e State vector space of cascaded systemX

e

= X � Z

X

0

Dual space ofX

X = S Factor space ofX with respect toS

y ; ~y Output vector[ y

1

y

2

: : : y

l

]

T , wherey 2 Y

^y Estimate of the output (vector)y

y

i

i

th output ori

th component of output vectory

Y Fuel index

Y

m

Measured fuel index

Y

P I

Governor output

Y

lb

, Y

ub

, Y

P I b

Boundaries for fuel index

Y Output vector space

z State vector[ z

1

z

2

: : : z

q

]

T , wherez 2 Z , d ( Z ) = q
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z

i

i

th component of state vectorz

Z State vector space

0 Zero vector, zero space, etc.

� Index number

~�

ij

Real number, coef�cient
~

�

i

Real number, coef�cient

� Unobservability space or distribution

� k

y

Diesel engine gain fault

� n

sensor

Shaft speed sensor fault
_

� n

sensor

Time derivative of shaft speed sensor fault

� � Fault on the propeller pitch

� �

sensor

Pitch sensor fault
_

� �

sensor

Time derivative of pitch sensor fault

�

_

�

inc

Pitch actuator hydraulic fault

� Involutive closure of distribution�

� Code vector or estimation error� = �

1

�

^

�

1

�; �

i

Threshold

� Eigenvalue,� 2 �

�

� Complex conjugate of eigenvalue�

� Set of eigenvalues

�

r

Mean value of the signalr

�

r

nof ault

Mean value of the signalr in the faultfree case

�

r

f ault

Mean value of the signalr in the faulty case

� Fault, complete fault vector[ �

1

�

2

: : : �

k

]

T , where� 2 M and
k

i

= 1

�

new New/changed fault vector

�

i

Fault vector,�

i

2 M

i

�

� n

, �

� �

New fault signal, to implement sensor faults as pseudo-actuator
faults

�

i

Fault vector,�

i

2 M

i

�

i

i

th component of fault vector�

�

n

Measurement noise concerning shaft speed measurement

�

U

Measurement noise concerning ship speed measurement

�

Y

Measurement noise concerning fuel index measurement
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�

�

Measurement noise concerning pitch measurement


 Subspace, range, area, coding set




u

Range ofu




x

Range ofx




j

j

th coding set, set of numbers




� Subspace

� Structure matrix

�( t; t

0

) Transition matrix

�( � ) Change of output coordinates

 ( u; y ) Smooth vector �eld

' ( x; y ) Smooth vector �eld

�

u

i

Characteristic number with respect tou

�

�

i

Characteristic number with respect to�

� ( A ) Spectrum (eigenvalues) ofA

�

2

r

Variance of the signalr

�

P

�

Involutive conditioned invariant distribution

�

i

Time cons. in the governor

�

c

Time cons. in the diesel engine

� Constant number

� Propeller pitch

�

m

Measured propeller pitch

�

r ef

Propeller pitch reference

�

min

, �

max

Boundaries for pitch
_

�

min

, _

�

max

Boundaries for pitch

� Parameter (vector), �xed codistribution

�

nom

Nominal value of the parameter (vector)�

^

� Estimate of the parameter (vector)x

� State vector( �

1

�

2

: : : �

n

)

T

�

1 State vector� 1

= ( �

1

; : : : ; �

k

)

^

�

1 Estimation of�

1

�

2 State vector� 2

= ( �

k +1

; : : : ; �

n

)

@

@ x

i

Partial derivative

( � )

? Annihilator

inf ( : ) ; ( � )

� In�mal element
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span f�g Spanned vector space.

Abbreviations

ANN Arti�cial neural network

ATOMOS Advanced Technology to Optimize Maritime Operational
Safety

BJDFP Beard Jones detection �lter problem

CAISA ( C ; A ) -invariant subspace algorithm

COSY control of complex systems

CPP Controllable pitch propeller

CUSUM Cumulative sum

DDEP Disturbance decoupled estimation problem

DOS Dedicated observer scheme

FDI Fault detection and isoltaion

FDIFP FDI �lter problem

FMEA Failure mode and effect analysis

FPA Fault propagation analysis

FPRG Fundamental problem of residual generation

FTC Fault tolerant control

FTCS Fault-tolerant control system

h:o:t: Higher order terms

l-NLFPRG Local nonlinear fundamental problem of residual genera-
tion

LTI linear, time-invariant

LTV linear, time-variant

NLFPRG Nonlinear fundamental problem of residual generation

rl-NLFPRG Regular local nonlinear fundamental problem of residual
generation

o.c.a. Observability codistribution algorithm

SA Structural analysis
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SNF Statens Naturvidenskabelige Forskningsråd

(Danish Research Council)

STVF Statens Teknisk Videnskabelige Forskningsråd

(Danish Research Council)

u.o.s. Unobservability subspaces

Terminology

The terminology used in FTCS has only during the recent years approached an
agreement in the published material. The Safeprocess Technical Committee of
IFAC has compiled a list of suggested de�nitions (Isermann and Ballé (1997)),
which is generally in coherence with the terminology used throughout this thesis.
Some of the de�nitions are changed according to the terminology presented in
Blankeet al. (2000).

Active fault-tolerant system A fault-tolerant system where faults are explic-
itly detected and handled. See also passive fault-
tolerant system.

Analytical redundancy Use of more than one not necessarily identical
ways to determine a variable, where one way uses
a mathematical process model in analytical form.

Availability Probability that a system or equipment will op-
erate satisfactorily and effectively at any point of
time.

Constraint A functional relation between variables and pa-
rameters of a system. Constrains may be speci�ed
in different forms, including linear and nonlinear
differential equations, and tabular relations with
logic conditions between variables.

Decision logic The functionality that determines which remedial
action(s) to execute in case of a reported fault and
which alarm(s) shall be generated.

Detector An algorithm that performs fault detection and
isolation.

Discrepancy An abnormal behaviour of a physical value or in-
consistency between more physical values and the
relationship between them.
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Fail-safe The ability to sustain a failure and retain the ca-
pability to make a safe close-down. An example
could be a system where the occurrence of a single
fault can be determined but not isolated and where
the fault cannot be accommodated to continue op-
eration.

Fail-operational The ability to operate with no change in objectives
or performance despite of any single failure.

Failure Permanent interruption of a systems ability to per-
form a required function under speci�ed operating
conditions.

Failure effect The consequence of a failure mode on the opera-
tion, function, or status of an item.

Failure mode Particular way in which a failure can occur.

Fault detection Determination of faults present in a system and
time of detection.

Fault accommodation A change in controller parameters or structure to
avoid the consequences of a fault. The input-
output between controller and plant is unchanged.
The original control objective is achieved al-
though performance may degrade.

Fault diagnosis Determination of kind, size, location, and time of
occurrence of a fault. Includes fault detection, iso-
lation and identi�cation.

Fault isolation Determination of kind, location, and time of de-
tection of a fault. Follows fault detection.

Fault modeling Determination of a mathematical model to de-
scribe a speci�c fault effect.

Fault propagation analysis Analysis to determine how certain fault effects
propagate through the considered system.

Fault-tolerance The ability of a controlled system to maintain con-
trol objectives, despite the occurrence of a fault.
A degradation of control performance may be ac-
cepted. Fault-tolerance can be obtained through
fault accommodation or through system and/or
controller recon�guration.

Hardware redundancy Use of more than one independent instrument to
accomplish a given function.
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Incipient fault A fault where the effect develops slowly e.g. clog-
ging of a valve). In opposite to an abrupt fault.

Passive fault-tolerant system A fault-tolerant system where faults are not ex-
plicitly detected and accommodated, but the con-
troller is designed to be insensitive to a certain re-
stricted set of faults. See also active fault-tolerant
system.

Qualitative model A system model describing the behavior with re-
lations among system variables and parameters in
heuristic terms such as causalities or if-then rules.

Quantitative model A system model describing the behavior with re-
lations among system variables and parameters in
analytical terms such as differential or difference
equations.

Recon�guration Change in input-output between the controller
and plant through change of controller structure
and parameters. The original control objective is
achieved although performance may degrade.

Reliability Probability of a system to perform a required func-
tion under normal conditions and during a given
period of time.

Remedial action A correcting action (recon�guration or a change in
the operation of a system) that prevents a certain
fault to propagate into an undesired end-effect.

Residual Fault information carrying signals, based on de-
viation between measurements and model based
computations.

Safety system Electronic system that protects local subsystems
from permanent damage or damage to environ-
ment when potential dangerous events occur.

Severity A measure on the seriousness of fault effects us-
ing verbal characterization. Severity considers the
worst-case damage to equipment, damage to envi-
ronment, or degradation of a system’s operation.

Structural analysis Analysis of the structural properties of the models,
i.e. properties that are independent on the actual
values of the parameter.

Threshold Limit value of a residual’s deviation from zero, so
if exceeded, a fault is declared as detected.



Chapter 1

Introduction

Interest in fault detection and isolation (FDI) for nonlinear systems has grown
signi�cantly in recent years. Its design is one important step towards fault-
tolerant control systems (FTCS). In a FTCS occurring faults are handled in such
a way that it can still perform in an acceptable manner. This is preferred to shut
down of (sub-)systems caused by occurring faults. Obviously, the actions for
fault handling are different for each potential fault. Hence, it is required to diag-
nose which actual faults might be present in a system.

This thesis considers observer-based FDI for nonlinear systems. The design is
based on the geometric approach. It is applied to analyze the considered sys-
tem and to choose suitable subsystems for the observer design. A nonlinear ship
propulsion system is used as an illustrative application example. Furthermore,
stability aspects concerning the observer design are mentioned. Finally, the novel
concept of fault-output decoupling is introduced to integrate FDI aspects in the
control design and to improve FDI possibilities.

1.1 Background and Motivation

The level of automation has reached a high level, both, in industry and in daily-
life. Still, the number of tasks taken over by computers is growing every day;
in airplanes, biomedical applications like pacemakers, cars, CD-players, robots,
ships, telephones, television, and numerous others. Only in few of them possible
faults, in e.g. actuators and sensors, have been considered during the design.
However, in most applications they are not considered. This leads to several

1
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dif�culties during the occurrence of a fault. Often a small fault can have a big
impact on a control system. In one example, a simple sensor fault, caused an
auto-pilot on board a ship to steer it in a wrong direction. This was not noticed
on-time by the of�cer on watch (obviously trusting the auto-pilot) and caused
heavy damage to the ship as it sailed onto ground. In another example a tem-
perature sensor caused an emergency shut-off system to turn off the ship’s diesel
engine to prevent overheating. As a consequence the ship was not able to ma-
neuver and caused a collision in the harbor while docking. Most of these kind
of accidents could be prevented when the possible faults would be considered
during the control design.

In airplane design the possible sensor faults are considered by implementing re-
dundant sensors (hardware redundancy). This makes the design more expensive
due to a higher degree of complexity of the design and the extra hardware costs.
The fuel consumption is also increased due to the higher weight. As a result
of the hardware redundancy the system becomesfail-operational, i.e. even if
a sensor fault occurs, the redundant sensors will provide correct information.
Therefore, the system will keep on performing as if nothing happened. Due to
the high costs the fail-operational approach is seldom implemented in systems
which are not considered to be high risk. However, with the growing demand in
availability, ef�ciency, quality, reliability, and safety fault handling has become
an important issue. As a result control systems with fault handling capabilities
are considered. They are also known asfault-tolerant control systems(FTCS).
The goal is to handle occurring faults in such a way that the system can still per-
form in an acceptable manner and that shut down of (sub-)systems is prevented.

The design of fault-tolerant control systems includes several different tasks.
First, all possible faults have to be modeled (fault modeling) that can occur in
the considered system. Then afault propagation analysis(FPA) is carried out
to analyze which impact the single faults have on the system. As a result the
severity of the faults and possiblefault handlingstrategies can be determined.
However, the most essential part for a FTCS design isfault detection and isola-
tion (FDI). Its design is required to judge when and which fault has occurred in
order to initiate the correct fault handling at the right point of time.
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1.2 Overview of previous and related work

The topic of fault detection and isolation (FDI) has been of interest since the
beginning of the 1970s. In the start the research was mainly concentrated on
the area of aeronautics and aviation. An essential body of literature has been
produced since due to contributions from several research areas. Different re-
search groups proposed FDI approaches based on the expertise from their own
�eld and/or the experience with a speci�c class of systems. The high diversity
of solutions has also been driven by the growing interest from industry in FDI.
This was mainly due to the hope of improving ef�ciency, safety, and reliability
of process automation.

Most methods are covered by the termmodel-based fault detection and isolation.
The idea is to use theanalytic redundancygiven by a model of the system, i.e.
cross checking between expected/predicted and measured behavior. The meth-
ods use a system model and the observables of the system (control and measure-
ment signals) to generateresiduals. Residuals are measures for the discrepancy
between expected and measured system behavior. Their analysis leads to model-
based fault detection and isolation. However, there exist also many other meth-
ods that are not considered as model-based, e.g. the fuzzy-approach (Kiupel and
Frank (1997)), the arti�cial neural network (ANN) approach (Köppen-Seliger
and Frank (1996)), or the stochastic signal analysis (Basseville and Nikiforov
(1994)).

The �eld of model-based FDI for linear systems is well-studied. Key references
can be found in Chen and Patton (1999); Gertler (1998); Isermann and Ballé
(1997); Patton (1997); Frank (1996); Massoumniaet al. (1989); Willsky (1976).
There exist several solutions for different linear FDI problems. On the opposite,
the area of FDI for nonlinear systems is not covered completely yet. For some
nonlinear systems it was shown to be suf�cient to use linearization around oper-
ating points in order to apply linear FDI methods. However, in general this is of-
ten not possible due to hard nonlinearity (e.g. saturation effects or non-analytic
behavior) or the inef�ciency of linearization. Hence, several FDI approaches
have been improved to also handle nonlinear systems, e.g. the observer-based
approach, the parity space approach, and the parameter estimation approach.
Also fuzzy observers and arti�cial neural networks were considered for nonlin-
ear systems.
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Recently, new approaches were proposed for the class of input-af�ne nonlinear
systems (linear in the input). Especially the observer-based FDI approach for
nonlinear systems has gained a lot of interest (García and Frank (1997); Ham-
mouri et al. (1999); Nijmeijer and Fossen (1999); Åströmet al. (2000)).

An interesting question for the observer design is to decide which (sub-)system
should be observed for residual generation. In Izadi-Zamanabadi (1999) an ex-
ample is given how this problem can be solved applying the structural analysis
(Staroswiecki and Declerck (1989); Cassaret al.(1994)). Another solution is the
application of the geometric approach. It was originally introduced by Massoum-
nia et al. (1989) for the linear case. In the last two years it has been extended to
nonlinear systems (Hammouriet al. (1998, 1999); DePersis and Isidori (1999);
DePersis (1999)). However, only little application experience exists from using
the geometric approach for FDI in nonlinear systems.

In practice the FDI design is seldom considered during the control design, but
often designed later on top of the control. Hence, it is impossible for the FDI
designer to in�uence the controller design, e.g. to improve the FDI possibilities
by adding sensors. However, as pointed out by Bøgh (1997), this is inevitable
for the design of fault-tolerant control systems. This is also described in detail
in Patton (1997).

In Chapter 2 a general introduction to model-based FDI is given. It describes
some of the most common model-based FDI approaches and different aspects of
residual generation.

1.3 Objectives and contributions

This thesis focuses on observer-based fault detection and isolation for nonlin-
ear systems. One of the objectives is to give an overview over the geometric
approach towards observer-based FDI and to apply it to a ship propulsion sys-
tem. The latter is done to investigate its applicability. Furthermore, it considers
stability issues for the observer design. The goal is to stress the necessity of rec-
ognizing the resulting time-variance when linearizing a nonlinear system along
a trajectory. Finally, the novel idea of fault-output decoupling is proposed based
on the well-studied input-output decoupling problem. It points out the impor-
tance of considering FDI properties already during the control design and shows
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one way to achieve that.

In order to address these objectives the thesis contributes in the following way:

� Different important facts about residual generation and evaluation are ad-
dressed in Chapter 2. Different model-based FDI approaches are men-
tioned. Furthermore, coding sets for the residual evaluation are stated, as
e.g. de�ned by Gertler (1998).

� A detailed review of the geometric approach towards fault detection and
isolation is given. Starting from linear systems, covering state-af�ne non-
linear systems up to input-af�ne nonlinear systems. Furthermore, its basic
concept of using unobservability subspaces/distributions is pointed out.

� As an application example the geometric approach introduced by DePer-
sis and Isidori (1999); DePersis (1999) is applied to different FPRGs.
These fundamental problems of residual generation (FPRG) are de�ned
for a nonlinear ship propulsion benchmark (Izadi-Zamanabadi and Blanke
(1997, 1999)).

� Several observers are designed to obtain successful FDI. The structure of
two of them is based on the results from the geometric approach. Stability
is proven based on Gauthieret al. (1992).

� An adaptive nonlinear observer (Blankeet al.(1998); Blanke and Lootsma
(1999)) is designed and simulated. Its simulation results show fast de-
tection possibilities. They are compared with the results obtained by the
geometric approach.

� Several simulation results are given to illustrate the successful FDI for the
ship propulsion benchmark. The designed observers are able to detect and
isolate all implemented faults. The requirements for detection time are
ful�lled as well.

� Based on the simulation results the advantages and disadvantages of the
geometric approach are discussed.

� Stability aspects are considered. It is shown how important it is to consider
the resulting time-variance when linearizing a nonlinear system along a
trajectory.



6 Introduction

� The novel idea of fault-output decoupling is proposed to show a possibility
of combining FDI and control design. The concept of complete and ef�-
cient fault-output decoupling is introduced and discussed. Furthermore,
an application example is given for illustration.

1.4 Thesis Outline

The thesis is organized as follows:

Chapter 2 gives a brief introduction into the �eld of model-based fault detec-
tion and isolation. The idea of observer-based FDI is brie�y reviewed. Further-
more, aspects like residual structure, robustness, and performance criteria are
addressed.

Chapter 3 reviews the existing geometric approaches, starting with the linear
case and ending with the wide class of input-af�ne nonlinear systems. Both,
problem formulations and solutions are presented. Furthermore, the similarities
are pointed out.

Chapter 4 illustrates the application of the geometric approach to a ship
propulsion system in order to obtain successful FDI. First the system is de-
scribed. Then the geometric approach is applied. The detailed calculations are
given in Appendix C. The results are used to design several observers for FDI.
Simulation results of the ship propulsion system and the observers illustrate the
obtained FDI performance. Finally, the results are discussed to evaluate the ge-
ometric approach.

Chapter 5 covers several stability aspects of observers used for FDI. It out-
lines the stability proof for the observers that were designed based on the ge-
ometric approach. Chapter 5 illustrates also the importance of the awareness
that linearization along a trajectory leads to a time-variant system. The differ-
ence between the stability analysis for time-variant and time-invariant systems is
described.
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Chapter 6 introduces a novel idea,fault-output decoupling, to show how FDI
and control design could be combined to improve FDI possibilities. The con-
cepts of complete and ef�cient fault-output decoupling are de�ned and illustrated
by a simple example.

Chapter 7 gives concluding remarks and recommendations for future work.





Chapter 2

Model-based fault detection and
isolation

Fault-tolerant control systems have the ability to tolerate the occurrence of a fault
by being able to continue operation while a degradation of performance may be
accepted, see Blanke (1999). Continued operation is assured by handling oc-
curring faults. To initiate the correct fault handling suf�cient FDI information
is required. As mentioned in the introduction there exist several approaches
towards FDI. This thesis focuses on observer-based FDI for nonlinear systems
which belongs to the group of model-based FDI methods.

The �eld of model-based FDI is well-studied. There exists a wide variety of
model-based FDI approaches for linear systems, e.g. the observer-based ap-
proach, the parity space approach, and the parameter estimation approach. Key
references can be found in Chen and Patton (1999); Gertler (1998); Isermann
and Ballé (1997); Patton (1997); Frank (1996); Willsky (1976). Also for non-
linear systems there exist several model-based FDI methods (García and Frank
(1997); Chen and Patton (1999); Åströmet al. (2000)). Especially the observer-
based approach has gained a lot of interest recently (García and Frank (1997);
Franket al. (1999); Hammouriet al. (1999); Nijmeijer and Fossen (1999); De-
Persis (1999)). However, most methods only handle a speci�c class of nonlinear
FDI problems. This is mainly due to the fact that there exist different classes of
nonlinear systems and nonlinear systems also include phenomena like saturation
effects or non-analytic behavior.

9
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In this chapter different aspects of model-based FDI are addressed, starting with
analytical redundancy and the use of structured residuals. Furthermore, robust-
ness issues and performance criteria are mentioned.

2.1 Analytical redundancy

One possibility to achieve FDI is the use ofanalytical redundancy. Analytical
redundancy is based on using the available signal information (known inputs and
measurements) and a mathematical model of the system. A cross-check of the
signal information is carried out to detect and isolate faults. For systems with
hardware redundancythis cross-check can be carried out by comparing signal
information with available redundant information supplied by redundant hard-
ware. Using analytical redundancy means to calculate the required redundant
information by using the model and the available signal information. Hence, this
approach is also referred to asmodel-based FDI. A detailed description of the
termmodel-based FDIis given in Chen and Patton (1999).

The model-based FDI methods are restricted by the fact that they require a pre-
cise model to obtain suf�cient FDI. In practice this is not always available.
Hence, other methods next to the model-based methods have been considered,
e.g. the arti�cial neural network approach, the fuzzy approach, and the quali-
tative approach. They are referred to as knowledge-based and qualitative in the
literature (Frank (1996)).

The restriction of the so-called knowledge-based methods is that they are de-
pending on knowledge acquisition from the system in form of training data sets
Frank (1996). In practice these sets are dif�cult to obtain. This is due to the fact
that they must provide data from the system while the considered faults occur.
However, in a real running system it is hardly possible to convince the owner
of a plant to simulate all possible faults. When a knowledge-based systems can
be trained suf�ciently they can be used to estimate measurements based on the
available signal information, hence, provide redundancy. The main advantage of
these methods is that they do not require a precise analytical model.
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2.2 Residuals

Normally, the consistency check based on analytical redundancy is achieved by
comparing measured signals with their estimates. The resulting difference for
one signal is referred to asresidual signal; e.g. r

i

= y

i

� ^y

i

; i 2 k , where
r

i

denotes thei

th residual,y

i

the i

th measured system output,^y

i

the estimated
i

th system output, andk the number of residuals. Residuals are designed to be
equal or converge to zero in the fault-free case (r

i

� 0 ) and deviate signi�cantly
from zero under occurrence of a fault (j r

i

j > �

i

> 0 , where�

i

2 R denotes
a threshold). Hence, the residuals represent the fault effects. Depending on the
number of residuals and their design it is possible to detect and isolate occurring
faults. Most model-based FDI methods incorporate two sequential steps in order
to obtain FDI:1 : Residual generation, and2 : Residual evaluation.The two dif-
ferent steps are explained in the following two subsections.

There exist also model-based methods that are not based on residual generation,
e.g. the statistical automata approach (Lunze (2000)). It provides direct fault in-
formation and does not generate residuals in order to evaluate them in a second
step to take a FDI decision.

2.2.1 Residual generation

The residual generation for model-based FDI is based on exploiting the avail-
able analytical redundancy. In most approaches the analytical redundancy is
represented by a set of differential equations. The goal is to generatestructured
residualsto obtained suf�cient FDI. One common way to generate residuals is to
estimate the system output vectory or the system parameter vector� . Then the
estimateŝy and ^

� are subtracted from the real measurementy and the nominal
value of the parameters�

nom

. This leads to the following residual vectors:

r

y

= y � ^y and r

�

= �

nom

�

^

�

The residual vectorr

�

corresponds to the parameter estimation approach. The
residual vectorr

y

is typical for the observer-based approach, but is also used
by the so-called parity relation approach. A good overview and comparison of
these three model-based methods can be found in Chen and Patton (1999). In
the following and in the rest of the thesis only the observer-based approach will
be considered.
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Actuator
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Model-based FDI
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Figure 2.1: General scheme for model-based FDI.

The principle idea of model-based residual generation is illustrated in Figure 2.1.
It shows the observed plant and its different parts:

� Thecontroller that assures the required performance of the plant based on
an external reference signalu

r ef

.

� The three given parts of the plant itself:actuators, plant dynamics, and
sensors.

� Themodel-based FDI system.

Furthermore, it is illustrated that the possible faults can affect the actuators, the
plant, and the sensors. The FDI system has two different inputs, the so-called
observables: the system inputu and the measured system outputy . It is applied
to the open-loop system.

The main task of observer-based FDI approach is to design an observer structure
that generates structured residuals that enable detection and isolation of the con-
sidered faults. The existing observer-based methods generate estimates that can
be subtracted from available measurements to obtain residuals (e.g.r

y

). There
exist many different observer-based approaches considering linear systems and
different classes of nonlinear systems. Key references can be found in Chen and
Patton (1999); Patton (1997); García and Frank (1997); Frank (1996); Nijmeijer
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and Fossen (1999).

The next Chapter gives a detailed overview over the observer-based FDI ap-
proaches that are based on the geometric approach. It starts with one of the
�rst observer-based FDI approaches, the Beard&Jones detection �lter (BJDF)
for linear systems (Beard (1971),Jones (1973)). The BJDF is based on a full-
order Luenberger observer where the gain is tuned to use the prediction error
(or innovation) as residual. Furthermore, the latest results for nonlinear systems
based on the geometric approach Hammouriet al. (1998, 1999); DePersis and
Isidori (1999); DePersis (1999) are described in detail.

2.2.2 Residual evaluation

Successful residual-based FDI requires appropriate residual evaluation. Resid-
ual evaluation describes the task of evaluating the residuals in order to take the
following decisions:1 : Is there any fault present? , and2 : If yes, which fault(s)
is/are present. Especially the second decision is depending on the fact whether
only single faults (one fault at a time) or also multiple (simultaneous) faults are
considered. Multiple faults are most unlikely events, unless there is a severe de-
fect in the system which causes several faults to occur. The problem of handling
multiple faults lies in the fact that resulting fault effects caused by single faults
occur at the same time. Hence, they might compensate each other or they might
overlap in a way that either only one of them or a complete other fault is detected
and isolated.

Therefore, it is important to obtain the correctresidual structurefor correct resid-
ual evaluation. The residuals should be generated in such a way that for each
fault a different set of residuals is affected (i.e. the residuals deviate signi�-
cantly from zero). For multiple faults it should furthermore be guaranteed that
the overlapping of the resulting fault effects does not lead to a wrong decision,
e.g. missed detection of a fault or a wrong decision about which fault occurred.
There exist several ways to de�ne structured residuals that can be used for correct
residual evaluation.

Structured residuals

According to Gertler (1998) a structured residual is characterized by the follow-
ing property:Any residual responds only to a speciÞc subset of faults, and to any
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fault only a speciÞc subset of residual responds. Following Gertler (1998) one
can represent a set ofp residuals in two different ways:

� in a geometric way by considering the vector
r ( t ) = ( r

1

( t ) r

2

( t ) : : : r

p

( t ) )

T , wherer ( t ) 2 R

p .

� and in a Boolean way by de�ning afault code vectorin the following way:

�

i

( t ) =

(

1 if j r

i

( t ) j � �

i

0 if j r

i

( t ) j < �

i

) � ( t ) = ( �

1

( t ) �

2

( t ) : : : �

p

( t ) )

T

for i 2 p and the thresholds�

i

.

Obviously, the fault code vector� ( t ) provides the information weather thei

th

residualr

i

( t ) hits a de�ned threshold�

i

or not. When following the Boolean
notation one can also de�ne astructure matrix� in the following way, when
using the fault vector� ( t ) = ( �

1

( t ) �

2

( t ) : : : �

k

( t ) )

T :

r L 9 9 � �

where thei

th column vector of� is de�ned as:�

i

= �

�

i , where�

�

i describes the
code vector� concerning thei

th fault. Hence,� is a p � k matrix that contains
only ones (’1’) and zeroes (’0’). The operator de�ned by ’L 9 9 ’ can be read as
’ is affected by’. The expressionr L 9 9 0 is a special case and should be read like
the residualr is not affected (by any fault). To illustrate this notation a simple
example is given representing the structured residual where thei

th residualr

i

( t )

is only affected by thei

th fault �

i

( t ) , and the number of faultsk equals the
number of residualsp , k = p = 3 (the time dependence is omitted for a better
readability):

r =

0

B

@

r

1

r

2

r

3

1

C

A

L 9 9

0

B

@

�

1

�

2

�

3

1

C

A

=

0

B

@

1 0 0

0 1 0

0 0 1

1

C

A

| {z }

�

0

B

@

�

1

�

2

�

3

1

C

A

| {z }

�

which can be read as faultr

1

is affected by fault�

1

, r

2

is affected by fault�

2

,
andr

3

is affected by fault�
3

. This notation offers also the possibility to consider
disturbancesw

j

; j 2 s . They can be added to the description by treating them
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like additional faults. This is done by de�ning also code vectors�

j

for them and
add these to the structure matrix� , and adding the disturbance signals to the
fault vector.

As already mentioned in Chapter 2, different kinds of structural residuals are
known in the �eld of FDI, see e.g. Gertler (1998); Chen and Patton (1999). They
can all be represented in the above given notation using corresponding structure
matrices� . In Gertler (1998)[Chapter 7] a detailed discussion is given concern-
ing the design of structured residuals. It provides several useful de�nitions like
e.g.:

Undetectability in a structure A fault �

i

or disturbancew

j

is undetectablein
a residual structure if its column�

i

in the structure matrix� contains only zeroes
(’ 0 ’). Note that while undetectability is undesirable for a fault, clearly this is the
desirable behavior as far as disturbances are concerned.

Indistinguishability in a structure Two faults or disturbances areindistin-
guishablein a structure if their respective columns in the structure matrix are
identical.

Weakly isolating structure We will refer to a structure asweakly isolatingif
all columns in the structure matrix are different and nonzero. Obviously, with
such structure, all faults are detectable and allsinglefaults are mutually distin-
guishable.

For further de�nitions, details, and explanations the reader is referred to Chapter
7 in Gertler (1998).

In this thesis the following general description of an ef�cient residual structure
as introduced by Massoumniaet al. (1989) will be used:

In the j

th fault mode (i.e. when thej

th fault occurs; fault signal�
j

( t ) 6= 0 ; j 2

k ), the residualsr

i

( t ) for i 2 


j

are nonzero, and the other residualsr

�

( t ) for
� 2 p � 


j

decay asymptotically to zero. The speciÞed family of coding sets



j

� p ; j 2 k , is chosen such that, by knowing which of the residualsr

i

( t ) are
(or decay to) zero and which are not, the fault�

j

can be uniquely identiÞed.
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The different coding sets

j

are used to identify the occurring faults. A cod-
ing set contains a set of numbers that represents a speci�c subset of residuals
r

i

( t ) ; i 2 p , i.e. 


j

� p ; j 2 k ; wherek denotes the number of faults andp the
number of residuals. In case of single faults the following holds: Iff the com-
plete set of residuals de�ned by the coding set


j

is affected by an occurring
fault it can be said that the occurring fault is thej

th fault. For multiple faults
extra conditions have to be ful�lled to avoid overlapping or cancellation of fault
effects. The effects from multiple faults (e.g.�

1

and �

2

) might add up in a way
that it leads to a wrong decision (e.g. when


1

[ 


2

= 


3

the fault �

3

would
be detected instead of�

1

and �

2

). The simplest coding set that can handle both
multiple and single faults would bep = k and 


j

= f j g ; in that case thej

th

fault would only affect thej

th residual.

2.3 Robustness

Model-based FDI methods are based on a mathematical model, however, a pre-
cise and accurate model of a real system cannot be obtained. This can have dif-
ferent causes, e.g. an unknown structure of disturbances, different noise effects,
and uncertain or time-varying (due to aging) system parameters. FDI methods
that are able to handle these kind ofmodel uncertaintyare referred to asrobust.

Model uncertainty can cause false and missed alarms, hence, it needs to be con-
sidered when implementing FDI. If it is not handled it can have such a strong
impact that the FDI system becomes useless. There exist several approaches to
handle the robustness issue. They are divided intoactiveandpassive robustness
approaches. The active robustness approach deals with the model uncertainty in
the residual generation phase. The goal is to avoid model uncertainty effects on
the residuals. The passive robustness approach is implemented in the residual
evaluation, e.g. by using time varying thresholds� ( t ) , also known asadaptive
thresholds(Clark (n.d.); Chen and Patton (1999)). One example of active robust-
ness was already mentioned in Section 2.2.2. It handles the external disturbances
by considering them as additional faults. Then the FDI system has to be designed
such that these arti�cial faults are undetectable. This idea is also followed in the
geometric approach described in the next chapter. Parameter uncertainty could
be handled in the same way when it can be modeled as such a disturbance.

For further details about robust FDI the reader is referred to Chen and Patton
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(1999); Patton (1997) and references therein.

2.4 Performance

Another important aspect of FDI design is the resulting performance of the ob-
tained FDI system. It is closely related to robustness. In order to illustrate the
need for good performance the following performance aspects are addressed:

False detection rate
A false detection(false alarm) is a fault alarm although no fault occurred. The
FDI system has to be designed in such a way that the number of false alarms is
acceptable low. This could mean that e.g. a high threshold is chosen to avoid
false detection caused by disturbances or measurement noise. Obviously, a false
detection leads to inappropriate actions in a FTCS, because initiates fault hand-
ling for a fault that is not present.

Missed detection rate
A missed detection(missed alarm) describes the situation that no alarm is given
although a fault is present. The rate of missed alarms needs to be acceptable low.
One way to achieve this is to choose a low threshold to ensure that also small
faults can be detected. However, this is obviously in contrast with the solution
to avoid false detection. A missed alarm has a serious effect on the FTCS as the
occurring fault is not be handled.

Residual dynamics
Next to the problem of false and missed detection, the detection time, or better,
the reaction time of the residuals, plays a very important role. This has mainly
two reasons:

1. In order to handle faults in FTCS they need to be detected and isolated fast
enough. Otherwise, the performance of the system might have reached an
unacceptable level before handling is initiated.

2. When certain residuals have signi�cantly different reaction times (detec-
tion time of a change in the residual) the result could be a false isolation.
To illustrate this the following example is considered: Two faults are con-
sidered�

1

and �

2

, with the corresponding code vectors�

1

= ( 1 0 )

T and
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�

2

= ( 1 1 )

T . The second residual (r

2

) reacts signi�cantly slower than
the �rst residual (r

1

). When fault�

2

occurs and the residual evaluation is
carried out exactly at the point where the �rst residual has reacted, but the
second not yet, this leads to a wrong residual evaluation. As a result fault
�

1

would be detected instead of�

2

.

Next to the reaction time, the response of the residual to an occurring fault is
important. If the residual hits the threshold as long as the fault is presentstrong
detectability is obtained. However, when it only hits the threshold during the
transition of the fault (_� 6= 0 ) it is dif�cult to detect in a residual containing
measurement noise effects. This might cause problems like wrong isolation or
missed detection. One possibility to improve the FDI performance might be a
�ltering of the residual.

2.5 Summary

This section gave a brief overview over important aspects of model-based FDI.
Especially the robust and performance issues are of high interest. They are a
measure for the quality and applicability of a designed FDI system. The dis-
cussed issues in this chapter stressed the fact that the design of FDI is more
than just generation of residuals. A complete design method is an optimization
method which optimizes the above stated performance criteria. In the observer-
based design this includes several aspects:

� �nding an appropriate observer structure

� tuning of the observer to obtain structured residuals

� stability of the observer

� robustness issues

� optimization of the performance

These issues are addressed in the next chapter based on the geometric approach.



Chapter 3

Residual generation - geometric
approach

Among the different approaches for fault detection and isolation (FDI) men-
tioned in Chapter 2 the geometric methods are of high interest. The geometric
theory offers various advantages as it gives a general formulation of the FDI
problem, and is more compact and more transparent for more general systems
(like the nonlinear systems, which are considered in this thesis) than the alge-
braic approach. In recent years the existing geometric theory for the residual
generation in linear systems based on the original work by Massoumnia (1986a),
Massoumnia (1986b), and Massoumniaet al. (1989) has been extended. Formu-
lations for different classes of nonlinear systems were derived in order to han-
dle state-af�ne nonlinear systems (Hammouriet al. (1998)), and lately also the
class of input-af�ne systems (Hammouriet al. (1999)). In a similar effort others
recently presented more general solutions for the class of input-af�ne nonlin-
ear systems (DePersis and Isidori (1999), DePersis (1999), DePersis and Isidori
(2000), and references therein). The later results give a very detailed geometric
description of how to tackle the residual generation problem for nonlinear sys-
tems.

This chapter gives a review of these different geometric ideas and illustrates
how they are connected. They are all based on the same main idea of design-
ing a residual generator to solve the fundamental problem of residual generation
(FPRG). A formulation of the FPRG for each considered class of systems is pre-
sented in Section 3.2. The common idea is to use a residual generator based on

19
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the mathematical model of the considered system and using the available signals
- control inputs and measured outputs. This idea is also referred to asanalytical
redundancy, see chapter 2 for more details. The �rst geometric description of a
solution for the FPRG was given by Massoumniaet al. (1989) for linear systems
and provides necessary and suf�cient conditions for a solution to exist. This
original work is described in detail in the Sections 3.2.1 and 3.3.1 in order to
introduce the basic idea of the geometric approach and the used geometric con-
cepts. (The used (geometric) theory is described in Section 3.1 and Appendix A.
Hence, no special background in geometric theory is required to follow the ideas
presented in this chapter.) After a detailed description of the linear case it is il-
lustrated how it has been extended to the different classes of nonlinear systems -
state-af�ne and input-af�ne nonlinear systems. At the end of the chapter the re-
sults are summarized and compared to other existing approaches. Following the
summary, some concluding remarks will be given. The duality of the solutions
to other well-studied problems in geometric control theory is emphasized, e.g.
the restricted control decoupling problem.

The application of the geometric approach is illustrated by a detailed example
in Chapter 4. There the geometric approach is applied to a ship propulsion sys-
tem in order to obtain successful FDI. The calculations are explained in detail
(Appendix C) and simulation results are presented.

3.1 Notation and preliminaries

The notation in this chapter deviates from the notation in some of the references.
This is in order to make the notation consistent throughout the chapter and the
rest of the thesis. The used notation and mathematics are explained in the follow-
ing. For further details the reader is referred to Appendix A, the nomenclature
table at the beginning of the thesis, and the given references. The notation cor-
responds widely to the one used in Massoumnia (1986b).

In the thesis, script letters asX , U , andY denote real vector spaces, with typical
elements being denoted byx , u , and y . The dimension of the different vector
spaces, e.g.X , is described byd ( X ) . Example:x 2 X � R

n , whered ( X ) = n .
Thedual space1 of X is written asX

0

.
1For a detailed explanation of the termdual spacethe reader is referred to Appendix A.4.
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Theannihilator of S , S � X , is denoted byS

? ; S

?

= f x

0

; x

0

S = 0 ; x

0

2

X

0

g , hence,S

?

� X

0

. The zero vector, zero space, etc. are denoted by0 .
Matrices and linear maps are both denoted by capital italic letters, e.g.A ,

B , and C . The mapsA : X ! X , B : U ! X , and C : X ! Y are �xed
throughout and are associated with the linear system( C ; A; B ) :

_x ( t ) = Ax ( t ) + B u ( t ); y ( t ) = C x ( t ) .
The dimensions are given byd ( X ) = n , d ( U ) = m , andd ( Y ) = l .

I mB = B denotes theimage (range)of B , B = f y ; y = B x; x 2 X g .
K er C denotes thekernelof C , K er C = f x ; C x = 0 ; x 2 X g .

The spectrum (eigenvalues) of a matrixA is denoted by� ( A ) . A bold printed
integer describes a �nite set of integers, e.g.k = f 1 ; : : : ; k g . A set of complex
numbers� 2 C is symmetric if � 2 � implies �

�

2 � where� denotes the
complex conjugate.

If B is injective2 , thenB

� l denotes a left inverse ofB (i.e. B

� l

B = I

m

),
where I

m

denotes them � m identity matrix. If C is surjective3, then C

� r

denotes a right inverse ofC (i.e. C C

� r

= I

l

), whereI

l

denotes thel � l identity
matrix.

A subspaceS � X is termedA -invariant if A S � S ; i.e. a solutionx ( t )

of the differential equation_x = Ax that starts inS (x ( t = 0) 2 S ), stays inS

(x ( t ) 2 S 8 t 2 R

+ ). Let S � X be A -invariant; the restriction ofA to X = S is
written asA : X = S . X = S denotes thefactor space4 of S � X .

During the whole thesisS denotes a( C ; A ) -unobservability subspace5

(u.o.s.).
A system is calledstate-afÞnewhen it is linear in the states. Similar,input-

afÞnesystems are linear in the inputs.

For a more detailed description and explanation of the used geometric concepts
in this chapter the reader is referred to Wonham (1985), Nijmeijer and van der
Schaft (1990), and Isidori (1995).

2A map B : X ! Y is injective when:B v = B u ) v = u or equivalentlyK er B = 0 .
3A map C : X ! Y is surjective ifI mC = Y .
4For a detailed explanation of the termfactor spacethe reader is referred to Appendix A.5.
5For a detailed explanation of the termunobservability subspacethe reader is referred to Ap-

pendix A.2.
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3.2 Fundamental problem of residual generation

This section describes thefundamental problem of residual generation(FPRG)
for different classes of systems. It starts with describing the linear case for which
the FPRG was originally formulated by Massoumniaet al. (1989) and shows
how it has been extended for nonlinear systems that are either af�ne in the states
or af�ne in the inputs.

3.2.1 FPRG for linear systems

The �rst formulation of the FPRG was stated for �nite-dimensional, linear, time-
invariant (LTI) systems in Massoumniaet al.(1989) and is based on the FDI �lter
problem (FDIFP) which is a generalized version of the Beard Jones detection �l-
ter problem (BJDFP). The BJDFP considers linear time-invariant systems (LTI)
of the following form:

_x ( t ) = Ax ( t ) + B u ( t ) +

k

X

i =1

L

i

�

i

( t ) (3.1)

y ( t ) = C x ( t ) (3.2)

where x ( t ) 2 X � R

n describes the states,u ( t ) 2 U � R

m the known
control inputs, andy ( t ) 2 Y � R

l the measured (known) system outputs.
�

i

( t ) 2 M

i

� R

k

i with i 2 k describes the behaviour (concerning time and
magnitude) of thei

th fault and is denoted asfault signal. The fault signatures
are given by the maps (matrices)L

i

: M

i

! X (L

i

2 R

n � k

i ). They describe
in which way (direction) the fault affects the system. The size of the matricesA ,
B , andC is obvious from (3.1) and (3.2).

Knowledge about the fault signatureL

i

(fault modeling) is required for the con-
sidered model-based fault detection and isolation methods. The fault signal�

i

( t )

is an arbitrary and unknown signal which can represent several different fault be-
haviours. ChoosingL

i

to be equal to thei

th column of theB matrix gives for
example the possibility to model a fault in thei

th actuator. As�

i

( t ) is arbitrary
it could model a complete loss of the actuator (�

i

( t ) = � u

i

( t ) ) or just an offset
(�

i

( t ) = const: ). For more details about fault modeling the reader is referred to
Chapter 2 and Chen and Patton (1999). In e.g. Chen and Patton (1999) an extra
term (

P

k

i =1

R

i

f

i

( t ) ) is added to the output equation (3.2) to model sensor faults.
It is omitted here due to the fact that sensor faults can be included in a model like
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(3.1) and (3.2) by adding additional dynamics (additional fault signals and states
in (3.1)). A precise description of this fault modeling describing sensor faults by
pseudo-actuator faults can be found in Massoumnia (1986a) and Hashtrudi-Zad
and Massoumnia (1999).

Massoumnia (1986b) gives a geometric formulation of the BJDFP and neces-
sary and suf�cient conditions for its solution. It is the �rst geometric approach
to tackle fault detection and isolation (FDI). The details of the BJDFP can be
found in Beard (1971) and Jones (1973). It is based on a full-order Luenberger
observer and is one of the �rst observer-based FDI approaches. They propose a
systematic procedure to design an observer for the monitored system and tune its
observer gain in such a way that the prediction error (or innovation) can be used
for residual generation: In absence of faults, system disturbances, and modeling
errors the residual vector is designed to tend (be equal) to zero. Under presence
of a fault its length is supposed to grow signi�cantly different from zero (fault
detection). Furthermore, the gain is tuned in such a way that the direction of the
residual vector in the residual space (output space) can be used to identify the
fault (fault isolation). In that case the residual is also called a directional resid-
ual, see section 2.7 in Chen and Patton (1999). Obviously, when considering
multiple (simultaneous) faults, the dimension of the residual space determines
the maximal number of faults that can be isolated from each other. This is due to
the fact that the dimension of the residual space determines the maximal number
of independent directions. Otherwise the effects of two simultaneously occur-
ring faults might add up in a way, such, that the resulting residual vector points
in a direction, which is used to isolate a third fault, and vice-versa. More details
about the evaluation and design of residuals is given in Chapter 2.

This �rst approach of a FDI �lter led to the following general FDI �lter problem
formulation given in Massoumniaet al. (1989).

DeÞnition 3.1 (Fault detection and isolation Þlter problem (FDIFP)): Con-
sidering the system (3.1) and (3.2), the FDIFP is to design an LTI dynamic
residual generator that takes the known signalsu ( t ) and y ( t ) (observables of
the system) as inputs and generates a set of residual vectorsr

i

( t ) ; i 2 p , with
the following properties:

1. When no fault is present, all the residualsr

i

( t ) decay asymptotically to
zero. Hence, the net transmission fromu ( t ) to the residuals is zero, and
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the modes observable from the residuals are asymptotically stable.

2. In the j

th fault mode (i.e. when�

j

( t ) 6= 0 ; j 2 k ), the residualsr

i

( t )

for i 2 


j

are nonzero, and the other residualsr

�

( t ) for � 2 p � 


j

decay asymptotically to zero. Here the pre-speciÞed family of coding sets



j

� p ; j 2 k , is chosen such that, by knowing which of ther

i

( t ) are (or
decay to) zero and which are not, the fault�

j

can be uniquely identiÞed.

De�nition 3.1 uses the concept of coding sets


j

to identify the occurring faults.
A coding set contains a set of numbers that represents a speci�c subset of the dif-
ferent residualsr

i

( t ) ; i 2 p , i.e. 


j

� p ; j 2 k ; wherek denotes the number of
faults andp the number of residuals. If the complete set of residuals de�ned by
the coding set


j

is affected by an occurring fault it can be said that the occurring
fault is thej

th fault. The simplest coding set would bep = k and 


j

= f j g ;
in that case thej

th fault would only affect thej

th residual. More details can be
found in Massoumniaet al. (1989).

The fundamental problem of residual generation (FPRG) for LTI systems is a
restricted version of the FDIFP and was for the �rst time stated in Massoumnia
et al. (1989). It considers only two different faults and aims for a stable resid-
ual generator that generates a signal (residual) that is sensitive to one fault and
insensitive to the other. Considering more than two faults leads to the extended
fundamental problem of residual generation (EFPRG) which is also presented in
Massoumniaet al. (1989). It is based on generalizing the results for the FPRG
as shown later at the end of section 3.3.1.

In the following a de�nition of the FPRG is given for systems of the following
linear form (speci�c version of (3.1) and (3.2) withk = 2 ):

_x ( t ) = Ax ( t ) + B u ( t ) + L

1

�

1

( t ) + L

2

�

2

( t ) (3.3)

y ( t ) = C x ( t ) (3.4)

and a residual generator of the following general form:

_z ( t ) = F z ( t ) � E y ( t ) + Gu ( t ) (3.5)

r ( t ) = M z ( t ) � H y ( t ) + K u ( t ) (3.6)

wherez ( t ) 2 Z � R

q and r ( t ) 2 P � R

p . As shown in Massoumniaet al.
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(1989) the system and residual equations can be combined in the following way:
 

_x ( t )

_z ( t )

!

=

 

A 0

� E C F

!  

x ( t )

z ( t )

!

+

 

B L

2

G 0

!  

u ( t )

�

2

( t )

!

+

 

L

1

0

!

�

1

( t ) (3.7)

r ( t ) =

�

� H C M

�

 

x ( t )

z ( t )

!

+

�

K 0

�

 

u ( t )

�

2

( t )

!

(3.8)

The system (3.7) and (3.8) can also be written in the following obvious way:

_x

e

( t ) = A

e

x

e

( t ) + B

e

u

e

( t ) + L

e

�

1

( t ) (3.9)

r ( t ) = H

e

x

e

( t ) + K

e

u

e

( t ) (3.10)

wherex

e

( t ) 2 X

e

= X � Z andu

e

( t ) 2 U

e

= U � M

2

.

DeÞnition 3.2 (Massoumniaet al. (1989))(Fundamental problem of residual
generation (FPRG)): Considering the system (3.3) and (3.4), the linear FPRG
is to design an LTI dynamic residual generator by Þnding the appropriate matri-
ces in (3.5) and (3.6) such that the following constrains are satisÞed for system
(3.9) and (3.10):

( i ) r is unaffected6 by u

e

( ii ) The map from�

1

to r is input observable7

and that the observable modes of the pair( H

e

; A

e

) be asymptotically stable,
so that the contribution tor ( t ) of initial conditions in (3.9) and (3.10) dies out
asymptotically .

While Condition( i ) assures that the residual will not be affected by the control
input u ( t ) and the other fault�

2

( t ) , Condition( ii ) assures that a fault�

1

( t ) can
beseen(detected) in the residual. Without Condition( ii ) it might happen that the
fault might only affect states of the residual generator (3.5) that do not affect the
residual (3.6). A detailed discussion about this condition is given in Massoumnia
et al. (1989).

6For a de�nition ofunaffectedsee Appendix A.1.
7For a de�nition of input observabilitysee Appendix A.6.
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Remark 3.3 Even if not stated explicitly, solving the FPRG handles in prin-
cipal several different aspects of ef�cient FDI. Condition( i ) assures that nei-
ther the input nor the second fault�

2

affect the residual, hence, it preventsfalse
alarmsand helps to isolate fault�

1

from fault �

2

. As the second fault�

2

could
also represent a disturbance Condition( i ) also handles the problem ofrobustness
against disturbances. The problem ofmissed alarmsis handled by Condition( ii )

which assures that the fault�

1

will have an effect on the residual. Stability of
the residual generator is considered in the additional comment in De�nition 3.2.
Section 3.2.3 addresses these aspects more explicit for the nonlinear systems that
are af�ne in the inputs, faults, and disturbances.

As mentioned in Remark 3.3 the fundamental problem of residual generation
(FPRG) as it is de�ned in De�nition 3.2 incorporates the basic idea to handle all
important aspects of successful FDI. Therefore, it has recently been extended in
the literature to nonlinear systems. These extended versions are presented in the
next two sections.

3.2.2 FPRG for state-afÞne nonlinear systems

The previous chapter presented a de�nition of the linear FPRG. In this section a
generalization of the linear FPRG to the class of state-af�ne systems up to output
injection (Hammouriet al. (1998)) is described. Next to Kinnaertet al. (1995),
Yu and Shields (1994) and Kinnaert (1999) it is one of the �rst approaches con-
sidering an extension of the FPRG to a special class of nonlinear systems. It
gives a de�nition of the problem and a suf�cient condition for a solution to exist.
The condition and a solution for the problem using a Kalman-like observer will
be presented in section 3.3.2.

The approach considers systems of the following kind (the time dependence is
omitted for a better readability):

_x = A ( u ) x +  ( u; y ) + L

1

( x ) �

1

+ L

2

( x ) �

2

(3.11)

y = C x (3.12)

and a smooth residual generator system of the form:

_z = f

r

( z ; u; y ) (3.13)

r = h

r

( z ; u; y ) (3.14)
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where x ( t ) 2 X � R

n , u ( t ) = ( u

1

( t ) ; : : : ; u

m

( t )) 2 U an open subset of
R

m , �

i

2 R ; i = 1 ; 2 , and y ( t ) 2 Y � R

l . A ( u ) is a n � n matrix which
is analytic with respect tou .  ( u; y ) and L

i

( x ) ; i = 1 ; 2 are analytic vector
�elds. z ( t ) 2 R

q and r ( t ) 2 R

p . f

r

and h

r

are of classC

1 . Obviously,
r ( t ) = r ( x (0) ; z (0) ; u; �

1

; �

2

; t ) .

In Hammouriet al. (1998) the following de�nition of the FPRG for the above
presented class of systems (3.11) and (3.12) is given:

DeÞnition 3.4 (Fundamental problem of residual generation (FPRG) for
state afÞne systems up to output injection): System (3.13) and (3.14) is a
residual generator for the detection and isolation of the fault�

1

in system (3.11)
and (3.12) if there existsU , a set of admissible controls deÞned onR

+ , such that:

( i ) For �

1

= 0 , 8 u 2 U ; 8 x (0) 2 R

n , 8 z (0) 2 R

q ; 8 �

2

2 L

1

l oc

(the space of
locally bounded measurable functions):
r ( x (0) ; z (0) ; u; 0 ; �

2

; t ) ! 0 as t ! + 1

( ii ) For �

2

= 0 , 8 u 2 U ; 8 z (0) 2 R

q , 9 x (0) 2 R

n ; 9 t � 0 ; 9 �

1

, �

1

2 L

1

l oc

such thatr ( x (0) ; z (0) ; u; �

1

; 0 ; t ) 6= r ( x (0) ; z (0) ; u; �

1

; 0 ; t ) :

Comparing De�nition 3.2 with De�nition 3.4 shows that both include the same
requirements for the residual generator. The residual signal has to be insensitive
to the second fault�

2

( t ) , sensitive to the �rst fault�
1

( t ) , and have stable dynam-
ics for each initial condition. The different formulations result from the fact that
they handle different classes of systems.

3.2.3 FPRG for input-afÞne nonlinear systems

In the last two years different de�nitions of the FPRG for nonlinear systems that
are af�ne in the inputs, faults, and disturbances were given (see e.g. Hammouri
et al. (1999), DePersis and Isidori (1999), or Åströmet al. (2000)[chapter 10]).
This section presents the de�nition given in DePersis (1999). It does not only
treat the basic idea of the linear FPRG (Section 3.2.1) and expands it to non-
linear systems, but it also includes the EFPRG (Massoumniaet al. (1989)) and
robustness against disturbance (see e.g. Chen and Patton (1999)). As stated in
Remark 3.3 the classical FPRG contains the basic idea of how to handle other
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faults and thereby also disturbances, but it was not stated explicitly as it is done
in the following de�nition for the following class of systems:

_x = f ( x ) +

m

X

i =1

g

i

( x ) u

i

+ l ( x ) � +

s

X

i =1

p

i

( x ) w

i

(3.15)

y

j

= h

j

( x ) ; j 2 l (3.16)

in which the statesx are de�ned on a neighborhoodN of the origin in R

n . u

i

,
i 2 m , denotes the inputs andy

j

, j 2 l , the outputs.� 2 R is a scalar fault signal
with the nonlinear fault signaturel ( x ) . f ( x ) , g

i

( x ) ; i 2 m , l ( x ) , andp

i

( x ) ; i 2 s

are smooth vector �elds andh

j

( x ) ; j 2 l are smooth functions. Furthermore, let
f (0) = 0 and h (0) = 0 . w = [ w

1

w

2

: : : w

s

]

T

2 R

s describes all the distur-
bances and other fault signals that should not affect the residual. Hence, the
following nonlinear version of the FPRG is able to handle the problems of fault
isolation, robustness against disturbances, false alarms and missed detection as
mentioned in Remark 3.3.

For the given class of systems the following de�nition of the local nonlinear
FPRG (DePersis (1999)) can be given:

DeÞnition 3.5 (Local nonlinear fundamental problem of residual generation
(l-NLFPRG)): Considering the system of the form (3.15) and (3.16) the l-
NLFPRG is to Þnd, if possible, a Þlter

_z =

~

f ( y ; z ) +

m

X

i =1

~g

i

( y ; z ) u

i

(3.17)

r =

~

h ( y ; z ) (3.18)

where z 2 R

q , r 2 R

p , 1 � p � l . ~

f ( y ; z ) , ~g

i

( y ; z ) ; i 2 m , and ~

h ( y ; z )

are smooth vector Þelds, with~

f (0 ; 0) = 0 and ~

h (0 ; 0) = 0 , such that, when
considering the cascaded system (with obvious meaning of the symbols, similar
to (3.9) and (3.10))

_x

e

= f

e

( x

e

) +

m

X

i =1

g

e

i

( x

e

) u

i

+ l

e

( x

e

) � +

s

X

i =1

p

e

i

( x

e

) w

i

(3.19)

r = h

e

( x

e

) (3.20)

deÞned onN

e , a neighborhood ofx

e

= ( x; z ) = (0 ; 0) , the following properties
hold:
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( i ) if � = 0 , thenr is unaffected8 by u

i

, w

j

, 8 i; j ;

( ii ) r is affected9 by � ;

( iii ) lim

t !1

k r ( t ; x

0

; z

0

; u

1

; : : : ; u

m

; � = 0 ; w

1

; : : : ; w

s

) k = 0 for any initial
condition x

0 , z

0 in a suitable set containing the origin( x; z ) = (0 ; 0) ,
and any set of admissible inputs (note that the convergence to zero of the
residual is required in absence of the fault (� = 0 )).

For linear systems (3.1) and (3.2) this de�nition of the l-NLFPRG reduces ex-
actly to De�nition 3.2. In De�nition 3.5 Condition( i ) assures robustness, i.e.
that the control signalsu

i

and the disturbances (and other faults)w

i

do not affect
the residual in the fault-free case (� = 0 ) and, therefore, cannot generate false
alarms. For robustness against model uncertainty it has to be possible to model
the uncertainties as additional disturbancesw

i

. For more details about robust-
ness against model uncertainty see the review in Chen and Patton (1999).

In the case that� 6= 0 the inputs and disturbances may affect the residual, be-
cause Condition( ii ) assures that they cannot vanish the effect of the fault� on
the residual and, hence, cannot cause missed alarms. Obviously, solving the
l-NLFPRG means �nding a residual generator which is robust against distur-
bances. Condition( iii ) assures its stability.

8For a de�nition ofunaffectedsee Appendix A.1.
9For a de�nition ofaffectedsee Appendix A.1.
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3.3 Solving the FPRG

Different geometric solutions exist for the above described residual generation
problems. They are all based on the geometric concept of using unobservability
subspaces (originally introduced as complementary observability subspaces by
Willems and Commault (1981)) that was �rst presented for linear systems in
Massoumnia (1986b) and Massoumniaet al. (1989). Hence, this approach is
described in detail in the next section and followed by its extended versions for
the different classes of nonlinear systems. Each section presents conditions for
a solution to exist. Additionally, different designs to solve the corresponding
version of the FPRG are presented.

3.3.1 Solution for linear systems

The fundamental problem of residual generation (FPRG) as formulated in Def-
inition 3.2 can be solved by the method presented in Massoumniaet al. (1989).
It uses the geometric concept of an unobservability subspace to derive a solution
and suf�cient and necessary conditions for its existence. The idea has been de-
rived from the results presented in Massoumnia (1986b) and White and Speyer
(1987) which have been inspired by the work in Beard (1971) and Jones (1973);
e.g. Massoumnia (1986b) gives an original geometric approach to handle a gen-
eralized version of the Beard Jones detection �lter problem (BJDFP). It uses a
full-order observer which, however, limits signi�cantly the classes of problems
that have solutions - because the set of possible failure modes (�

i

, i 2 k ) must
satisfy a strong mutual detectability condition (Massoumnia (1986b)) - but it
also makes the FDI problem and the design process appear more complicated
than necessary (Massoumniaet al. (1989)).

In the following an approach taken from Massoumniaet al. (1989) is presented
that does not have these structural constrains. It uses a more general, �nite-
dimensional, causal, LTI system as residual generator (see (3.5) and (3.6)) to
solve the FPRG. Hence, necessary and suf�cient conditions can be obtained for
a wider class of systems than in (Massoumnia (1986b)).

As a starting point the cascaded system (3.9) and (3.10) as given in Section 3.2.1
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is considered:

_x

e

( t ) = A

e

x

e

( t ) + B

e

u

e

( t ) + L

e

�

1

( t ) (3.21)

r ( t ) = H

e

x ( t ) + K

e

u

e

( t ) (3.22)

It can be seen directly that in order to assure that the residualr ( t ) is not sen-
sitive to the input signalu ( t ) and the second fault�

2

( t ) it has to be insensitive
concerning the new constructed inputu

e

( t ) (see also Condition (i ) in De�nition
3.2). This leads to the following conditions:

K

e

= 0 (3.23)

and h A

e

jB

e

i � S

e

:= h K er H

e

j A

e

i (3.24)

where condition (3.23) assures that inputu

e

( t ) has no direct effect on the resid-
ual. The subspaceS

e denotes the unobservability subspace of the cascaded sys-
tem, i.e. all statesx e

2 S

e cannot be observed from the residual. It is de�ned by
S

e

:= h K er H

e

j A

e

i = K er H

e

\ A

e

� 1

K er H

e

\ � � � \ A

e

� n +1

K er H

e where
A

e

� k

K er H

e

= f x : A

e

k

x 2 K er H

e

g . h K er H

e

j A

e

i is also called the maxi-
mal A

e -invariant subspace contained inK er H

e , i.e. the unobservable subspace
of ( H

e

; A

e

) . h A

e

jB

e

i = B

e

+ A

e

B

e

+ � � � + A

e

n � 1

B

e describes the reachable
subspace that is reachable by the inputu

e

( t ) in the state equation (3.21). Hence,
Condition (3.24) assures that the inputu

e

( t ) does not affect the residual indi-
rectly via the states’ dynamics.h A

e

jB

e

i is also called the in�malA e -invariant
subspace containingB

e , i.e. the reachable subspace of( A

e

; B

e

) . To ful�ll Con-
dition (ii ) in De�nition 3.2 it is clear that the following condition has to be ful-
�lled to assure that all states affected by the fault�

1

are observable from the
residual:

L

e is injective and L

e

\ S

e

= 0 ; where L

e

= I mL

e (3.25)

In Massoumniaet al. (1989) it is shown that the conditions (3.23)-(3.25) lead to
the following conditions for the original system (3.3) and (3.4):

S 2 S ( L

2

) ; (3.26)

L

1

is injective and L

1

\ S = 0 (3.27)

whereS is a ( C ; A ) -unobservable subspace10 (u.o.s.) andS ( L

2

) is a family of
( C ; A ) -u.o.s.es containing the range ofL

2

denoted byL

2

. Obviously, conditions
(3.26) and (3.27) hold only if the following condition is ful�lled:

10For its calculation see Appendix A.2.
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S

�

\ L

1

= 0 (3.28)

where S

�

= inf S ( L

2

) . Condition (3.28) can be proven to be also suf�cient
(Massoumniaet al. (1989)), which leads to the following theorem:

Theorem 3.6 The linear fundamental problem of residual generation (FPRG),
DeÞnition 3.2, has a solution if and only if:

S

�

\ L

1

= 0 : (3.29)

The proof of the suf�ciency of Condition (3.29) in Massoumniaet al. (1989) de-
scribes a design procedure for the6 matrices (design parameters) of the residual
generator (3.5) and (3.6) and, hence, to a solution. It is based on the following
steps11 (where the dimension of the residual generator (observer) is given by
q = n � d ( S

�

) ):

(1) Find a n � l matrix D

0

such thatD

0

2 D ( S

�

) , i.e. such that( A +

D

0

C ) S

�

� S

� .

(2) Find a canonical projectionP : X ! X = S

� , i.e. a q � n matrix that
projects the statesx into a q -dimensional subspace that is not affected by
the second fault�

2

.

(3) Calculate theq � q matrix A

0

= ( A + D

0

C : X = S

� ), such that
A

0

: X = S

�

! X = S

� andA

0

P = P ( A + D

0

C ) .

(4) Let thep � l matrix H be a solution ofK er H C = S

�

+ K er C .

(5) Let thep � q matrix M be the unique solution of:M P = H C .

(6) Then by construction, the pair( M ; A

0

) is observable, so there exists a
q � p matrix D

1

, such that� ( F ) = � , whereF = A

0

+ D

1

M and� is an
arbitrary self-conjugate set. This gives the freedom to shape the behaviour
of the residual and to assure the stability of the residual generator (3.5)
and (3.6).

11The reader unfamiliar with the notation or terms is referred to Appendix A.2.
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After following this procedure and denoting the right inverse ofP by P

� r , the
missing matrices,E , G , and K (for F , H , and M see above) of the residual
generator (3.5) and (3.6) can be calculated as follows:

D = D

0

+ P

� r

D

1

H E = P D G = P B K = 0 :

When de�ninge ( t ) = z ( t ) � P x ( t ) the error dynamics of the residual generator
that solves the linear FPRG can be derived:

_e ( t ) = F e ( t ) � P L

1

�

1

( t ) (3.30)

r ( t ) = M z ( t ) � H y ( t ) = M e ( t ) : (3.31)

The dimension of the residual generator (observer) is given byq = n � d ( S

�

) , i.e.
it is not a full-order observer (q < n ) as used in the original work by Massoumnia
(1986b).

Remark 3.7 (Massoumniaet al. (1989)) Obviously, as there might be other
unobservability subspacesS � S

� that satisfyS \ L

1

= 0 the dimension of
the residual generator could be further reduced. But as there does not exist a
systematic way to obtain such an u.o.s. as it does for the inÞmal u.o.s.S

� a
residual generator having a lower dimension is difÞcult to design. As there ex-
ists a systematic way12 to calculate the inÞmal u.o.s.S

� the Condition (3.29) can
be checked straightforward. If it is fulÞlled the design of the residual generation
can be achieved by following the above given procedure.

In Massoumniaet al. (1989) thegenericsolvability13 of the FPRG is mentioned
for the arbitrary system matricesA , C , L

1

, and L

2

with the respective dimen-
sionsn � n , l � n , n � k

1

, andn � k

2

. It says that the FPRG generically has a
solution if and only ifk

1

+ k

2

� n andk

2

< l . For the proof the reader is referred
to Massoumnia (1986a). Further information concerning the generic solvability
of the linear FPRG is given in Hashtrudi-Zad and Massoumnia (1999), where
also the concept of generic solvability is described in a clear and understandable
way.

The linear FPRG is a reduced version of the FDIFP. This can be seen fork = 2

12For the algorithm see Appendix A.2.
13A problem whose solvability depends on a set of parameters is said to begenerically solvable

if it is solvable for almost every set of the parameter values (Hashtrudi-Zad and Massoumnia
(1999)).
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in De�nition 3.1. An extensionof the above solved FPRG, hence, also referred
to as EFPRG, is brie�y considered in the following. The EFPRG is equal to the
FDIFP when for the later only the coding sets


i

= f i g ; i 2 k are considered.
Obviously, the EFPRG gives the possibility to handle several faults, and there-
fore, also disturbances when they are treated as additional faults. Furthermore,
it can detect and isolate simultaneous faults from each other. By following the
same geometric idea as for the FPRG Massoumniaet al. (1989) give the follow-
ing result for the EFPRG:

Theorem 3.8 The extension of the linear fundamental problem of residual gen-
eration (EFPRG) has a solution if and only if:

S

�

i

\ L

i

= 0 ; i 2 k where S

�

i

:= inf S (

X

j 6= i

L

i

) (3.32)

where S

�

i

denotes the smallest unobservability subspace that includes all fault
effectsL

j

from the faults�

j

; j 6= i .

A family of fault signatures satisfying the condition (3.32) is called astrongly
identiÞablefamily. Hence, Theorem 3.8 is equivalent to the statement that the
extension of the linear fundamental problem of residual generation (EFPRG) has
a solution if and only if the family of handled fault events is strongly identi�able.
For the generic solvability of the EFPRG the reader is referred to Hashtrudi-Zad
and Massoumnia (1999).

This section presented the basic geometric concept of using unobservability sub-
spaces to solve the linear FPRG and its extension, the EFPRG. Necessary and
suf�cient conditions for a solution to exist were given as well as a design proce-
dure for a LTI residual generator. The following sections show how this result by
Massoumniaet al. (1989) has been generalized for different classes of nonlinear
systems.

3.3.2 Solution for state-afÞne nonlinear systems

A solution for the FPRG for state af�ne systems up to output injection (described
by De�nition 3.4 in section 3.2.2) is given in this section. It is taken from Ham-
mouri et al. (1998) and provides a suf�cient condition for its existence. The
proposed residual generator has the structure of a Kalman-like observer which
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is applicable to the class of state af�ne systems. The considered systems (3.11)
and (3.12):

_x = A ( u ) x +  ( u; y ) + L

1

( x ) �

1

+ L

2

( x ) �

2

; y = C x (3.33)

obviously, also include linear and bilinear systems.

Applying a linear output transformation (constant matrixH , H : Y ! Y ) and a
n � l analytical matrixD ( u ) the system (3.33) can be rewritten as:

_x = ( A ( u ) + D ( u ) C ) x � D ( u ) y

| {z }

=0

+  ( u; y ) + L

1

( x ) �

1

+ L

2

( x ) �

2

; (3.34)

y = H C x (3.35)

The idea of the solution presented in Hammouriet al. (1998) is to chooseD ( u )

andH such that the unobservability subspace�( H ) = K er d O ( H C ) of the sys-
tem (3.34) and (3.35) includes the range ofL

2

( x ) but not the range ofL

1

( x ) .
For more details about the unobservability subspace�( H ) and the observability
subspaced O ( H C ) the reader is referred to Appendix A.7. Obviously, the basic
idea behind this approach is the same as in the previous section and, hence, as
in Massoumniaet al. (1989). It is based on hiding the unwanted fault effects
on the states of the residual generator in an unobservability space. However, as
pointed out in Hammouriet al.(1998) there does not exist a constructive method
to determineH andD ( u ) for a given system.

As can be seen from equation (3.34) the termD ( u ) does not in�uence the dy-
namics of the system asD ( u ) C ) x � D ( u ) y = 0 . It is used like the output mixing
mapH to ease the observer design as can be seen in the following.

In Hammouriet al. (1998) the following theorem is given for the considered
class of systems.

Theorem 3.9 The FPRG for state afÞne systems up to output injection de-
scribed by DeÞnition 3.4 has a solution if there exist matricesH and D ( u ) such
that:

( i ) L

1

( x ) =2 �( H ) ( ii ) L

2

( x ) 2 �( H )
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Denoting �( H )( L

2

( x )) as the unobservability space containing the range of
L

2

( x ) the Conditions (i ) and (ii ) of Theorem 3.9 can be stated as one:L

1

( x ) \

�( H )( L

2

( x )) = 0 . So, Theorem 3.9 looks similar to Theorem 3.6. The only
difference lies in the fact that�( H )( L

2

( x )) is not the in�mal unobservability
subspace containingL

2

( x ) and that the conditions in Theorem 3.9 are only suf-
�cient.

The interesting question is if:

L

1

( x ) \ �( H )

�

= 0 (3.36)

where�( H )

�

= inf �( H )( L

2

( x )) , is a necessary and suf�cient condition for
a solution of the FPRG for state af�ne systems up to output injection. From a
logical point of view it should, because ifL

1

( x ) \ �( H )

�

= 0 is not ful�lled
it means that there are effects coming from fault�

1

that are hidden in�( H )

� .
Decreasing�( H )

� to make sure that all effects from�
1

can be observed would
also allow effects from fault�

2

to enter the observable subspace.

In Kinnaert (2001) it was pointed out that the conditions of Theorem 3.9 should
be written more correctly as:

( i ) There existsx such thatL

1

( x ) =2 �( H )

( ii ) L

2

( x ) 2 �( H ) 8 x

As a consequence, the conditions cannot be stated as one using an intersection
operator as done above.

If a pair D ( u ) and H can be found such that the conditions of Theorem 3.9 are
ful�lled the considered FPRG is solvable. As a consequence a linear change
of coordinates exists, i.e. a constant invertible matrixP , such that� = P x ,
where� = ( �

1

; : : : ; �

n

) , �

1

= ( �

1

; : : : ; �

k

) , and�

2

= ( �

k +1

; : : : ; �

n

) ) such that
�

1 spans thek -dimensional observability subspaced O ( H C ) and �

2 spans the
( n � k ) -dimensional unobservability subspace�( H ) .

Applying this coordinate change to system (3.34) and (3.35) leads to the follow-
ing system asL

2

( x ) 2 �( H ) for the chosenD ( u ) andH :

_

�

1

= ( A ( u ) + D ( u ) C )

1

�

1

� D

1

( u ) y +  

1

( u; y ) + L

11

( � ) �

1

(3.37)
_

�

2

= ( A ( u ) + D ( u ) C )

2

� � D

2

( u ) y +  

2

( u; y ) + L

12

( � ) �

1

+ L

22

( � ) �

2

y = H C �

1 (3.38)
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where the new terms are de�ned in the following way:

P ( A ( u ) + D ( u ) C ) P

� 1

=

 

[( A ( u ) + D ( u ) C )

1

0]

( A ( u ) + D ( u ) C )

2

!

;

P D ( u ) =

 

D

1

( u )

D

2

( u )

!

; P  ( u; y ) =

 

 

1

( u; y )

 

2

( u; y )

!

;

P L

1

( P

� 1

� ) =

 

L

11

( � )

L

12

( � )

!

P L

2

( P

� 1

� ) =

 

0

L

22

( � )

!

;

and H C P

� 1

= ( H C 0) :

When using the following notation

A ( u ) = ( A ( u ) + D ( u ) C )

1

and ' ( u; y ) = � D

1

( u ) y +  

1

( u; y )

for abbreviation, the system (3.37) and (3.38) can be written as:

_

�

1

= A ( u ) �

1

� ' ( u; y ) + L

11

( � ) �

1

and y = H C �

1

: (3.39)

Designing an observer for the obtained system (3.39) considering�

1

= 0 leads
to a solution for the considered FPRG. Its estimation error (innovation) can be
used as residual.

In Hammouriet al. (1998) the following observer structure is used:

_

^

�

1

= A ( u )

^

�

1

+ ' ( u; y ) + S

� 1

H C

T

( y � H C

^

�

1

) (3.40)

_

S = � � S � A ( u )

T

S � S A ( u ) + H C

T

H C ; S (0) > 0 (3.41)

r = y � H C

^

�

1

= H C �

1

� H C

^

�

1 (3.42)

Hammouriet al. (1998) call this observer a Kalman-like observer. It does not
have a constant gain, but a time varying gain described by (3.41). Some of the
important requirements to apply this observer structure are that the system has
to be observable (ful�lled for (3.40) by de�nition of�

1

) and its inputs have to be
regularly persistent exciting or equivalently be universal14 (for more details see
Hammouriet al. (1998)).

14For a de�nition of universal inputs see Appendix A.7
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De�ning � := �

1

�

^

�

1 the estimation error dynamics take the following form:

_� = A ( u ) � � S

� 1

H C

T

H C � + L

11

( � ) �

1

(3.43)

_

S = � � S � A ( u )

T

S � S A ( u ) + H C

T

H C ; S (0) > 0 (3.44)

r = H C � (3.45)

For details about the observer design the reader is referred to Section3 in Ham-
mouri et al. (1998). The proof that the Conditions( i ) and ( ii ) of Theorem 3.9
are suf�cient to solve the FPRG de�ned by De�nition 3.4 can be found there as
well.

However, the presented solution is not complete, as there does not exist a design
procedure for the observer as given for the linear problem in the previous sec-
tion. This is due to the fact that there does not exist a constructive method to
determineH and D ( u ) for a given system. Nevertheless, it demonstrates how
the geometric concept of using unobservability subspaces can be applied to state
af�ne systems up to output injection as well. In Hammouriet al. (1998) two dif-
ferent applications are described to illustrate successfully that, in speci�c cases,
the design of the residual generator essentially boils down to the computation of
a speci�c unobservability subspace of the considered system.

3.3.3 Solution for input-afÞne nonlinear systems

The local nonlinear fundamental problem of residual generation (l-NLFPRG)
as stated in De�nition 3.5 is of particular interest. From all versions of the
FPRG it considers the largest class of systems - the input-af�ne nonlinear sys-
tems. Hence, a lot of research is carried out to solve it. Some results have been
published recently or are submitted, see e.g. Hammouriet al. (1999), DePersis
and Isidori (1999), DePersis (1999), Åströmet al. (2000)[chapter 10]), DePersis
and Isidori (2000), and the references therein. This section presents the ideas
developed by DePersis and Isidori of how to handle the l-NLFPRG. It considers
the following class of systems, (3.15) and (3.16):

_x = f ( x ) +

m

X

i =1

g

i

( x ) u

i

+ l ( x ) � +

s

X

i =1

p

i

( x ) w

i

(3.46)

y

j

= h

j

( x ) ; j 2 l (3.47)

As the set of disturbancesw

i

can be extended in order to include also other faults
than the considered one (� ) solving the l-NLFPRG leads also to a solution for
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the local nonlinear EFPRG.

Similar to the solutions presented above DePersis and Isidori consider the geo-
metric approach based on the observation space of the cascaded system (3.19)
and (3.20), denoted byO

e . O

e is de�ned as the linear space (overR ) of func-
tions on X

e containing all repeated Lie derivatives15
L

X

1

L

X

2

� � � L

X

k

h

e

j

; j 2

l ; k = 1 ; 2 ; : : : with X

i

; i 2 k in the setf f

e

; g

e

1

; : : : ; g

e

m

; p

e

1

; : : : ; p

e

s

g (De�nition
3.29 in Nijmeijer and van der Schaft (1990)). The observation spaceO

e de�nes
the observability codistributiond O

e by setting:

d O

e

( x

e

) = spanf dH ( x

e

) ; H 2 O

e

g ; x

e

2 X

e (3.48)

wheredH is the standard differential map:dH ( x

e

) = (

@ H

@ x

1

; : : : ;

@ H

@ x

( n + q )

) .

Similar to the unobservability subspace for linear systems (introduced in Mas-
soumnia (1986b)) the annihilator of the observability codistributiond O

e can be
seen as the unobservability distribution (d O

e

)

? of the system (3.19) and (3.20).
As a consequence the Conditions( i ) and ( ii ) of De�nition 3.5 can be equally
stated as shown in DePersis (1999) and DePersis and Isidori (2000) as:

spanf g

e

; p

e

g � ( d O

e

)

? and l

e

=2 ( d O

e

)

? (3.49)

If x

e

= ( x; z ) = (0 ; 0) is a regular16 point of d O

e , thend O

e can be described
by the smallest codistribution which is invariant underf f

e

; g

e

; p

e

g and contains
spanf dh

e

g . The latter is denoted byQ

e , hence, in a neighborhood of a regular
point x

e

= (0 ; 0) the following holds:d O

e

= Q

e . Therefore, condition (3.49)
can be stated (according to Theorem 2 in DePersis (1999)) for regular points as:

spanf g

e

; p

e

g � ( Q

e

)

? and l

e

=2 ( Q

e

)

? (3.50)

According to DePersis (1999) it is more convenient to focus on the condition
(3.50) when designing a residual generator. Hence the following regular version
of the l-NLFPRG is stated in DePersis (1999) and Åströmet al. (2000)[chapter
10] and will be handled in the following.

15See Appendix A.7 for its de�nition.
16See Appendix A.8 for its de�nition.
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DeÞnition 3.10 (Regular local nonlinear fundamental problem of residual
generation (rl-NLFPRG): Find, if possible, a Þlter

_z =

~

f ( y ; z ) +

m

X

i =1

~g

i

( y ; z ) u

i

(3.51)

r =

~

h ( y ; z ) (3.52)

such that requirement (3.50) and Condition( iii ) of DeÞnition 3.5 are fulÞlled.

For the linear case it is straightforward to show that this formulation of the rl-
NLFPRG boils down to the original linear FPRG presented in Massoumniaet al.
(1989), see e.g. Åströmet al. (2000)[chapter 10].

The idea behind the following solution for the rl-NLFPRG is the same as for the
problems stated above. The goal is to determine an unobservability distribution
and an appropriate coordinate transformation, such that an observer for a sub-
system of the transformed system performs as a desired residual generator.

In the following only the main result is summarized. For more details the reader
is referred to the different publications by DePersis and Isidori.

Theorem 3.11 (Åströmet al. (2000)[chapter 10]):Let Q be an involutive con-
ditioned invariant distribution such that

spanf p g � Q � K er d (  � h ) and l =2 Q:

for some surjection : R

q

! R

~q , deÞned locally aroundy = 0 and with
 (0) = 0 . Then, there exists a change of state coordinates~x = �( x ) and a
change of output coordinates~y = 	( y ) , deÞned locally aroundx = 0 and,
respectively,y = 0 , such that, in the new coordinates, the system (3.46) and
(3.47) admits the normal form:

_

~x

1

=

~

f

1

( ~ x

1

; ~y

2

) + ~ g

1

( ~ x

1

; ~y

2

) u +

~

l

1

( ~ x

1

; ~x

2

) �

1

(3.53)
_

~x

2

=

~

f

2

( ~ x

1

; ~x

2

) + ~ g

2

( ~ x

1

; ~x

2

) u + ~ p

2

( ~ x

1

; ~x

2

) w +

~

l

2

( ~ x

1

; ~x

2

) �

2

(3.54)

~y

1

=

~

h

1

( ~ x

1

) (3.55)

~y

2

=

~

h

2

( ~ x

1

; ~x

2

) (3.56)

with ~x

1

2 R

� , � := codim( Q ) and~

l

1

( ~ x

1

; ~x

2

) 6= 0 locally around�(0) .
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After transforming the system (3.46) and (3.47) successfully into a normal form
(3.53) - (3.56) the next task to solve the rl-NLFPRG is to analyze the observabil-
ity of the subsystem:

_

~x

1

=

~

f

1

( ~ x

1

; ~y

2

) + ~ g

1

( ~ x

1

; ~y

2

) u and ~y

1

=

~

h

1

( ~ x

1

) (3.57)

Depending on how the conditioned invariant distributionQ is generated the ob-
servability can be guaranteed (see Åströmet al. (2000)[chapter 10]). The �nal
step is then to design an observer for the subsystem (3.57) if possible that will
lead to a residual generator (3.51) and (3.52). The stability requirement for this
residual generator can take different forms in order to ful�ll condition( iii ) of
De�nition 3.5. Its formulation depends speci�cally on the chosen observer struc-
ture and, therefore, on the considered system.

Theorem 3.11 describes the conditions under which a solution for the regular lo-
cal nonlinear FPRG exists. However, there does not exist a constructive method
to determine how to obtain the necessary diffeomorphism (change of coordi-
nates). A constructive methodology to calculate the involutive conditioned in-
variant distributionQ is given in the following.

3.3.3.1 Calculation of the involutive conditioned invariant unobservability
distribution Q

The �rst step to check whether a speci�c FPRG is solvable or not it is to com-
pute an involutive conditioned invariant distribution17

Q (see Theorem 3.11) that
contains the unwanted disturbance and fault effects. If this distributionQ does
not contain the considered fault effect (the one to be detected and isolated) a
geometric solution might exist. The next step is then to �nd an appropriate coor-
dinate transformation and to check the observability of the obtained subsystem.
The �nal step is to design an observer (residual generator) that solves the FPRG.
In DePersis and Isidori (2000) it is shown how to calculate the involutive condi-
tioned invariant distributionQ (unobservability distribution) for a system of the
following form:

_x = f ( x ) +

m

X

i =0

g

i

( x ) u

i

y = h ( x ) (3.58)

17A distribution � is said to beconditioned invariantfor a system (3.58) if it satis�es
[ f ; � \ K er f dh g ] � � and[ g

i

; � \ K er f dh g ] � � .
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where x 2 X an open subset ofR

n , u

i

2 R , i = 1 ; : : : ; m , and y 2 R

p .
f ( x ) (also denoted asg

0

( x ) ) andg

1

( x ) ; : : : ; g

m

( x ) are smooth vector �elds and
h ( x ) is a smooth map. The calculation is based on the following two algorithms
(introduced in DePersis and Isidori (2000)):

Computing the involutive conditioned invariant distribution �

P

�

: This al-
gorithm is the nonlinear version of the recursive( C ; A ) -invariant subspace algo-
rithm (CAISA), see (A.1) in Appendix A.2. It starts with the distribution

P = span f p

1

; p

2

; : : : ; p

s

g

wherep

i

, i = 1 ; : : : ; s , are additional smooth vector �elds; in this thesis they
represent the column vectors of the disturbance distribution matrixp ( x ) in order
to obtain FDI. Then the following non-decreasing sequence of distributions is
considered:

S

0

= P (3.59)

S

k +1

= S

k

+

m

X

i =0

[ g

i

; S

k

\ K er f dh g ] (3.60)

where� denotes the involutive closure of a distribution� . For every constant
distribution � it holds that � = � . g

0

: : : g

m

stand for the column vectors
of g ( x ) and for f ( x ) , which is written asf ( x ) = g

0

( x ) to ease the notation.
K er f dh g denotes the distribution annihilating the differentials of the rows of
the mappingh ( x ) .

Finally, k

� is de�ned as the �nite number for which:

S

k

�

+1

= S

k

� (3.61)

S

k

� is also denoted as�

P

�

. Then�

P

�

is involutive, containsP and is conditioned
invariant. Moreover, any other distribution� which is involutive, containsP ,
and is conditioned invariant satis�es� � �

P

�

.

Suppose that�

P

�

is well-de�ned (i.e. equation (3.61) holds for somek

� ) and non-
singular, so that its annihilator(�

P

�

)

? is locally spanned by exact differentials
(because�

P

�

is by construction involutive). Suppose also that�

P

�

\ K er f dh g is
a smooth distribution. Then it can be asserted that(�

P

�

)

? is the maximal (in the
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sense of codistribution inclusion) conditioned invariant codistribution18 which
is locally spanned by exact differentials and contained inP

? . For more de-
tails about�

P

�

and its computation the reader is referred to DePersis and Isidori
(2000).

Observability codistribution algorithm (o.c.a.): Let � be a �xed codistri-
bution then the observability codistribution algorithm is de�ned by the following
non-decreasing sequence of codistributions:

Q

0

= � \ span f dh g (3.62)

Q

k +1

= � \

 

m

X

i =0

L

g

i

Q

k

+ span f dh g

!

(3.63)

wherespan f dh g is the codistribution spanned by the differentials of the rows
of the mappingh ( x ) . (To make the notation more consistent withK er f dh g one
could use the notationI m f dh g instead ofspan f dh g , however, to be consistent
with the used references it is not done here.) Suppose that all codistributions of
this sequence are nonsingular, so that there is an integerk

�

� n � 1 such that
Q

k

= Q

k

� for all k > k

� , and set


�

= Q

k

� . This result can be stated by the
following notation:




�

= o.c.a.(�)

The algorithm has the property that o.c.a.(�) = o.c.a.( o.c.a.(�)) and if � is
conditioned invariant, so is the codistribution


� . A codistribution
 is called an
observability codistribution if:

L

g

i


 � 
 + span f dh g 8 i = 0 ; : : : ; m

o.c.a.(
) = 


Furthermore, a distribution� is called anunobservability distributionif its an-
nihilator 
 = �

? is an observability codistribution.

When the distribution�

P

�

is well-de�ned and nonsingular, and�

P

�

\ K er f dh g

is a smooth distribution, then o.c.a.((�

P

�

)

?

) is the maximal (in the sense of
codistribution inclusion) observability codistribution which is locally spanned

18A codistribution 
 = �

? is said to beconditioned invariantif it satis�es L

g

i


 � 
 +

span f dh g for all i = 0 ; : : : ; m .
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by exact differentials and contained inP

? . The corresponding unobservability
distribution Q can be obtained by:

Q = ( o.c.a.((� P

�

)

?

))

?

For more details about the o.c.a. algorithm and the calculation ofQ the reader is
referred to DePersis and Isidori (2000).

As a result of the algorithmQ is the smallest involutive conditioned invariant
unobservability distribution that containsP (the disturbance effects) due to the
maximality of o.c.a.((�

P

�

)

?

) . Obviously, thisQ is the most likely distribution to
ful�ll the condition of Theorem 3.11.

In Chapter 4 the geometric approach is applied to a ship propulsion system. For
that purpose several FPRGs are de�ned in Section 4.2. Then different unobserv-
ability distributionsQ are calculated for each FPRG, see Appendix C.

3.4 Summary

In this chapter the fundamental problem of residual generation (FPRG) was de-
scribed and several approaches to obtain solutions for different classes of sys-
tems were summarized.

It was illustrated that solving the FPRG means achieving successful fault detec-
tion and isolation (FDI) that is robust against disturbances. However, the robust-
ness concerning model uncertainty can only be handled as long as the model
uncertainty can be modeled as extra disturbances. A de�nition of the generic
solvability for the linear FPRG was given as well.

The presented solutions were all based on the same basic geometric idea intro-
duced by Massoumnia (1986b). The idea starts with determining an unobserv-
ability subspace/distribution which does not include the fault that has to be de-
tected and isolated. Additionally it includes all the fault- and disturbance effects
that are not allowed to affect the residual in order to achieve successful FDI. In
Massoumnia (1986b) this was shown to be possible in a constructive way. Fur-
thermore, the existence of such a subspace/distribution was proven to assure a
solution for the corresponding FPRG. As a consequence of the existence of such
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an unobservability subspace/distribution an appropriate coordinate transforma-
tion can be found, such that one subsystem of the transformed system is only
in�uenced by the considered fault. The �nal step is to built an observer for this
subsystem which ful�lls the tasks of a residual generator. However, there does
not exist a constructive way to determine this coordinate transformation which
is used to ease the �nal step.

Several geometric solutions were presented starting with the original approach
for linear systems up to the input-af�ne nonlinear systems. The solution for
the later includes the linear case and hence can be seen as a general approach
to tackle the FPRG. There exist several other approaches to solve the FPRG
in the literature, but basically they boil down to one of the versions presented
above. Some of these approaches are based on �nding a coordinate transfor-
mation z = T ( x ) such that a subsystem is obtained for that an observer can
be designed that solves the FPRG. They are stated in an algebraic way, see e.g.
Seliger and Frank (1991a,b) and recently Kinnaert and Bahir (1999).

The geometric concept leads to a more compact notation than the algebraic one.
The conditions for checking the solvability of a particular FPRG can be checked
straightforward, because there exist algorithms to compute the unobservability
subspace/distribution. For more details about the comparison between the alge-
braic and geometric approach the reader is referred to Åströmet al.(2000)[chap-
ter 10]. It illustrates the advantages of the geometric approach for linear systems
by giving a conclusive result (Theorem 10.3.1 in Åströmet al. (2000)) incorpo-
rating both, the algebraic and the geometric approach.

However, as can be seen from the presented solutions there does not exist a fully
constructive solution to design a residual generator for the nonlinear systems
yet.DePersis and Isidori refer in their recent publications DePersis (1999), De-
Persis and Isidori (2000), and in Åströmet al. (2000) to articles to appear that
might give a more constructive approach.

3.5 Conclusions

The above presented geometric approach to solve the nonlinear FPRG does not
describe a complete new idea. It is more a general notation or problem formula-
tion. Looking for example at other approaches it can be seen that they �t in the
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same approach although they are not written in a geometric way, see e.g. Seliger
and Frank (1991a,b) and Ashton and Shields (1999). As mentioned in the intro-
duction to this chapter the geometric approach is a more compact way to treat
the FPRG problem.

Following the geometric approach can lead to different results. This is due to the
freedom to choose the observer structure (residual generator). In Massoumnia
(1986b) a Luenberger observer has been applied as a residual generator. Other
examples are the general structure in Massoumniaet al. (1989), Kalman-like
observer in Hammouriet al. (1998), high-gain observers in Hammouriet al.
(1999) and a backstepping observer in DePersis (1999). This variety shows how
general the geometric approach can be applied. However, it has problems deal-
ing with model uncertainty that cannot be modeled as extra disturbances, hence,
needs a precise model. Furthermore, there exists no constructive result to de-
sign the residual generator for the state-af�ne and input-af�ne nonlinear systems.
The main problem is to �nd the required coordinate transformation that helps to
choose the correct observer structure and to design it. Also the generic solvabil-
ity for the nonlinear FPRG is still an open question.

Another possible disadvantage might be that the geometric approach considers
arbitrary fault and disturbance signals. Hence, only FPRGs can be solved where
the fault is 100% decoupled from the disturbances. However, there might be
FDI problems where the disturbance effect on the residual is signi�cantly differ-
ent from the fault effect. When for example the disturbance effect turns out to be
limited enough one solution could be to apply a higher threshold. Another solu-
tion to handle the disturbance when its effect on the residual shows a signi�cant
different dynamic behaviour than the fault effect might be to apply a �lter to get
the disturbance effect out.

The disturbance problem and other application aspects are considered in Chapter
4. There the above presented geometric approach is applied to a ship propulsion
system. The application results are used to design residual generators. In a con-
cluding discussion the strong and weak points of the geometric approach for FDI
will be pointed out.

As mentioned in the above cited references the geometric approach for FDI
has been inspired by using the dual of certain results that are known for
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other control problems, like e.g. the disturbance decoupled estimation prob-
lem (DDEP) (Wonham (1985)).Unobservability subspaces introduced by Mas-
soumnia (1986b) play an important role when searching for a solution for the
linear FPRG. They have been originally introduced by Willems and Commault
(1981) as complementary observability subspaces to approach the disturbance
decoupling problem via output measurements. For the nonlinear systems the
counterpart of the conditioned invariant subspaces are the conditioned invariant
distributions, introduced in Isidoriet al. (1981). Results holding for unobserv-
ability subspaces can be derived by taking the dual of the corresponding results
available for controllability subspaces. In fact, a given subspace is an unobserv-
ability subspaces if and only if its complement space is a controllability sub-
space. However, as also mentioned in Massoumniaet al. (1989), the solutions
are not obtained by simply taking the dual of a familiar control problem. One of
the reasons is that the goal is a residual generator that helps to take a decision
and not a controller to obtain a required system behaviour.

Inspired by this idea of using the dual of known geometric approaches a new
idea of fault-output decouplingis proposed in Chapter 6. It is based on the
input-output decoupling problem.





Chapter 4

FDI for a ship propulsion system

Several approaches for fault detection and isolation in nonlinear systems have
been developed, but only little experience exists from applying them to real sys-
tems. The existing application results are mostly obtained by using academic
examples or small laboratory setups. This accounts especially for the recently
introduced nonlinear geometric approach by DePersis and Isidori described in
Chapter 3. Hence, this chapter presents FDI-application results obtained by ap-
plying the geometric approach to a simulation model of a nonlinear ship propul-
sion system. The simulation model is part of a ship propulsion benchmark de-
�ned and developed by Izadi-Zamanabadi and Blanke at the Department of Con-
trol Engineering at the University of Aalborg. A complete description of the
benchmark can be found in Izadi-Zamanabadi and Blanke (1998).

First the part of the ship propulsion benchmark is presented that has been used
to apply the geometric approach. Next to the system dynamics the fault scenario
is presented. Then the application of the geometric approach to the system is
illustrated in detail. The next step is the observability analysis of the results fol-
lowed by nonlinear observer (residual generator) design. Additionally, in order
to have results for comparison a nonlinear adaptive observer design (Blanke and
Lootsma (1999)) is given. Different simulation results are presented to illustrate
the FDI properties of the different observers. They are discussed in a concluding
discussion at the end of this chapter.

49
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4.1 Ship propulsion system - system description

This section describes in detail the ship propulsion system and the fault sce-
nario that was used to apply the geometric approach presented in the previous
chapter. The used simulation model is part of a ship propulsion benchmark prob-
lem that was de�ned by Izadi-Zamanabadi and Blanke (1997, 1999). A detailed
description of the complete ship propulsion benchmark can be found in Izadi-
Zamanabadi and Blanke (1998). The ship propulsion benchmark is used as a
platform to develop, enhance, test, and compare new and existing methods for
achieving fault tolerant control systems. International groups have contributed
with results at conferences (Cocquempotet al. (1998); Amannet al. (1999);
Blanke and Lootsma (1999); Edwards and Spurgeon (1999); Kerrigan and Ma-
ciejowski (1999); Schreier and Frank (1999); Zhang and Wu (1999)) and an
overview is given in chapter 13 of the COSY-project monograph (Åströmet al.
(2000)).

4.1.1 Motivation for fault-tolerance in the propulsion system

Achieving fault-tolerance in a ship propulsion system has several advantages
compared with the existing control strategies applied on-board marine vessels.
Hence, the motivation to consider fault-tolerant control theory is presented in the
following and some remarks concerning fault-operational strategies are given.

Faults in ship propulsion systems, e.g. failure of sensors or actuators, are far
from being unlikely events. In the past, faults have resulted in events going along
with severe damage and signi�cant loss of capital investment. In the marine area
the automation systems are not designed to be fail-operational1; mainly due to
high costs. Considering the raising demands of safety and reliability this is not
desirable. Several accidents have shown in the past how high the cost of an oil-
tanker accident can be for the owners and mainly for nature. However, instead
of applying fail-operational strategies to the entire automation system only local
shut down mechanisms are applied. Individual machinery is shut down as soon
as a critical state has been observed. This local strategy can obviously have a
negative effect on the overall operation of a ship. When a prime mover is shut
down, e.g. due to a sensor fault in its diesel maneuvering system, a ship looses
its ability to brake and maneuver. An overall strategy based on fault-tolerant

1For a de�nition of fail-operationalsee Chapter 2.
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concepts could help to handle these kind of faults in local equipment and prevent
them from causing unwanted effects on the overall operation. As its application
is signi�cantly cheaper than the fail-operational strategy the motivation to study
the possibilities of using them on-board is high.

4.1.2 System description

The propulsion system of a ship consists of several components, with the diesel
engine and the propeller as main parts. The benchmark simulation package con-
sists of two simulation models, one representing a one propeller/one engine sys-
tem, and one describing a two propeller/two engine system. Both models are
based on real data from a ferry. The technical data related to the vessel can be
found in Appendix B. This section focuses on the subsystem of the ship propul-
sion benchmark, that is based on one engine and one controllable pitch propeller,
as it has been used for the simulations in this chapter. The control system of
the propulsion system has a control hierarchy consisting of two control levels.
One contains the shaft speed and propeller pitch controllers and is referred to
as lower-level control. The other, the coordinate control level, also called the
upper-level control, comprises combinator curves for the overload controller, the
handle on the bridge, ship speed controller, and an ef�ciency optimizer.
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Figure 4.1: Ship propulsion system - an overview.

Fig. 4.1 gives an outline of the used propulsion system. It shows the following
main components and subsystems:

� The coordinated control level: providing the set-points for the shaft speed
n

r ef

and propeller pitch�

r ef

.
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� Propeller pitch controller and governor (shaft speed controller): control-
ling the propeller pitch� and fuel indexY .

� Diesel dynamics (diesel engine): generating torqueQ

eng

to drive the pro-
peller shaft depending on the fuel index.

� Shaft dynamics: describing the shaft speedn , resulting from the difference
between the engine and the propeller torque.

� Propeller characteristics: describing the propeller thrustT

pr op

and torque
Q

pr op

, that are determined by shaft speed, water speedV

a

, and propeller
pitch.

� Ship speed dynamics: describing the ship speedU resulting from the pro-
peller thrust balanced by hull resistance and external forcesT

ext

like wind
and waves.

The thrust - and as a consequence the ship speed - generated by the propulsion
system is vital for the ability to maneuver and to sail a ship; without thrust the
ship cannot be accelerated or stopped. In the system described in Fig. 4.1 there
are two main control loops, one for the propeller pitch and one for the shaft
speed. Both, the propeller pitch and the shaft speed determine the ship speed
and are supervised by the co-ordinate control level. The co-ordinate control
level includes strategies to optimize the fuel consumption and to avoid overload
situations - details can be found in Izadi-Zamanabadi and Blanke (1998).

Obviously there are different strategies to control the ship speed. Changing from
an ahead to an astern heading can be carried out in different ways, e.g. by either
keeping the propeller pitch constant and reversing the diesel engine or by keep-
ing the shaft speed constant and reversing the propeller pitch. In the simulations
the shaft speed is considered to be positive.

In Fig. 4.2 a more detailed scheme of the lower control level of the propulsion
system is given. It shows the two basic control loops and the different limitation
and saturation effects. Details about all the values can be found in Appendix B.
The system has two known inputs from the coordinated control level: the shaft-
speed referencen

r ef

and the propeller-pitch reference�

r ef

. The unknown inputs
are the external forces (wind and waves)T

ext

and the friction torqueQ

f

. The fol-
lowing measurements (system outputs) are available: diesel engine shaft speed
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Figure 4.2: Ship propulsion system - a detailed view.

n

m

, fuel index Y

m

, propeller pitch position�

m

, and ship speedU
m

. Further-
more, Fig. 4.2 shows the faults considered during the simulation of the system;
they are described in more detail in the next section.

4.1.3 Fault scenario

Various faults can occur on-board a ship. For the ship propulsion benchmark a
�xed fault scenario has been de�ned to have the possibility to compare the FDI
results obtained by different fault-tolerant control (FTC) research groups with
their methods. The considered faults of the scenario are presented in this section.
They have been de�ned after applying a fault-propagation analysis (FPA). The
FPA is a methodology to investigate how considered faults affect the operation
of the system and its control under their occurrence. Furthermore, it investigates
the severity of the overall effect caused by the possible faults. For a detailed de-
scription of the fault propagation analysis the reader is referred to Blanke (1996)
and Bøgh (1997) as the details are not of further interest in this chapter. Results
of the FPA concerning the ship propulsion benchmark are described in Izadi-
Zamanabadi and Blanke (1998); Izadi-Zamanabadi (1999). They led to the fault
scenario for the propulsion system given in Table 4.1.
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Fault Symbol Sign Type

shaft speed sensor faults� n

sensor

pos./neg. additive - abrupt

pitch sensor faults � �

sensor

pos./neg. additive - abrupt

hydraulic leak �

_

�

inc

neg. additive - incipient

diesel fault � k

y

neg. multiplicative - abrupt

Table 4.1: Faults implemented in the ship propulsion benchmark.

The four different faults listed in Table 4.1 are considered as generic faults, as
they are the faults that are most likely to occur. Their detection is very impor-
tant for the operation of the propulsion system when fault-tolerant strategies are
applied. The severity of the faults will be discussed below, but �rst a description
of the faults is given:

� Propeller pitch faults:

Ð � �

hig h

: This fault can occur due to a defect in the pitch sensor or
its connections. As a result the controller receives a wrong sensor
measurement that is toohigh compared to the real one.

Ð � �

l ow

: This fault can occur due to a defect in the pitch sensor or
its connections. As a result the controller receives a wrong sensor
measurement that is toolow compared to the real one.

Ð �

_

�

inc

: A leakage can occur in the (hydraulic) actuation part of the
control system; in practice, often in an over-pressure valve.

� Shaft speed sensor faults:

Ð � n

hig h

: This fault can occur due to a defect in the shaft speed sensor
or its connections. As a result the controller receives a wrong sensor
measurement that is toohigh compared to the real one.

Ð � n

l ow

: This fault can occur due to a defect in the shaft speed sensor
or its connections. As a result the controller receives a wrong sensor
measurement that is toolow compared to the real one.
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� Gain fault in the diesel engine:

Ð � k

y

: This fault describes the effect of a lower engine torque than
expected for the actual fuel index. Possible causes: cylinder failure
in the engine, connection problems causing reduced inlet of air, oil
or fuel.

Each of the described faults has a different effect on the over-all behaviour of the
ship propulsion system. Some faults are more severe than others and, therefore,
need to be handled with higher priority. A list of the faults and their fault effect
and its severity is given in Table 4.2.

Fault Fault effect Severity

� �

hig h

deceleration� ! maneuvering risk high

� �

l ow

acceleration� ! collision risk very high

�

_

�

inc

gradual speed change� ! cost increase medium

� n

hig h

deceleration� ! maneuvering risk high

� n

l ow

acceleration� ! collision risk very high

� k

y

diesel overload� ! wear, slowdown medium

Table 4.2: Fault effects and resulting severity for the propulsion system.

Fault Detection time Fault Detection time

� �

hig h

T

d

< 2 T

s

� n

l ow

T

d

< 2 T

s

� �

l ow

T

d

< 2 T

s

� n

hig h

T

d

< 2 T

s

�

_

�

inc

T

d

< 100 T

s

� k

y

T

d

< 5 T

s

Table 4.3: Required detection time for the different faults.

The data is taken from Izadi-Zamanabadi (1999) and Izadi-Zamanabadi and
Blanke (1998), where also further information concerning the faults is given,
like e.g. the necessary detection timeT

d

for each fault (see Table 4.3). The
detection time has been chosen in such a manner that the system can be recon-
�gured in time to prevent severe situations like the loss of the ability to maneuver
the ship.
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Event Magnitude Start time End time

� �

hig h

� � � 0 : 7 180 s 210 s

� n

hig h

n

max

� n 680 s 710 s

�

_

�

inc

- 800 s 1700 s

� �

l ow

� � 1890 s 1920 s

� n

l ow

� n 2640 s 2670 s

� k

y

� 0 : 2 k

y

3000 s 3500 s

Table 4.4: Time sequence of the simulated faults.

A prede�ned sequence of the above de�ned faults has been implemented in the
simulation model. The total simulation time is3500 sec and the faults occur at
the in Table 4.4 given points of time. This sequence has been prede�ned to im-
prove the possibility to compare results obtained with different FDI approaches.

4.1.4 System dynamics

In this section a brief overview over some equations describing the ship propul-
sion system’s dynamics, see Fig. 4.1 and Fig. 4.2, is given. Not all dynamic
relations of the system are presented as not all of them are of interest in the FDI
design. For a complete description of the system dynamics the reader is referred
to Izadi-Zamanabadi and Blanke (1998) and Izadi-Zamanabadi (1999).

4.1.4.1 Diesel engine

Describing the dynamics of a diesel engine is often a dif�cult task depending on
the type of engine. In the simulation of the propulsion system the diesel engine
dynamics are described by the following transfer function (taken from Blanke
(1981), Blanke and Andersen (1984), and Fossen (1994, pp. 246-257)):

Q

eng

( s ) =

( k

y

+ � k

y

)

1 + �

c

s

Y ( s ) ; (4.1)

whereQ

eng

describes the torque generated by the diesel engine, which is con-
trolled by the fuel indexY . The parameters of the transfer function are given by
k

y

the gain constant of the engine,� k

y

describing the gain fault in the engine,
and�

c

the time constant corresponding to torque built-up from cylinder �rings.
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4.1.4.2 Propeller shaft

The dynamics of the propeller shaft turning the generated engine torque into
shaft speed (n ) are described by the following equation based on a torque bal-
ance:

I

m

_n = Q

eng

� Q

pr op

� Q

f

: (4.2)

whereI

m

describes the resulting inertia of the shaft with all couplings.Q

eng

de-
notes the torque generated by the diesel engine,Q

pr op

denotes the torque coming
from the propeller (load), andQ

f

describes the friction of the propeller shaft.

4.1.4.3 Ship speed

The ship is accelerated by the propeller-generated thrust (T

pr op

). The resulting
ship speed (U ) can be determined with the help of the following force balance
describing the nonlinear dynamics:

( m � X

_

U

)

_

U = R ( U ) + (1 � t

T

) T

pr op

+ T

ext

(4.3)

U

m

= U + �

U

: (4.4)

wherem denotes the mass of the ship. TheX

_

U

term represents an added mass
in surge.R ( U ) describes the resistance the ship experiences from the water (hull
resistance). As the generated propeller thrustT

pr op

changes the �ow of the water
behind the ship (ship’s stern) the resulting thrust accelerating the ship is reduced.
This effect is described by the thrust deduction numbert

T

. External forces like
the wind and the waves are represented byT

ext

. The measured shaft speed sig-
nal (U

m

) contains the measurement noise (�

U

) as described in Appendix B and
shown in equation (4.4).

4.1.4.4 Propeller

A controllable pitch propeller (CPP) has been simulated in the ship propulsion
system benchmark. The pitch (� ) describes the angle with that the propeller
blades attack the water during rotation of the propeller. It can be adjusted for
a CPP by turning the propeller blades via a hydraulic system over a range from
-100% (full astern) over to 100% (full ahead). As a consequence there are two
possibilities to control the propeller-generated thrust and torque - changing shaft
speed (n ) and/or propeller pitch (� ). The propeller thrust (T

pr op

) and propeller
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torque (Q
pr op

) generated with a CPP can be described by the following nonlinear
equations (Blanke (1981)):

T

pr op

= T

j n j n

( � ) j n j n + T

j n j V

a

( � ) j n j V

a

(4.5)

Q

pr op

= Q

0

j n j n + Q

j n j n

( � ) j n j n + Q

j n j V

a

( � ) j n j V

a

: (4.6)

The propeller parametersT

j n j n

( � ) , T

j n j V

a

( � ) , Q

0

, Q

j n j n

( � ) , and Q

j n j V

a

( � ) are
all, exceptQ

0

, depending on the actual propeller pitch (� ) and dif�cult to obtain
for a real system. The pitch-variant parameters ofT

pr op

andQ

pr op

are calculated
for the simulations by interpolating between tables of data measured in model
propeller tests. For further details the reader is referred to Izadi-Zamanabadi
and Blanke (1998) and Izadi-Zamanabadi (1999).V

a

describes the velocity with
which the water passes through the propeller disc. It is smaller than the ship
speedU due to the hydrodynamic turbulence under the hull of the ship. It can be
obtained with the help of the wake fraction (w ), a hull-dependent parameter:

V

a

= (1 � w ) U: (4.7)

For the residual generation the following special forms of (4.5) and (4.6) are
implemented as stated in Fossen (1994, pp. 246-257):

T

pr op

= T

j n j n

j n j n� + T

j n j V

a

j n j V

a

(4.8)

Q

pr op

= Q

j n j n

j n j n j � j + Q

j n j V

a

j n j V

a

� : (4.9)

4.1.5 Controllers

In the lower-level control there are two main control loops - shaft speed control
and propeller pitch control. Different controllers are applied to these loops. They
are described in the following. Both loops are interconnected via the propeller
dynamics. The upper-level control is not of special interest here. It generates the
set-points for the shaft speedn

r ef

and the propeller pitch�
r ef

for the lower-level
control. Furthermore, the upper-level control includes an overload controller in
order to avoid damage of system components, e.g. a too high demand in shaft
speed would lead to a too high engine torque that could brake the shaft. For
more detailed information about the upper-level control the reader is referred to
Izadi-Zamanabadi and Blanke (1998) and Izadi-Zamanabadi (1999).

4.1.5.1 Shaft speed control

The shaft speed controller receives as inputs the reference signaln

r ef

from the
upper-level control and the shaft speed measurementn

m

. The measured shaft
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Figure 4.3: Governor - shaft speed controller.

speed can be described as follows:

n

m

= n + �

n

+ � n

sensor

(4.10)

where the actual shaft speed is described byn , the measurement noise by�

n

and
the sensor fault is represented by� n

sensor

.

The shaft speed controller (governor) is a PI-controller and generates the fuel
index reference signalY . A detailed scheme of the governor is given in Fig.
4.3. The �gure shows the saturation phenomena and an anti-windup as part of
the integrating action, whereK is the anti-windup gain. The integrating part
of the governor hasY

l b

and Y

ub

as lower and upper bounds. Furthermore, the
limitations of the fuel index, depending on the shaft speed measurement, are
shown in an extra block. It limits the fuel index from above by the maximum
allowed fuel inlet, which is related to constrains on the torque characteristics of
the diesel engine. Obviously, the fuel index is nonnegative, which limits it from
below.

The shaft speed controller can be described in detail by the following equations:

_

Y

i

=

k

r

�

i

�

( n

r ef

� n

m

) � K ( Y

P I b

� Y

P I

)

�

(4.11)

Y

P I b

= Y

i

+ k

r

( n

r ef

� n

m

) (4.12)

Y

P I

= min (max ( Y

P I b

; Y

l b

) ; Y

ub

) (4.13)

The values for the different parameters of the governor and the measurement
noise can be found in Appendix B.
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Figure 4.4: Propeller pitch control.

4.1.5.2 Propeller pitch control

The propeller pitch� is adjusted via a hydraulic actuator turning the propeller
blades. The actuator’s dynamic has an integrating structure and is controlled by
the pitch controller. The propeller pitch control loop can be described by the
following relations:

�

m

= � + �

�

+ � �

sensor

(4.14)

u

_

�

= k

t

( �

r ef

� �

m

) (4.15)
_

� = max(

_

�

min

; min ( u

_

�

;

_

�

max

)) + �

_

�

inc

(4.16)

� = max( �

min

; min ( � ; �

max

)) (4.17)

where�

m

describes the pitch measurement,�

�

describes the measurement noise
and � �

sensor

stands for the pitch sensor fault.u

_

�

denotes the controller output
(not measured in the benchmark) andk

t

the controller parameter (P-controller).
The incipient fault in the pitch hydraulic actuator is described by�

_

�

inc

. As
the actuator can only turn the propeller blade over a speci�c range it is limited
by �

min

and �

max

. Furthermore, the speed of change is limited due to the �ow
velocity of the hydraulic oil. That effect is described by_

�

min

and _

�

max

. Fig. 4.4
shows the complete pitch control system.
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4.2 Geometric FDI analysis

The in Chapter 3 presented geometric approach towards FDI for input-af�ne
nonlinear systems has gained high interest in the last two years. However, until
now, only little experience with its application has been obtained. In this section
the geometric approach described in DePersis and Isidori (1999, 2000) is applied
to the ship propulsion benchmark. The results are then used to design diagnostic
nonlinear observers for successful FDI in the next section.

First, a nonlinear state-af�ne model of the propulsion system is stated as it is used
in DePersis and Isidori (1999). Then different scenarios are de�ned in order to
apply the geometric approach followed by the application results.

4.2.1 Model description

The propulsion system dynamics have to be rewritten in the following input-
af�ne form to be able to apply the geometric approach as stated in DePersis and
Isidori (2000) and Chapter 3:

_x = f ( x ) +

m

X

i =1

g

i

( x ) u

i

+ l ( x ) � +

s

X

i =1

p

i

( x ) w

i

(4.18)

y

j

= h

j

( x ) ; j 2 l (4.19)

One way to obtain the required form (4.18) and (4.19) is to include sensor faults
as pseudo-actuator faults. A procedure for that is described in Massoumnia
(1986a) and Hashtrudi-Zad and Massoumnia (1999). For the propulsion sys-
tem it can be done by adding the following additional linear dynamics to the
original system for the shaft speed sensor fault:

_x

� n

= A

� n

x

� n

+ L

� n

�

� n

(4.20)

y

� n

= C

� n

x

� n

= � n

sensor

(4.21)

where�

� n

=

_

� n

sensor

, A

� n

= 0 , andL

� n

= C

� n

= 1 . Obviously, the con-
ditions as stated in Hashtrudi-Zad and Massoumnia (1999) are ful�lled, i.e. the
number of columns ofL

� n

is equal to the number of rows inC

� n

, L is injective,
C is surjective, and the order of the additional dynamics( n

� n

= 1) is equal to
(or greater than) the dimension of the sensor faultdim (� n

sensor

) = 1 .
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The extra dynamics for the pitch sensor can be written in the same way by re-
placing

� n

by
� �

:

_x

� �

= A

� �

x

� �

+ L

� �

�

� �

(4.22)

y

� �

= C

� �

x

� �

= � �

sensor

(4.23)

where�

� �

=

_

� �

sensor

, A

� �

= 0 , andL

� �

= C

� �

= 1 .

As a result the following dynamics are obtained for the whole system when using
equations (4.1) - (4.4), (4.7) - (4.11), and (4.14) - (4.17); considering positive
shaft speed (n > 0 ), and neglecting the saturation phenomena, the unknown
term X

_

U

, and the measurement noise:
_x = f ( x ) + g ( x ) u + l ( x ) � + p ( x ) w (4.24)

y = h ( x ) (4.25)

where
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0
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B
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g ( x ) =
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Remarks: When looking at equations (4.11) and (4.13) it can be see that the
fuel indexY and its measurementY

m

are functions ofn
r ef

andn

m

. Hence,Y

m

gives no useful redundant informationwhen the saturation effects are neglected
no faults are considered in the governor. Governor faults have been handled in
the industrial actuator benchmark introduced by Blanke and Patton (1995). The
FDI-results are described in (Bøgh (1997)). Therefore, the measurement of the
fuel indexY

m

is omitted in the following analysis to ease the computation.
The gain fault� k

y

is modeled as an additive fault by using the notation
�

1

= � k

y

Y .
The fault vector� contains four different faults instead of being scalar as in

De�nition 3.5 for the nonlinear FPRG. This is handled in the following way:
For the above system four different FPRGs are de�ned, one for each fault, by
considering the remaining three faults as additional disturbances (i.e. including
them in the disturbance vectorw ), more details are given in the next subsection.

During the whole analysis all initial conditions are considered to be equal
zero, x

0

= x ( t = 0) = 0 . Furthermore, as the propeller has a controllable
pitch (CPP) the shaft speed is considered to be positive (n > 0 ) corresponding
to normal operation. Without loss of generality for the FDI problem the pitch�

is considered positive for the whole operating range.
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4.2.2 Application & results

In order to apply the geometric approach, as described in the previous chapter,
the FDI problem for the ship benchmark (see Section 4.1.3) has to be formulated
as a combination of several different FPRGs. This is due to the fact that there
are four different faults to be handled in the benchmark and that a FPRG only
considers FDI for one fault at a time.

System (4.24) and (4.25) offers several possibilities to de�ne these FPRGs, be-
cause different subsystems can be considered next to the overall system. The
following scenarios are treated on the next pages:

� Complete system with controllers and disturbancesQ

f

andT

ext

� Complete system with controllers and without disturbancesQ

f

andT

ext

� Propeller pitch loop with pitch controller

� Shaft speed loop with governor and disturbancesQ

f

andT

ext

� Shaft speed loop with governor and without disturbancesQ

f

andT

ext

For each of these scenarios different FPRGs are de�ned and analyzed in the next
subsections. The geometric approach is applied to each of them following eight
steps:
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Methodology for applying the geometric approach to the different
FPRGs:

1. Reducing the model (4.24) and (4.25) to the subsystem of the con-
sidered FPRG.

2. Choosing the fault�
i

, i 2 f 1 ; : : : ; 4 g that is to be detected and
isolated.

3. Adding the remaining 3 faults�
j

, j 2 f 1 ; : : : ; 4 g ^ j 6= i ,
to the disturbancesw 2 R

s

) �

new

= �

i

; l

new

( x ) =

l

i

( x ) ; w

new

= [ �

j

w ]

T , andp

new

( x ) = [ l

j

( x ) p ( x )] .

4. DeterminingP = span f p

new

i

g , wherep

new

i

, i = 1 ; : : : ; ( s + 3) ,
are the column vectors ofp

new

( x ) .

5. Using algorithm (3.59) and (3.60) to calculate�

P

�

.

6. Using algorithm (3.62) and (3.63) to calculate
Q = ( o.c.a.((� P

�

)

?

))

? .

7. If l

i

( x ) =2 Q , then designing a coordinate transformation to obtain
a subsystem as described in Theorem 3.11. Ifl

i

( x ) 2 Q , then the
analyzed FPRG cannot be solved for arbitrary fault signals.

8. Observability analysis of the resulting subsystem that is only af-
fected by the considered fault, i.e. where the corresponding com-
ponents ofl

i

( x ) 6= 0 .

4.2.2.1 Complete system with controllers and disturbances

The complete system (4.24) and (4.25) includes four different faults; described
by the four components of vector� . Hence, four different FPRGs can be de-
�ned as stated in Table 4.5. When applying the above presented methodology in
order to solve the single FPRGs the following results can be obtained (Detailed
description of the calculations is given in Appendix C.1.):
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Step 1 can be omitted as the complete system is considered, i.e. the model (4.24)
and (4.25) is used. The next two steps (2 and 3) are covered by Table 4.5 and
the reordering of the corresponding matrices. The distributionP

i ,i 2 f 1 ; : : : ; 4 g

for the i th FPRG can be determined byP

i

= span f p

new

j

( x ) g , j 2 f 1 ; : : : ; 5 g .

Starting the algorithm (3.59) and (3.60) to calculate�

P

i

�

for FPRG 1 up to FPRG
4 leads in all cases to the same result:�

P

i

�

= P

i .

The next step is to obtain the observability codistribution o.c.a.((�

P

i

�

)

?

) . As
it turns out that o.c.a.((�

P

i

�

)

?

) = 0 for all i it can easily be seen thatQ

i

=

( o.c.a.((� P

i

�

)

?

))

?

= R

7 . As a consequence the conditionl

new

( x ) =2 Q

i is not
ful�lled, hence, the FPRGs 1-4 are not solvable for arbitrary fault signals.

FPRG Fault ( �

new

) Disturbances( w

new

)

FPRG 1 � k

y

Y

_

� n

sensor

, _

� �

sensor

, �

_

�

inc

, T

ext

, Q

f

FPRG 2 _

� n

sensor

� k

y

Y , _

� �

sensor

, �

_

�

inc

, T

ext

, Q

f

FPRG 3 _

� �

sensor

� k

y

Y , _

� n

sensor

, �

_

�

inc

, T

ext

, Q

f

FPRG 4 �

_

�

inc

� k

y

Y , _

� n

sensor

, _

� �

sensor

, T

ext

, Q

f

Table 4.5: FPRGs for the complete system with controllers and disturbances.

4.2.2.2 Complete system with controllers and without disturbances

In the previous subsection it was shown that the FPRGs 1-4 cannot be solved.
Hence, there is no way to isolate one fault from the disturbances and the other
faults. In order to check if one fault can be isolated from the others this section
considers the complete system (4.24) and (4.25), but neglects the disturbances
Q

f

and T

ext

. The resulting FPRGs are listed in Table 4.6. The motivation for
trying these FPRGs comes from the fact that there might be methods to handle
with the disturbance afterwards; e.g. during the residual evaluation as mentioned
in the conclusions of Chapter 3.

In order to analyze the solvability of the FPRGs 5-8 the above introduced
methodology is followed. For details about the calculations the reader is re-
ferred to Appendix C.2. Again the complete system is considered and the steps
2 and 3 are covered by Table 4.6 and the reordering of the corresponding matri-
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ces. For each FPRG the distributionP

i , i 2 f 5 ; : : : ; 8 g can be determined by
P

i

= span f p

new

j

( x ) g , j 2 f 1 ; : : : ; 3 g . Then the algorithm (3.59) and (3.60) is

applied to calculate�

P

i

�

. For FPRG 5-8 the algorithm stops atk

�

= 1 instead
of k

�

= 0 as it did for FPRG 1-4. The next step is then to obtain the observ-
ability codistribution o.c.a.((�

P

i

�

)

?

) . It turns out to be equal to zero, just like in
the previous section. Hence, the unobservability distribution can be determined
as: Q

i

= R

7 . As a consequence the FPRGs 5-8 are not solvable, because the
conditionl ( x )

new

=2 Q

i is not ful�lled.

FPRG Fault ( �

new

) Disturbances( w

new

)

FPRG 5 � k

y

Y

_

� n

sensor

, _

� �

sensor

, �

_

�

inc

FPRG 6 _

� n

sensor

� k

y

Y , _

� �

sensor

, �

_

�

inc

FPRG 7 _

� �

sensor

� k

y

Y , _

� n

sensor

, �

_

�

inc

FPRG 8 �

_

�

inc

� k

y

Y , _

� n

sensor

, _

� �

sensor

Table 4.6: FPRGs for the complete system with controllers and without distur-
bancesQ

f

andT

ext

.

4.2.2.3 Pitch loop with pitch controller

The FPRGs de�ned for the complete system could not be solved as shown above.
Hence, this section considers only the pitch loop, which is only affected by two
faults - the pitch sensor fault_

� �

sensor

and the incipient actuator fault�

_

�

inc

.
This subsystem is linear and there are no disturbances present. Two different
linear FPRGs are considered in order to investigate the possibility for detection
and isolation of these two faults. They are described in Table 4.7.

To get started with the geometric analysis step 1 is to reduce the model (4.24)
and (4.25) to the considered subsystem:

_x = f ( x ) + g ( x ) u + l ( x ) � + p ( x ) w

y = h ( x )
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where

x =

 

�

x

� �

!

u = �

r ef
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� �
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�
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�

inc

!

w = 0 p ( x ) = 0 y = �

m

h ( x ) = � + x
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t

( � + x
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!
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k
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l ( x ) =

 

0 1

1 0
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FPRG Fault ( �

new

) Disturbance ( w

new

)

FPRG 9 _

� �

sensor

�

_

�

inc

FPRG 10 �

_

�

inc

_

� �

sensor

Table 4.7: FPRGs for the pitch loop with controller.

When following the remaining seven steps of the introduced methodology it can
be seen that the FPRG 9 and FPRG 10 are not solvable either. Reason for this is
that also for FPRG 9 and FPRG 10 the conditionl ( x )

new

=2 Q

i is not ful�lled.
To see the detailed calculations the reader is referred to Appendix C.3.

4.2.2.4 Shaft speed loop with governor and disturbances

In this section the shaft speed loop is considered. Together with the pitch loop
system from the previous section it forms the complete system. Hence, the
shaft speed loop is the only remaining subsystem to be analyzed. It includes
the shaft speed controller (governor) and the external disturbancesT

ext

andQ

f

.
The pitch� is considered as fault-free input to this subsystem, because there are
other known methods to detect pitch faults and the occurence of multiple (si-
multaneous) faults is very unlikely. Therefore, the shaft speed loop is affected
by two different faults, the diesel engine gain fault� k

y

Y and the shaft speed
sensor fault _

� n

sensor

. Table 4.8 describes the resulting FPRGs. Model (4.24)
and (4.25) can be reduced to the following model of the shaft speed loop with
governor and disturbances (step 1 of the analysis methodology):

_x = f ( x ) + g ( x ) u + l ( x ) � + p ( x ) w

y = h ( x )
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FPRG Fault ( �

new

) Disturbances( w

new
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FPRG 11 � k

y

Y

_

� n

sensor

, T

ext

, Q

f

FPRG 12 _

� n

sensor

� k

y

Y ,T

ext

, Q

f

Table 4.8: FPRGs for the shaft speed loop with governor and disturbances.

where

x =

0

B

B

B

B

B

B

@

Q

eng

n

U

Y

i

x

� n

1

C

C

C

C

C

C

A

u =

 

n

r ef

�

!

� =

 

� k

y

Y

_

� n

sensor

!

w =

 

T

ext

Q

f

!

y =

 

n

m

U

m

!

h ( x ) =

 

n + x

� n

U

!

f ( x ) =

0

B

B

B

B

B

B

B

@

�

1

�

c

Q

eng

+

k

y

�

c

Y

i

�

k

y

k

r

�

c

( n + x

� n

)

1

I

m

Q

eng

1

m

R ( U ) +

1 � t

T

m

T

j n j V

a

(1 � w ) nU

�

k

r

�

i

( n + x

� n

)

0

1

C

C

C

C

C

C

C

A

g ( x ) =

0

B

B

B

B

B

B

B

@

k

y

k

r

�

c

0

0 �

1

I

m

�

Q

j n j n

n

2

+ Q

j n j V

a

(1 � w ) nU

�

0

1 � t

T

m

T

j n j n

n

2

k

r

�

i

0

0 0

1

C

C

C

C

C

C

C

A



70 FDI for a ship propulsion system

l ( x ) =
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The calculations for the geometric approach to solve FPRG 11 and FPRG 12
are given in Appendix C.4. They show that the FPRG 11 and FPRG 12 are not
solvable either, as also here the conditionl ( x )

new

=2 Q

i is not ful�lled.

4.2.2.5 Shaft speed loop with governor and without disturbances

This section considers the shaft speed loop including the shaft speed controller
(governor) and neglecting the external disturbancesT

ext

andQ

f

. Similar to Sec-
tion 4.2.2.2 this is done in order to check the possibility two isolate the two faults
� k

y

Y and _

� n

sensor

from each other. The disturbance might be dealt with in the
residual evaluation phase. Two different FPRGs neglecting the disturbances are
stated in Table 4.9.

FPRG Fault ( �

new

) Disturbances( w

new

)

FPRG 13 � k

y

Y

_

� n

sensor

FPRG 14 _

� n

sensor

� k

y

Y

Table 4.9: FPRGs for the shaft speed loop with governor and without distur-
bances.

The geometric approach is applied to analyze the solvability of FPRG 13 and 14
by following the methodology described on page 65. The detailed calculations
are given in Appendix C.5. For the FPRG 13 they show that the calculation of
the unobservability distributionQ 13

= ( o.c.a.((� P

13

�

)

?

))

? leads to the follow-
ing result:

Q

13

= ( o.c.a.( P

13

?

))

?

= P

13

= span

�

(0 0 0 0 1)

T

	

So it can be seen that the conditionsp ( x )

new

= (0 0 0 0 1)

T

2 Q

13 and
l ( x )

new

= (

1

�

c

0 0 0 0)

T

=2 Q

13 are ful�lled, hence, a solution for FPRG 13
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might exist. So, the next step in the procedure is to �nd a coordinate transfor-
mation as described in Theorem 3.11. This is done by applying the procedure
described in DePersis and Isidori (2000) (Proposition 3). Details are given in
Appendix C.5. As a result the following subsystem can be stated for the FPRG
13 that is only affected by the gain fault� k

y

Y :

_x = f ( x ) + g ( x ) u + l ( x ) � (4.26)

y

1

= U

m

= U (4.27)

(4.28)

where
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Hence, building an observer for the( x; y

1

) -system, considering the shaft speed
measurementn

m

= n + x

� n

as additional input, while neglecting the fault, i.e.
� = 0 , could solve the FPRG 13. However, this requires that the subsystem is
observable and an observer can be designed.

The observability can be analyzed by taking a look at the observability codis-
tribution (see Nijmeijer and van der Schaft (1990) or equation (3.48), on page
39):

d O ( x ) = spanf dH ( x ) ; H 2 O g ; x 2 X
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For the considered subsystem it can be shown that the dimension ofd O ( x )

equals the dimension ofX (n = 4 ) as:

d O ( x ) = spanf dh

2

; dL

g

2

h

2

; dL

f

L

g

2

h

2

; dL

2

f

L

g

2

h

2

g

hence, the subsystem is locally observable. In Section 4.3 the possibility to
design an observer for the subsystem (considering� = 0 ) in order to obtain a
residualr that solves the FPRG 13 is investigated.

Very similar considerations are made for FPRG 14. The detailed calculations
can be found in Appendix C.5. Following the procedure in order to obtain the
unobservability distributionQ

14

= ( o.c.a.((� P

14

�

)

?

))

? leads to the following
result:

Q

14

= ( o.c.a.( S

14

1

?

))

?

= span f (1 0 0 0 0)

T

; (0 1 0 0 0)

T

; (0 0 0 1 0)

T

g

So it can be seen that the conditionsp ( x )

new

= (

1

�

c

0 0 0 0)

T

2 Q

14 and
l ( x )

new

= (0 0 0 0 1)

T

=2 Q

14 are ful�lled, hence, a solution for FPRG 14
might exist. So, the next step in the procedure (described on page 65) is to �nd
a coordinate transformation as described in Theorem 3.11. This is done by ap-
plying the procedure described in DePersis and Isidori (2000) (Proposition 3).
Details are given in Appendix C.5. As a result the following subsystem can be
stated for the FPRG 14 that is only affected by the sensor fault_

� n

sensor

:

_x = f ( x; n

m

) + g ( x; n

m

) u + l ( x ) �

y

1

= U

m

= U

n

m

= n + x

� n

where
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U

x
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!

u = � � =

�

_
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�
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a
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( n

m

� x

� n

)

2

0

!



4.2 Geometric FDI analysis 73

When considering the fault-free subsystem, i.e. taking out the sensor fault effect,
the system reduces to the subsystem:

_x = f ( x; n

m

) + g ( x; n

m

) u (4.29)

y

1

= U

m

= U (4.30)

where

x = U u = � g ( x; n

m

) =

1 � t

T

m

T

j n j n

n

2

m

f ( x; n

m

) =

1

m

R ( U ) +

1 � t

T

m

T

j n j V

a

(1 � w ) n

m

U

which is obviously observable. In the Section 4.3 an observer is built for this
subsystem (considering� = 0 ) in order to obtain a residualr that solves the
FPRG 14.

4.2.3 Conclusions

From the previous section it can be seen that the FDI problem for the ship propul-
sion system cannot be solved in a geometric sense. Following the geometric idea,
as presented by DePersis and Isidori (2000) and described in Chapter 3, does not
lead to residuals that are only affected by a particular fault. This has several rea-
sons.

One reason for this lies in the dynamics of the system. The pitch and shaft speed
loop are coupled via the propeller dynamics. This makes it impossible to sepa-
rate the shaft speed loop from the pitch faults. Another problem is that for the
pitch sensor fault and the incipient pitch fault the points of entry into the system
are only separated by an integration. That means obviously that the two faults
cannot be isolated from each other, because arbitrary fault signals are consid-
ered. An abrupt hydraulic pressure loss (�

_

�

inc

described by a step function)
would affect the system in a similar way as a drift in the pitch measurement
( _

� �

sensor

described by a ramp function). Another reason why successful FDI
is not possible is that the disturbancesQ

f

andT

ext

act directly on the propeller
dynamics and, hence, also on the measurements. As a consequence, there exists
no observable subsystem for each fault that is not effected by the disturbances as
shown above.

However, these problems count also for other FDI approaches. Hence, they can-
not solve the FDI problem either, unless they use additional information. For
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example, some methods exploit additional information about the dynamics of
the disturbances. This is not done by the geometric approach as it considers
arbitrary fault and disturbance signals. So, obviously the geometric approach
cannot handle FDI problems where the disturbances act in the same ’direction’
as the faults.

In practice it might be possible to solve this problem by additional means, e.g.
additional residual evaluation. This is due to the fact that in reality the signals
are not completely arbitrary. Hence, there might exist methods to eliminate the
disturbance effect on the residual, e.g. �ltering the residual. When the dis-
turbance dynamics are signi�cantly slower than the fault dynamics a high-pass
�lter might help. Another situation might be that the disturbance effect is small
enough, such, that the FDI problem could be solved by a higher threshold in the
decision phase. These possibilities using additional methods to solve the FDI
problem need speci�c analysis, hence, there does not exist a general approach.
Therefore, FDI design cannot be fully automated.

However, the geometric approach is a powerful and systematic tool to �nd sub-
systems and structures for the observer design. This is important in order to
obtain useful residuals. The advanced mathematics might be an obstacle for en-
gineers, who are not familiar with the different geometric calculations, but once
learned it is straightforward computation. Hence, it might be interesting to in-
vestigate to which degree the geometric approach could be automated (e.g. as
analysis-tool) in future research.

In the next section two observers are designed based on the results from the ge-
ometric analysis given in the previous section. The goal is to generate residuals
that can solve the FDI problem for the propulsion system.
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4.3 Observer design for FDI

In the previous section two different locally observable subsystems, (4.26)-(4.27)
and (4.29)-(4.30), were obtained by the geometric analysis of the propulsion
system. Each of these subsystems is affected by only one fault when the pitch
measurement is considered to be fault-free. Hence, two observers are designed
in the following subsections to detect and isolate the two different shaft speed
loop faults. Additionally, an observer for the pitch loop is designed to detect the
pitch faults. At the end of this section an adaptive nonlinear observer is given for
comparison.

4.3.1 FDI in shaft speed loop

The following two subsections describe the observer design for the obtained sub-
systems. The goal is to use the observers as residual generators to detect and
isolate the shaft speed loop faults� k

y

and� n

sensor

.

4.3.1.1 FDI for the diesel engine gain fault� k

y

Subsystem (4.26)-(4.27) is by construction only affected by the diesel engine
gain fault � k

y

, when the pitch loop is considered to be fault-free. Hence, an
observer is designed in the following, such, that it can be used for FDI.

To start the fault-free subsystem can be rewritten as:

_x = f ( x ) + g ( x ) u (4.31)

y = U (4.32)

where x =

 

n

U

!

f ( x ) =

 

0

1

m

R ( U ) +

1 � t

T

m

T

j n j V

a

(1 � w ) nU

!

g ( x ) =

 

1

I

m

k

y

�

1

I

m

�

Q

j n j n

n

2

+ Q

j n j V

a

(1 � w ) nU

�

0

1 � t

T

m

T

j n j n

n

2

!

u =

 

Y
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!

because the diesel engine dynamics are very fast (small�

c

) comparing to ship
dynamics (4.1) can be replaced byQ

eng

= ( k

y

+ � k

y

) Y

m

; whereY

m

denotes
the available fuel index measurement. To return to the original notation of the
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ship dynamics the following notation is used for the subsystem:

_n =

1

I

m

k

y

Y

m

�

1

I

m

�

Q

j n j V

a

(1 � w ) n U + Q

j n j n

n

2

�

� (4.33)
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R ( U ) +
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T

j n j V

a

(1 � w ) n U +

1 � t

T
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T

j n j n

n

2

� (4.34)

y = U (4.35)

with the fuel index measurementY

m

and the pitch measurement�

m

as external
inputs. For system (4.33) and (4.35) an observer can be given of the following
form:

Observer1:

_
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1

I

m

k

y

Y

m

�
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I
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j n j V
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�

^
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(4.37)

^y =

^

U (4.38)

The stability of Observer1 can be proven following Gauthieret al. (1992). De-
tails of the proof are outlined in Chapter 5. For FDI a residual can be obtained
using the output (ship speed estimate) of Observer1 and the ship speed measure-
mentU

m

in the following way:

Residual1: r

1

= U

m

�

^

U (4.39)

Residual1 is by construction only affected by the gain fault� k

y

as shown by the
geometric approach (when considering the pitch signal to be fault-free). As the
observer is stable the residual behaves in the fault-free case, such, thatr

1

! 0

for t ! 1 .
For the estimation errors:

e

1

n

= n � ^n e

1

U

= U �

^

U
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the following error dynamics can be given (as here� = �

m

:
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Looking at the estimation error dynamics (4.40) one could think that an occur-
ring gain fault� k

y

would have a direct impact on_e

1

n

leading to a growing esti-
mation error:n 6= ^n . As can be seen from (4.41) this would then also affect the
shaft speed estimate , i.e.U 6=

^

U . Hence, Residual1 would deviate from zero in
case of a gain fault:r

1

6= 0 . However, as the dynamics are nonlinear and coupled
the argumentation is not that simple. Simulation results given in the next section
show that the gain fault� k

y

indeed affects Residual1.

When taking a closer look it can be seen that Observer1 offers also another pos-
sibility to generate a residual when using the shaft speed measurementn

m

:

Residual2: r

2

= n

m

� ^n (4.42)

Obviously, this residual is also affected by the shaft speed sensor fault� n

sensor

.
The residual dynamics can be stated as follows:

_r

2

( n

m

; ^n ) = _e

1

n

+

_

� n

sensor

(4.43)

where _e

1

n

is described by (4.40). The FDI performance of Residual1 and Resid-
ual2 will be demonstrated by simulation results in the next section.

4.3.1.2 FDI for the shaft speed sensor fault� n

sensor

In this subsection an observer is designed for subsystem (4.29) - (4.30) in or-
der to detect the shaft speed sensor fault� n

sensor

. As shown by the geometric
approach in the previous section this subsystem is only affected by one fault
(� n

sensor

), when the pitch loop is considered to be fault-free. Hence, the ob-
servation error can be used as a residual to obtain FDI for the ship propulsion
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system.

To return to the original notation the following notation is used for subsystem
(4.29) - (4.30):

_
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1

m
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m
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j n j V
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� ] (4.44)

y

1

= U

m

= U (4.45)

with the shaft speed measurementn

m

and the pitch measurement� as external
inputs. For system (4.44) and (4.45) an observer can be given of the following
form:

Observer2:
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^y =

^

U (4.47)

The stability of Observer2 can be proven following Gauthieret al. (1992). De-
tails of the proof are outlined in Chapter 5. For FDI a residual can be obtained
using the output (ship speed estimate) of Observer2 and the ship speed measure-
mentU

m

in the following way:

Residual3: r

3

= U

m

�

^

U (4.48)

This residual is only affected by the shaft speed sensor fault� n

sensor

as shown
by the geometric approach. The observer is stable, hence, in the fault-free case
r

3

! 0 for t ! 1 . The residual dynamics can be stated as follows:
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asn
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= n + � n
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equation (4.49) can rewritten as:
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Hence,� n

sensor

affects Residual3. The FDI performance ofr

3

will be demon-
strated by simulation results in the next section.

4.3.2 FDI in pitch loop

The previous section describes the design of two different residual generators
(observers). The resulting residuals can be used for detection and isolation of
the two shaft speed loop faults; however, only when the pitch faults are not
present. This can be seen when looking at Residual1 and Residual3 and the
corresponding dynamics (4.41) and (4.50), because while the system state is
based on the real pitch� the observers use the pitch measurement�

m

. Hence,
this subsection describes an observer design for the pitch loop in order to detect
the two pitch faults� �

sensor

and�

_

�

inc

.

The pitch loop is described by the equations (4.14) - (4.17). They can be stated
as follows when neglecting the measurement noise and the saturation effects:
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(4.51)

For the linear system (4.51) a linear observer can be given in the following way
when neglecting the pitch faults:

Observer3:
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whereu
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= k
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( �

r ef

� �

m

) is considered as input signal. For detection of pitch
faults a residual can be obtained using the output (pitch estimate) of Observer3
and the pitch measurement�

m

in the following way:

Residual4: r
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The fault-free dynamics of Residual4 are given by:
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where it can be seen that stability can be assured by choosing a positiveK

^

�

� �

,
because the dynamics are linear.
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Taking the possible pitch faults� �

sensor

and�

_

�

inc

into account, the following
dynamics can be obtained for the dynamics of Residual4:
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From the dynamics (4.55) it can be seen that Residual4 is affected by both pitch
faults, hence, the residual can be used to detect the pitch faults. The FDI perfor-
mance ofr

4

will be demonstrated by simulation results in the next section.

4.3.3 Adaptive nonlinear observer

Designing an observer for observable systems is not straight-forward. Depend-
ing on the system structure there are different possibilities to design an observer.
Hence, the FDI performance of the different observers can be different from de-
sign to design. This subsection presents a fault detection approach (Blankeet
al. (1998),Blanke and Lootsma (1999)) based on an adaptive nonlinear observer
design given by Cho and Rajamani (1997). Its FDI performance is illustrated by
simulation results in the following section for comparison with the designs given
above.

The observer is designed for the following subsystem describing the torque bal-
ance (4.2):

I

m

_n = Q

eng

� Q

pr op

� Q

f

y = n

m

(4.56)

Neglecting the disturbanceQ

f

(friction torque) and using the known expressions
for Q

eng

and Q

pr op

leads to the following observable subsystem (including the
shaft speed loop faults and considering the pitch loop to be fault-free):

_n =

1

I

m

( k

y

+ � k

y

) Y �

1

I

m

�

Q

j n j V

a

(1 � w ) n U + Q

j n j n

n

2

�

� (4.57)

y = n + � n

sensor

(4.58)

In order to design an adaptive observer for system (4.57) and (4.58) as described
in Cho and Rajamani (1997) the system is stated for the fault-free case as follows:

_x = �( x; u

2

; u

3

) + � u

1

(4.59)

y = x (4.60)
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where

�( x; u
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y

using the measurementsY

m

, U

m

, and�

m

as external inputsu
1

, u

2

, andu

3

.

Then an observer can be designed in the following way:

Observer4:

_
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1

I

m

�

Q

j n j V

a

(1 � w ) ^ n U
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j n j n
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+ L ( n
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(4.61)

^y = ^ n (4.62)

with the parameter update:
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� = p Y

m

( n

m

� ^n ) (4.63)

and ^

�( t = 0) = �

0

. �

0

=

1

I

m

k

y

describes the nominal value for parameter�

in the fault-free case. Stability of Observer4 is proven in Blankeet al. (1998).

Observer4 estimates the shaft speed and adapts to the actual value of the param-
eter� . Hence, two different residuals can be generated for FDI:

Residual5: r

5

= n

m

� ^n (4.64)

and

Residual6: r

6

= �

nom

�

^

� (4.65)

Obviously, parameter� changes in the propulsion system when a diesel engine
gain fault occurs;�

actual

=

1

I

m

( k

y

+ � k

y

) . This will clearly affect Resid-

ual6, because^

� ! �

actual

, when no other faults occur, due to the design of
Observer4. Hence, the following relations hold for Residual6:
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(4.66)
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m
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m

� ^n ) = � p Y

m

( n + � n

sensor

� ^n ) (4.67)
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The equations (4.66) and (4.67) illustrate that Residual6 is affected by both shaft
speed loop faults,� k

y

and� n

sensor

, whenY

m

6= 0 .

For Residual5 the following dynamics can be derived:
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(4.68)

Obviously, Residual5 is also affected by both shaft speed loop faults,� k

y

and
� n

sensor

. The FDI performance of Observer4 will be demonstrated by simula-
tion results in the next section.
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4.4 Simulation results

Section 4.3 describes the design of four different observers (residual generators).
Furthermore, it shows how to generate six different residuals by using the system
outputs (measurements) and the observer outputs (output estimates). This sec-
tion presents simulation results obtained by applying these residual generators to
the simulation model of the ship propulsion system (described in Section 4.1).
For the fault simulation the fault scenario described in Section 4.1.3 is consid-
ered.

In the simulations all four faults given in Table 4.1 (page 54) are simulated to
test the FDI performance of the different residuals. The total simulation time
is 3500 sec and the faults occur at the in Table 4.4 given points of time. This
sequence is used to provide the possibility to compare the obtained results with
those obtained by other FDI approaches.

First, simulation results are given showing the ship propulsion system’s behav-
ior in the fault-free and in the faulty case. Then simulation results illustrate the
residuals’s behavior and sensitivity to the different faults. Section 4.4.4 takes a
closer look at the residuals’s performance and how they can be used to obtain
successful FDI.

4.4.1 Ship propulsion system in the fault-free case

For the simulations the �xed maneuver de�ned for the ship propulsion bench-
mark is considered. It has a duration of3500 sec . During this maneuver the ship
is accelerated three times and decelerated once.

The corresponding reference signals for the lower-level controln

r ef

and�

r ef

are
provided by the upper-level control. They are shown in Figure 4.5. The resulting
measurements of shaft speedn

m

, pitch �

m

, ship speedU

m

, and fuel indexY

m

(without measurement noise) are given in Figure 4.6 for the fault-free case.
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Figure 4.5: Reference signalsn

r ef

and�

r ef

provided by the upper-level control.

4.4.2 Ship propulsion system in the faulty case

For the faulty case all faults are simulated as described by Table 4.4. The re-
sulting measurements are shown in Figure 4.7. The fault effects can be seen by
comparing the measurements with those for the fault-free case given in Figure
4.6.
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Figure 4.6: Measured shaft speedn

m

, pitch �

m

, ship speedU

m

, and fuel index
Y

m

in the fault-free case (without measurement noise).








































































































































































































































