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Abstract

The main result of this paper is an upper bound on the numbiedependent sets in a tree in terms
of the order and diameter of the tree. This new upper boundrefiaement of the bound given by
Prodinger and Tichy [Fibonacci Q., 20 (1982), no. 1, 16-Flpally, we give a sufficient condition for
the new upper bound to be better than the upper bound givemighia@n, Chandrasekharan and Dutton
[Fibonacci Q., 31 (1993), no. 2, 98-104].

1 Introduction

Given a graphz, a subseS C V(@) is said to be independent, if no two verticesSbére adjacent iri.
We follow the notation given by Jou and Chang (2000), thathis,set of all independent sets of a graph
G is denoted by[(G) while the cardinality of(G) is denoted by (G). For undefined concepts the reader
may refer to Diestel (1997).

Erd6s and Moser were the first to study the problem of detenmithe number of maximal independent
sets in a graph and it is now well-studied. For a survey onréggarch area see Jou and Chang (1995)
and Jou and Chang (2000). Along the same line, Prodinger ey T1982) considered the problem of
determiningi(G). They proved the following result.

Theorem 1.1 (Prodinger and Tichy, 1982)
For any tredl’ onn verticesfib(n + 2) < i(T) < 2"~! + 1. Moreover;i(T) = fib(n + 2) if and only if
T~ P,,andi(T) =2""' + 1ifand only if T ~ K ,,_1.

Herefib(n) denotes thesth Fibonacci number, which is defined inductively b§ib(0) := 0,fib(1) := 1
andfib(n) := fib(n — 1) + fib(n — 2) forn > 2.

Lin and Lin (1995) considered the problem of determiningtthesI” with large or small value of the graph
parametei (7). That is, Lin and Lin characterized all tre@sof ordern > 8 with 2"~2 + 7 < §(T) <
2"~! + 1 and they showed thatT') > 2fib(n) + 3fib(n — 3) for any treel” # P,.

For any graphG onn vertices, the power set &f (G) has cardinality2™ and thereforé(G) < 2™. Obvi-
ously, equality is obtained only @& consists of: isolated vertices.

Observation 1.2
LetG denote a graph and Iéf denote any spanning subgraphafTheni(G) < i(H).

Using this observation together with Theorem 1.1, we find aimg connected grap# onn vertices has at
most2"~! + 1 independent sets, that is, at most half the nonempty subkgta~) are independent sets.



Observation 1.3
If G is a graph with componen€s,, . . ., Gy, theni(G) = Hle i(Gy).

This observation gives the following result.

Proposition 1.4
LetG denote a graph. IifG) is a prime number, the@ is connected.

Proposition 1.5
LetG denote a connected graph andiletenote any vertex @f. Theni(G) < 2i(G — x)

Proof. Letz denote any vertex off and lety denote a neighbour af. We may writel(G) = A U B,
whereA consists of the independent setafwhich containe, and3 consists of the independent sets of
G, which do not contain:. Observe tha3 is equal to the set of independent set&:0f .

Every setd — {z} € A is also a member oB and so|A| < |B|. But {y} € B corresponds to no set
A —{x} € A. Thus,|A| < |B|andi(T) = | A| + |B| < 2|B]. [ |
The main theorem of this paper states #{dt) < fib(d) + 2"~ ?fib(d + 1) for any treeT of ordern > 2
and diameted. Moreover, we determine the trees for which equality ocduarsrder to prove this theorem
we need some preliminary results about a certain type o tieleich we call brooms.

2 Brooms

For any triple of integerén, d, k) whered > 3,n > d+1andl < k < n —d, let B, 4, denote the graph
constructed fronP;_; : x;1 ... x4—1 by attachingc pendant edges at andn + 1 — k — d pendant edges
atxzq_1. The graphsB, 4 are calledbrooms and, in particularB,, 4,1 and B, 4.,—q are calledsimple
brooms. Thus,B,, 4.1 is a tree of order. and diameted, and it contains precisely two stems andz—1
with k andn — k — d 4+ 1 =: k&’ leaves, respectively. Note that= k + k' + d — 1 andB,, 4.5 =~ By, a,k’-
As an example, the brootf; 5 5 is shown in Figure 1.

v @y w3 @y
N 5

Figure 1: The broomBi25 5.

Lemma 2.1
For any pair of integeré, d) whered > 3,n > d + 1,

i(Bna1) = i(Bn.an_d) = fib(d) + 2" %fib(d + 1).

Proof. SinceB,, 4,1 andB,, 4,,—q are isomorphic, we need only considgy 4 ,,—q4. Let Py = xoz1 ... 24
denote a diametrical path d8,, 4,,—q. Any independent set oB,, 4 ,—q, Which does not contain,
can be constructed by choosing some of the d leaves atr; (possibly none) and some independent
set of theP;_;-component ofB,, 41 — z1. Thus, there are"~4i(P;_1) = 2" ib(d + 1) indepen-
dent sets ofB,, 4 ,—q4, Which does not contaim;. The number of independent setsBf, ;,,—q4, wWhich
containzy, is equal to the number of independent setsBafy ,—q — N[z1] ~ Pi_». It follows that
i(Bn.dn—a) = 2"~ ib(d + 1) + fib(d). |

Theorem 2.2
For any triple of integerén, d, k) whered > 3,n > d+ 1 andl <k <n —d,

i(Bn.a) = fib(d — 3) + (2’“ + 2k’) fib(d — 2) + 2"+ fib(d — 1), @)
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wherek’ =n — k — d + 1. Moreover,
i(Bn,a,x) < fib(d) + 2" ¥fib(d + 1), 2
and equality holds if and only i € {1,n — d}.

Proof. First, we count the number of independent set$Bing ;. Let Piy1 : xoz1 ...z denote the
underlying path such that; denotes the stem withleaves and:,_; denotes the stem with = n — d +
1 — k leaves.

Any independent set i3, 4 1., which do not contair;, can be constructed by choosing some of the leaves
atz, and choosing some independent set offhe ;1 4—2,1-component oB,, 41 — x1. Thus, there are
2%i(By,—k—1.4—2.1) distinct independent subsets Bf, 4 » which do not contair; .

Clearly, the number of independent setdlin ; 1, which contains:;, is equal to the number of independent
sets ian,d,k — N[l‘l] ~ Bn—k—2,d—3,1-

ThUS,i(Bn,dJC) = Qk’i(Bn_k_Ld_Q,l) + ’L'(Bn_k_gjd_gjl) and so, by Lemma 2.1,
i(Buay) = 2 (ﬁb(d —9) 4 2k 1=V (g — 1)) +
fib(d — 3) + 2" *F 2= (d=3fip(d — 2)
= ok (ﬁb(d —2) + 2 fib(d — 1)) + fib(d — 3) 4 2" fib(d — 2)
— fib(d—3) + (2’c + 2’“’) fib(d — 2) + 257F fib(d — 1).
Hence, (1) is established. Next we establish inequality§2)1),

i(Bn,a1) = fib(d — 3) + (24 2""%) fib(d — 2) 4+ 2"~ fib(d — 1),

and so in order to establish (2), we need only tat- 2" —4*t1-% < 2 4 27— for every integek, where
1 <k <n-—d. Leta:=n — d. The required inequality follows by a bit of arithmetic;

k < a =
2k < 20—
(2871 — )2kt < 2kl — )20t —
22k + 2a+1 < 2a+k + 2k+1 R
oF poatl=k 9149 —
2k g ondtioh < gnmd g g

Thus, inequality (2) holds and equality occurs if and only i {1,n — d}. This completes the proofl

Corollary 2.3
For any tree of order and diameted, wherel < d < 3,

i(T) < fib(d) + 2"%fib(d + 1). (3)
Furthermore,
() if d =1, thenT ~ K5 and equality holds i3).
(i) If d =2, thenT ~ K, ,,_; and equality holds i{3)

(iii) If d = 3, thenT ~ B, 3 for some pair of positive integefs., k), wherel < k < n — 3, and
equality holds in(3) ifand only ifk € {1,n — 3}.



Proof. Statements (i) and (ii) are easily verified and statemeipfg¢ilows from Theorem 2.2. ]
The following result shows that # is kept fixed, theri(B,, 4,1) is a strictly decreasing function df

Proposition 2.4
Foranyd > 3 andn > d + 1,
i(Bn,d,1) < i(Bn,d-1,1)

Proof. The inequality is proved by the following calculation.

on—d —

2"~ fib(d — 2) =

2"~ (2fib(d) — fib(d + 1)) =
fib(d — 1) + 2"~ 4= Vfib(d) —
i(Bna—1.1)-

1
fib(d — 2)
fib(d) — fib(d — 1)
fib(d) + 2"~ ib(d + 1)
)

AN N NN

3 An Upper Bound on the Number of Independent SetsinaTree

In this section we give an upper bound on the number of indégetrsets in a tree. The bound is a function
of the order and the diameter of the tree, and it is optimdiésense that, given any pair of integersd),
wherel < d < n — 1, there exist a tre& of ordern and diameted such that(7") equals the bound.

Theorem 3.1
LetT denote a tree of order > 2 and diameted. Then

i(T) < fib(d) + 2"~ ib(d + 1) = i(Bp.a.1) (4)
and equality occurs if and onlyy ~ By, 4.1.

Proof. We apply induction on the order of the tree. L&t ; denote a tree on > 2 vertices and with
diameterd. If n < 4, then the diameter df,, 4 is at most three and so by Corollary 2.3 the statement is
true. Hence we may assume that 5 and that the statement is true for any tree with less thaertices.

By Corollary 2.3, we may also assume that 4.

Let P : yi,z12223 ... x4 denote a longest path i, 4. Let Y denote the set of leaves af and let
k =1Y] > 1. Note thatt < n — d andk =n — d if and only if T}, 4 is a simple broom.

LetHy = Ta — {y1} andHy = T), 4 — (Y U {x1}). We observe thak(T}, ;) = i(H1) + 2*~1i(H>).
Sinced > 4 both H; andH> contain at least two vertices and so the induction hypoghesaly be applied
to these graphs.

() Fork = 1we find thatH; has diameted; > d—1 and orden — 1 while H> has diameteds > d—2
and ordem — 2. The induction hypothesis, along with Proposition 2.4 apthina 2.1, implies

i(Hi) < i(Bp-1,411) <i(Bn-1,4-1,1) = fib(d — 1) + 2= D==Dfib(d) and

i(Hy) < i(Bp-2.d51) < i(Bn-2d-21) = fib(d — 2) + 2D~ =2fib(d — 1).
By using the above inequalities along with the inductive rdgéin of the Fibonacci numbers, we
obtaini(T,, 4) < fib(d) + 2"~ 4fib(d + 1). Moreover, equality can only occur if bott; and Ho

are simple brooms with diametefs- 1 andd — 2, respectively. Consequently, bath andxz, have
degree two i}, 4, implying that7;, 4 is also a simple broom.



(i) For k > 2 we find thatH; has orden. — 1 and diameted while Hs has ordern, :=n — k — 1 and
diameterd, > d — 2. The induction hypothesis, along with Proposition 2.4 ggius the following
inequalities.

< i(Bp-1,41) = fib(d) + 2" 7%ib(d + 1) and
i(Hy) < i(Bnys) < i(Bnya—o1) = fib(d — 2) + 20~ F=D=(d=2fpg — 1),
We use the above inequalities to derive an upper bound1or,).
i(Tpq) < fib(d)+ 2" Hib(d 4 1) 4+ 287 Hib(d — 2) + 2k~ 12(n=k=D=(d=2 {7 — 1)
fib(d) + 2"~ Hib(d + 1) + 287 fib(d — 2) + 2" 4fib(d — 1). (5)

In Lemma 2.1 we have an expression for the number of indepersd¢s in a simple broom. Us-
ing this, along with the inductive definition of the Fibonanombers, the following expression is
obtained through simple calculations.

i(Bn,a,1) = fib(d) + 2"~ Mib(d + 1) + 2"~ 9" Hib(d — 2) + 2"~ %fib(d — 1). (6)

Now the inequalityk < n — d together with (6) and (5) implie§T,, 4) < i(B,,q4,1). Moreover, if
equality occurs then we must hake= n — d, thatis, T, q ~ By, 4.1-

In each case we have proved thél, ;) < i(B,q,1) and that equality occurs if and only %, 4 is
isomorphic toB,, 4,1. Hence the proof is complete. [ |

4 A Comparative Study of Two Upper Boundsfor i(7)

It is easy to show that the upper bound in Theorem 3.1 is btger the bound in Theorem 1.1. In the
following we compare the upper bound in Theorem 3.1 with goepound given by Dutton et al. (1993).

Theorem 4.1 (Dutton et al., 1993)
LetT denote a nontrivial tree am vertices. Let3; denote the matching numberBf Then

B1
i(T) < Zon <§> + 2571 = h(n, ).

Now the question is which of the upper bounds, d) := fib(d) + 2"~%fib(d + 1) andh(n, 3, ) is better.
The main result of this section gives a sufficient conditionthe bound; in Theorem 3.1 to be better than
the bound in Theorem 4.1.

Theorem 4.2
Let T denote a tree of order and diameterl > 3. Let 3; denote the matching number Of If d >
0.68n + 3, theng(n,d) < h(n, 1).

The proof of Theorem 4.2 is established through a few lemif@msimplify notation we write3 instead of

fr.

Lemma 4.3
For pairs of integers > 2 andg € {1,...,|[n/2]},

h(n,B8) < h(n, B —1).



Proof. A bit of arithmetic establishes the desired inequality.

g < grf
™m 2
b < w10
nin(2)  In(8/9)
b In(8/3)  In(8/3)

In((8/3)") < nln(2)+1n(8/9) =
g
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3 4 3
h(n,B8) < h(n,B-1).
|
Corollary 4.4
For any integen > 2 and € {1,...,|n/2]},
h(n,B) > h(n,n/2).
It is well-known that thenth Fibonacci number may be written as
fib(n) = L VO = (L= V5)" 7)

27/
See for instance Redmond (1996). Using (7) and the Triamgiguality we obtain the following result.

Lemma 4.5
For any positive integet,

5 (1 g swn U2 (11 1)

Finally, we are able to give a proof of Theorem 4.2.
Proof of Theorem 4.2. Observe that

g(n,d) < 2"~ ib(d) + 2"~ ib(d + 1) = 2"~ ib(d + 2).

Sinced > 3, we have(l + ) < 1 and so, according to Lemma 4.5,

d+2
1+ \/5> 17

ﬁb(d+2)<< 5 ™G



By Corollary 4.4,

n/2

Thus, to provey(n, d) < h(n, () it suffices to prove

et (LVBY T2 ®
2 16v5 3 '

(514 V5)? o (1+V5 (V3
x.—ln<w>, y.-ln( 1 ) and z.—ln<7>.

We note thaty =~ —0.212, (—z/y) =~ 2.9433 < 3 andz/y ~ 0.6787 < 0.68. By the hypothesis we have
d > 0.68n + 3, therefored > nz/y — x/y. Using this, we derive inequality (8).

Define

V

d nzfy—z/y =
r+dy < nz =
exp(z)exp(y)? < exp(z)" =

511+ v5)2 (1+v5\" o (3
1285 4

2n+1 3.17 (1+\/5)2 <1+\/g>d 2n+1 (\/g)’n .

3 4.2-16 5 4

d+2
2117 <1+\/3> § g(\/g)n,

2416v/5 4

which is the desired inequality (8). ]

5 A Tableof Treeswith Less Than Nine Vertices

When studying the behavior of the graph paraméterthe class of trees, it is very helpful to have a list of
all non-isomorphic trees of “small” order. Such lists mayftwend in Harary (1969) and Read and Wilson
(1998). All the trees of ordex 8 are listed below along with the value of the graph paramet&he
numeration of the trees follows that of Read and Wilson (3998

It follows from Figure 6 that two non-isomorphic tre€s andT> may satisfyi(T1) = i(T5).

. o oo
1 T2 T3
i=2 i=3 i=5

Figure 2: The trees withl, 2 or 3 vertices.

T4 T5 T8
i=9 i=8 = = i=13

T6 7
i=17 i=14

Figure 3: The trees witht or 5 vertices.



X 7= <

79 T10 T11

i=33 i=26 i=24
Q—Q—I—o—- : oo o oo
T12 T13 T14
=22 i=23 i=21

Figure 4: The trees witl6 vertices.

e

T18
i=43

17
i=44
721
i=38

! {

i=37
723 T24 T25
i=36 i=35 i=34

2t
X

T15 T16

i =65

i
X

T19 720
i =40 i=41

Figure5: The trees wittv vertices.

T26 T27 T28 729
=129 i=98 i =89 i=80
T30 T31 T32 733
i=83 =76 =17 i=T70
T34 T35 736
i=68 i =66 i=069
T37 T38 T39 T40 T41 T42 T43
i =66 i =62 i=062 i =065 i=064 i=60 i=61
T44 T45 T46 T47 T48
i =060 i=57 i=58 i=59 i=55

Figure 6: The trees witl8 vertices.

6 Concluding Remarks

In this paper we have obtained an optimal upper bouridfof in terms of the order and diameter of the tree
T. The analogous problem of obtaining an optimal lower boundB) in terms of the order and diameter
is still open.
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