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Abstract

The main result of this paper is an upper bound on the number ofindependent sets in a tree in terms
of the order and diameter of the tree. This new upper bound is arefinement of the bound given by
Prodinger and Tichy [Fibonacci Q., 20 (1982), no. 1, 16-21].Finally, we give a sufficient condition for
the new upper bound to be better than the upper bound given by Brigham, Chandrasekharan and Dutton
[Fibonacci Q., 31 (1993), no. 2, 98–104].

1 Introduction

Given a graphG, a subsetS ⊆ V (G) is said to be independent, if no two vertices ofS are adjacent inG.
We follow the notation given by Jou and Chang (2000), that is,the set of all independent sets of a graph
G is denoted byI(G) while the cardinality ofI(G) is denoted byi(G). For undefined concepts the reader
may refer to Diestel (1997).

Erdös and Moser were the first to study the problem of determining the number of maximal independent
sets in a graph and it is now well-studied. For a survey on thisresearch area see Jou and Chang (1995)
and Jou and Chang (2000). Along the same line, Prodinger and Tichy (1982) considered the problem of
determiningi(G). They proved the following result.

Theorem 1.1 (Prodinger and Tichy, 1982)
For any treeT on n vertices,fib(n + 2) ≤ i(T ) ≤ 2n−1 + 1. Moreover,i(T ) = fib(n + 2) if and only if
T ≃ Pn, andi(T ) = 2n−1 + 1 if and only if T ≃ K1,n−1.

Herefib(n) denotes thenth Fibonacci number, which is defined inductively byfib(0) := 0, fib(1) := 1
andfib(n) := fib(n − 1) + fib(n − 2) for n ≥ 2.

Lin and Lin (1995) considered the problem of determining thetreesT with large or small value of the graph
parameteri(T ). That is, Lin and Lin characterized all treesT of ordern ≥ 8 with 2n−2 + 7 ≤ i(T ) ≤
2n−1 + 1 and they showed thati(T ) ≥ 2fib(n) + 3fib(n − 3) for any treeT 6≃ Pn.

For any graphG on n vertices, the power set ofV (G) has cardinality2n and thereforei(G) ≤ 2n. Obvi-
ously, equality is obtained only ifG consists ofn isolated vertices.

Observation 1.2
Let G denote a graph and letH denote any spanning subgraph ofG. Theni(G) ≤ i(H).

Using this observation together with Theorem 1.1, we find that any connected graphG onn vertices has at
most2n−1 + 1 independent sets, that is, at most half the nonempty subsetsof V (G) are independent sets.
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Observation 1.3
If G is a graph with componentsG1, . . . , Gk, theni(G) =

∏k
i=1 i(Gi).

This observation gives the following result.

Proposition 1.4
Let G denote a graph. Ifi(G) is a prime number, thenG is connected.

Proposition 1.5
Let G denote a connected graph and letx denote any vertex ofG. Theni(G) < 2i(G − x)

Proof. Let x denote any vertex ofG and lety denote a neighbour ofx. We may writeI(G) = A ∪ B,
whereA consists of the independent sets ofG, which containx, andB consists of the independent sets of
G, which do not containx. Observe thatB is equal to the set of independent sets ofG − x.

Every setA − {x} ∈ A is also a member ofB and so|A| ≤ |B|. But {y} ∈ B corresponds to no set
A − {x} ∈ A. Thus,|A| < |B| andi(T ) = |A| + |B| < 2|B|.
The main theorem of this paper states thati(T ) ≤ fib(d) + 2n−dfib(d + 1) for any treeT of ordern ≥ 2
and diameterd. Moreover, we determine the trees for which equality occurs. In order to prove this theorem
we need some preliminary results about a certain type of trees, which we call brooms.

2 Brooms

For any triple of integers(n, d, k) whered ≥ 3, n ≥ d + 1 and1 ≤ k ≤ n− d, let Bn,d,k denote the graph
constructed fromPd−1 : x1 . . . xd−1 by attachingk pendant edges atx1 andn + 1 − k − d pendant edges
at xd−1. The graphsBn,d,k are calledbrooms and, in particular,Bn,d,1 andBn,d,n−d are calledsimple
brooms. Thus,Bn,d,k is a tree of ordern and diameterd, and it contains precisely two stemsx1 andxd−1

with k andn − k − d + 1 =: k′ leaves, respectively. Note thatn = k + k′ + d − 1 andBn,d,k ≃ Bn,d,k′ .
As an example, the broomB12,5,5 is shown in Figure 1.

x5

x3x2x1

x0

x4

Figure 1: The broomB12,5,5.

Lemma 2.1
For any pair of integers(n, d) whered ≥ 3, n ≥ d + 1,

i(Bn,d,1) = i(Bn,d,n−d) = fib(d) + 2n−dfib(d + 1).

Proof. SinceBn,d,1 andBn,d,n−d are isomorphic, we need only considerBn,d,n−d. LetPd+1 = x0x1 . . . xd

denote a diametrical path ofBn,d,n−d. Any independent set ofBn,d,n−d, which does not containx1,
can be constructed by choosing some of then − d leaves atx1 (possibly none) and some independent
set of thePd−1-component ofBn,d,1 − x1. Thus, there are2n−di(Pd−1) = 2n−dfib(d + 1) indepen-
dent sets ofBn,d,n−d, which does not containx1. The number of independent sets ofBn,d,n−d, which
containx1, is equal to the number of independent sets ofBn,d,n−d − N [x1] ≃ Pd−2. It follows that
i(Bn,d,n−d) = 2n−dfib(d + 1) + fib(d).

Theorem 2.2
For any triple of integers(n, d, k) whered ≥ 3, n ≥ d + 1 and1 ≤ k ≤ n − d,

i(Bn,d,k) = fib(d − 3) +
(

2k + 2k′

)

fib(d − 2) + 2n−d+1fib(d − 1), (1)
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wherek′ = n − k − d + 1. Moreover,

i(Bn,d,k) ≤ fib(d) + 2n−dfib(d + 1), (2)

and equality holds if and only ifk ∈ {1, n− d}.

Proof. First, we count the number of independent sets inBn,d,k. Let Pd+1 : x0x1 . . . xd denote the
underlying path such thatx1 denotes the stem withk leaves andxd−1 denotes the stem withk′ = n− d +
1 − k leaves.

Any independent set inBn,d,k, which do not containx1, can be constructed by choosing some of the leaves
atx1 and choosing some independent set of theBn−k−1,d−2,1-component ofBn,d,1 − x1. Thus, there are
2ki(Bn−k−1,d−2,1) distinct independent subsets ofBn,d,k which do not containx1.

Clearly, the number of independent sets inBn,d,k, which containsx1, is equal to the number of independent
sets inBn,d,k − N [x1] ≃ Bn−k−2,d−3,1.

Thus,i(Bn,d,k) = 2ki(Bn−k−1,d−2,1) + i(Bn−k−2,d−3,1) and so, by Lemma 2.1,

i(Bn,d,k) = 2k
(

fib(d − 2) + 2n−k−1−(d−2)fib(d − 1)
)

+

fib(d − 3) + 2n−k−2−(d−3)fib(d − 2)

= 2k
(

fib(d − 2) + 2k′

fib(d − 1)
)

+ fib(d − 3) + 2k′

fib(d − 2)

= fib(d − 3) +
(

2k + 2k′

)

fib(d − 2) + 2k+k′

fib(d − 1).

Hence, (1) is established. Next we establish inequality (2). By (1),

i(Bn,d,1) = fib(d − 3) +
(

2 + 2n−d
)

fib(d − 2) + 2n−d+1fib(d − 1),

and so in order to establish (2), we need only that2k + 2n−d+1−k < 2 + 2n−d for every integerk, where
1 < k < n − d. Let a := n − d. The required inequality follows by a bit of arithmetic;

k < a =⇒
2k < 2a =⇒

(2k−1 − 1)2k+1 < (2k−1 − 1)2a+1 =⇒
22k + 2a+1 < 2a+k + 2k+1 =⇒

2k + 2a+1−k < 2a + 2 =⇒
2k + 2n−d+1−k < 2n−d + 2.

Thus, inequality (2) holds and equality occurs if and only ifk ∈ {1, n− d}. This completes the proof.

Corollary 2.3
For any tree of ordern and diameterd, where1 ≤ d ≤ 3,

i(T ) ≤ fib(d) + 2n−dfib(d + 1). (3)

Furthermore,

(i) if d = 1, thenT ≃ K2 and equality holds in(3).

(ii) If d = 2, thenT ≃ K1,n−1 and equality holds in(3)

(iii) If d = 3, thenT ≃ Bn,3,k for some pair of positive integers(n, k), where1 ≤ k ≤ n − 3, and
equality holds in(3) if and only if k ∈ {1, n− 3}.
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Proof. Statements (i) and (ii) are easily verified and statement (iii) follows from Theorem 2.2.

The following result shows that ifn is kept fixed, theni(Bn,d,1) is a strictly decreasing function ofd.

Proposition 2.4
For anyd ≥ 3 andn ≥ d + 1,

i(Bn,d,1) < i(Bn,d−1,1)

Proof. The inequality is proved by the following calculation.

1 < 2n−d =⇒
fib(d − 2) < 2n−dfib(d − 2) =⇒

fib(d) − fib(d − 1) < 2n−d (2fib(d) − fib(d + 1)) =⇒
fib(d) + 2n−dfib(d + 1) < fib(d − 1) + 2n−(d−1)fib(d) =⇒

i(Bn,d,1) < i(Bn,d−1,1).

3 An Upper Bound on the Number of Independent Sets in a Tree

In this section we give an upper bound on the number of independent sets in a tree. The bound is a function
of the order and the diameter of the tree, and it is optimal in the sense that, given any pair of integers(n, d),
where1 ≤ d ≤ n − 1, there exist a treeT of ordern and diameterd such thati(T ) equals the bound.

Theorem 3.1
Let T denote a tree of ordern ≥ 2 and diameterd. Then

i(T ) ≤ fib(d) + 2n−dfib(d + 1) = i(Bn,d,1) (4)

and equality occurs if and onlyT ≃ Bn,d,1.

Proof. We apply induction on the order of the tree. LetTn,d denote a tree onn ≥ 2 vertices and with
diameterd. If n ≤ 4, then the diameter ofTn,d is at most three and so by Corollary 2.3 the statement is
true. Hence we may assume thatn ≥ 5 and that the statement is true for any tree with less thann vertices.
By Corollary 2.3, we may also assume thatd ≥ 4.

Let P : y1, x1x2x3 . . . xd denote a longest path inTn,d. Let Y denote the set of leaves atx1 and let
k = |Y | ≥ 1. Note thatk ≤ n − d andk = n − d if and only if Tn,d is a simple broom.

Let H1 = Tn,d − {y1} andH2 = Tn,d − (Y ∪ {x1}). We observe thati(Tn,d) = i(H1) + 2k−1i(H2).
Sinced ≥ 4 bothH1 andH2 contain at least two vertices and so the induction hypothesis may be applied
to these graphs.

(i) Fork = 1 we find thatH1 has diameterd1 ≥ d−1 and ordern−1 whileH2 has diameterd2 ≥ d−2
and ordern − 2. The induction hypothesis, along with Proposition 2.4 and Lemma 2.1, implies

i(H1) ≤ i(Bn−1,d1,1) ≤ i(Bn−1,d−1,1) = fib(d − 1) + 2(n−1)−(d−1)fib(d) and

i(H2) ≤ i(Bn−2,d2,1) ≤ i(Bn−2,d−2,1) = fib(d − 2) + 2(n−2)−(d−2)fib(d − 1).

By using the above inequalities along with the inductive definition of the Fibonacci numbers, we
obtaini(Tn,d) ≤ fib(d) + 2n−dfib(d + 1). Moreover, equality can only occur if bothH1 andH2

are simple brooms with diametersd − 1 andd − 2, respectively. Consequently, bothx1 andx2 have
degree two inTn,d, implying thatTn,d is also a simple broom.
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(ii) For k ≥ 2 we find thatH1 has ordern − 1 and diameterd while H2 has ordern2 := n − k − 1 and
diameterd2 ≥ d − 2. The induction hypothesis, along with Proposition 2.4, gives us the following
inequalities.

i(H1) ≤ i(Bn−1,d,1) = fib(d) + 2n−1−dfib(d + 1) and

i(H2) ≤ i(Bn2,d2,1) ≤ i(Bn2,d−2,1) = fib(d − 2) + 2(n−k−1)−(d−2)fib(d − 1).

We use the above inequalities to derive an upper bound fori(Tn,d).

i(Tn,d) ≤ fib(d) + 2n−d−1fib(d + 1) + 2k−1fib(d − 2) + 2k−12(n−k−1)−(d−2)fib(d − 1)

= fib(d) + 2n−d−1fib(d + 1) + 2k−1fib(d − 2) + 2n−dfib(d − 1). (5)

In Lemma 2.1 we have an expression for the number of independent sets in a simple broom. Us-
ing this, along with the inductive definition of the Fibonacci numbers, the following expression is
obtained through simple calculations.

i(Bn,d,1) = fib(d) + 2n−d−1fib(d + 1) + 2n−d−1fib(d − 2) + 2n−dfib(d − 1). (6)

Now the inequalityk ≤ n − d together with (6) and (5) impliesi(Tn,d) ≤ i(Bn,d,1). Moreover, if
equality occurs then we must havek = n − d, that is,Tn,d ≃ Bn,d,1.

In each case we have proved thati(Tn,d) ≤ i(Bn,d,1) and that equality occurs if and only ifTn,d is
isomorphic toBn,d,1. Hence the proof is complete.

4 A Comparative Study of Two Upper Bounds for i(T )

It is easy to show that the upper bound in Theorem 3.1 is betterthan the bound in Theorem 1.1. In the
following we compare the upper bound in Theorem 3.1 with an upper bound given by Dutton et al. (1993).

Theorem 4.1 (Dutton et al., 1993)
Let T denote a nontrivial tree onn vertices. Letβ1 denote the matching number ofT . Then

i(T ) ≤ 2

3
2n

(

3

4

)β1

+ 2β1−1 =: h(n, β1).

Now the question is which of the upper boundsg(n, d) := fib(d) + 2n−dfib(d + 1) andh(n, β1) is better.
The main result of this section gives a sufficient condition for the boundg in Theorem 3.1 to be better than
the boundh in Theorem 4.1.

Theorem 4.2
Let T denote a tree of ordern and diameterd ≥ 3. Let β1 denote the matching number ofT . If d >
0.68n + 3, theng(n, d) < h(n, β1).

The proof of Theorem 4.2 is established through a few lemmas.To simplify notation we writeβ instead of
β1.

Lemma 4.3
For pairs of integersn ≥ 2 andβ ∈ {1, . . . , ⌊n/2⌋},

h(n, β) < h(n, β − 1).
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Proof. A bit of arithmetic establishes the desired inequality.

β ≤ n

2
=⇒

β <
7n

10
− 2

10
=⇒

β <
n ln(2)

ln(8/3)
+

ln(8/9)

ln(8/3)
=⇒

ln
(

(8/3)β
)

< n ln(2) + ln(8/9) =⇒
(

8

3

)β

< 2n 8

9
=⇒

2β

(

4

3

)β

<
2n+1

3

4

3
=⇒

2β

4
<

2n+1

3

(

3

4

)β
1

3
=⇒

2β

(

1

2
− 1

4

)

<
2n+1

3

(

3

4

)β (
4

3
− 1

)

=⇒

2n+1

3

(

3

4

)β

+ 2β−1 <
2n+1

3

(

3

4

)β
4

3
+ 2β−2 =⇒

h(n, β) < h(n, β − 1).

Corollary 4.4
For any integern ≥ 2 andβ ∈ {1, . . . , ⌊n/2⌋},

h(n, β) ≥ h(n, n/2).

It is well-known that thenth Fibonacci number may be written as

fib(n) =
(1 +

√
5)n − (1 −

√
5)n

2n
√

5
. (7)

See for instance Redmond (1996). Using (7) and the Triangle Inequality we obtain the following result.

Lemma 4.5
For any positive integern,

(1 +
√

5)n

2n
√

5

(

1 − 1

2n

)

≤ fib(n) ≤ (1 +
√

5)n

2n
√

5

(

1 +
1

2n

)

.

Finally, we are able to give a proof of Theorem 4.2.

Proof of Theorem 4.2. Observe that

g(n, d) < 2n−dfib(d) + 2n−dfib(d + 1) = 2n−dfib(d + 2).

Sinced ≥ 3, we have(1 + 1
2d+2 ) < 17

16 and so, according to Lemma 4.5,

fib(d + 2) <

(

1 +
√

5

2

)d+2
17

16
√

5
.
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By Corollary 4.4,

h(n, β) ≥ h(n, n/2) =
2

3
2n

(

3

4

)n/2

+ 2n/2−1 >
2

3
(
√

3)n.

Thus, to proveg(n, d) < h(n, β) it suffices to prove

2n−d

(

1 +
√

5

2

)d+2
17

16
√

5
<

2

3
(
√

3)n. (8)

Define

x := ln

(

51(1 +
√

5)2

128
√

5

)

, y := ln

(

1 +
√

5

4

)

and z := ln

(√
3

2

)

.

We note thaty ≈ −0.212, (−x/y) ≈ 2.9433 < 3 andz/y ≈ 0.6787 < 0.68. By the hypothesis we have
d > 0.68n + 3, therefored > nz/y − x/y. Using this, we derive inequality (8).

d > nz/y − x/y =⇒
x + dy < nz =⇒

exp(x) exp(y)d < exp(z)n =⇒

51(1 +
√

5)2

128
√

5

(

1 +
√

5

4

)d

<

(√
3

2

)n

=⇒

2n+1

3

3 · 17

4 · 2 · 16

(1 +
√

5)2√
5

(

1 +
√

5

4

)d

<
2n+1

3

(√
3

2

)n

=⇒

2n17

2d16
√

5

(

1 +
√

5

4

)d+2

<
2

3
(
√

3)n,

which is the desired inequality (8).

5 A Table of Trees with Less Than Nine Vertices

When studying the behavior of the graph parameteri on the class of trees, it is very helpful to have a list of
all non-isomorphic trees of “small” order. Such lists may befound in Harary (1969) and Read and Wilson
(1998). All the trees of order≤ 8 are listed below along with the value of the graph parameteri. The
numeration of the trees follows that of Read and Wilson (1998).

It follows from Figure 6 that two non-isomorphic treesT1 andT2 may satisfyi(T1) = i(T2).

T1
i = 2

T2
i = 3

T3
i = 5

Figure 2: The trees with1, 2 or 3 vertices.

T4
i = 9

T5
i = 8

T6
i = 17

T7
i = 14

T8
i = 13

Figure 3: The trees with4 or 5 vertices.
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i = 33
T9 T10

i = 26
T11

i = 24

T12
i = 22

T13
i = 23

T14
i = 21

Figure 4: The trees with6 vertices.

T15
i = 65 i = 50

T16 T17
i = 44

T18
i = 43

T19
i = 40

T20
i = 41

T21
i = 38

T22
i = 37

T23
i = 36

T24
i = 35

T25
i = 34

Figure 5: The trees with7 vertices.

i = 129
T26

i = 98
T27

i = 89
T28

i = 80
T29

T30
i = 83 i = 76

T31
i = 77
T32

i = 70
T33

i = 68
T34

i = 66
T35

i = 69
T36

i = 66
T37

i = 62
T38

i = 62
T39

i = 65
T40 T41

i = 64
T42

i = 60
T43

i = 61

T44
i = 60

T45
i = 57

T46
i = 58

T47
i = 59

T48
i = 55

Figure 6: The trees with8 vertices.

6 Concluding Remarks

In this paper we have obtained an optimal upper bound ofi(T ) in terms of the order and diameter of the tree
T . The analogous problem of obtaining an optimal lower bound of i(T ) in terms of the order and diameter
is still open.
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