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Abstract

This paper considers spatial count data from an agricultural field ex-
periment. Counts of weed plants in a field have been recorded in a
project on precision farming. Interest is in mapping the weed intensity
so that the dose of herbicide applied at any location can be adjusted to
the amount of weed present at the location. We elaborate on a link be-
tween state space models and Markov random fields. The observations
are modelled as independent Poisson counts conditional on a Gaussian
Markov random field. We employ the fact that the model may be
written as a state space model which may be analysed by combining
approximate Kalman filter techniques with importance sampling.

1 Introduction

We analyse a data set kindly put to our disposal by Danish Institute of Agricul-
tural Sciences. The data were collected in connection with a project in precision
farming at the Danish Institute of Agricultural Sciences. Counts of weed plants
on a field were recorded in 1993, 1994 and 1995. Interest is in mapping the weed
intensity so that the dose of herbicide applied at any location can be adjusted
to the amount of weed present at the location.

Along with the weed counts, 11 explanatory variables were also measured.
Among these variables, Christensen et al. [2000] found that the intensity of
weed was related to the percentage of organic matter in the soil and that there
is a north-south decreasing trend in the data. Here, we model the relation be-
tween counts of the species Viola arvensis in year 1994 and the two explanatory
variables.

The weed counts are displayed in Figure 1, using the actual values. Missing
values are shown with a star, and zero counts are not shown. The horizontal
axis in Figure 1 corresponds to the ploughing direction, and the counts are
observed within 0.25m? circular frames with spacing 20m. The five contiguous
missing values in the rows 4—6 from the top correspond to a peat bog.

As in Christensen and Waagepetersen [2002], we have transformed the two ex-
planatory variables. The explanatory variable measuring the percentage of or-
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Figure 1: Counts of weed plants at locations with spacing 20m. Unobserved
points are marked by “*”. Zero counts are not printed. Darker regions mean
higher concentration of weed. The ploughing direction is left-right.

ganic matter in the soil was first transformed using a logit transformation, then
the average was subtracted and, finally, the values were divided by the maxi-
mum value. The second explanatory variable is the second coordinate of the
sites, corresponding to the north-south trend. The variable was transformed by
subtracting the average and dividing by the largest value.

The data were first presented and analysed by Walter et al. [1997]. In Chris-
tensen and Waagepetersen [2002], the data set was analysed using Markov chain
Monte Carlo (MCMC) methods. They used Langevin-Hastings updates to sim-
ulate from the posterior distribution of a generalised linear mixed model. The
random effects were modelled by a spatial stationary Gaussian field and, con-
ditional on this field, the weed counts were assumed to be independent Poisson
observations.

Our model is based on a Poisson observation model conditional on a Gaussian
Markov random field and assumes non-stationary spatial random effects. The
methodology described here is thus an alternative to the approach in Christensen
and Waagepetersen [2002].

Lavine [1999] showed that a Gaussian Markov random field model may be writ-
ten in the form of a state space model. We elaborate on this and express the
Poisson-Gaussian model as a non-Gaussian state space model. Then, we may
use Kalman filter techniques for making inference. For basic references on state
space methodology, see Harvey [1989], West and Harrison [1997] and Durbin
and Koopman [2001]. Our approach is not based on MCMC methods, but on
iterated extended Kalman smoothing, which may be combined with importance
sampling for exact simulation, see Durbin and Koopman [2000]. Using this
method, we avoid the MCMC problems of ensuring that the Markov chain is



mixing well and assessing whether the chain has converged or not.

The programmes used in the analysis are available from www.math.aau.dk/
~dethlef/PhD and have been written using R (see R Development Core Team
[2003]).

2 Model for Spatial Count Data

The data are arranged on an I x J grid, where I = 14 and J = 20. Let y;;
be the weed count in site ij corresponding to the location (20 - (15 —4),20 - j),
where ¢ = 1,...,I is the row index and j = 1,...,J is the column index. The
indexing begins in the upper left corner in Figure 1. Let 6;; be the unobserved
random effect at site ij. The weed counts for row ¢ are collected in the vector
y; with corresponding unobserved vector 6;.

As prior model for the vector 8 = (6;);=1,... 1, we use a Markov random field
given by Besag [1974],

1
p(0) x exp <—20TP0> , (1)
where P is the IJ x IJ precision matrix

P=72T;21,+7%1;® Ty,

with ~ -
1 -1 0 0
-1 2
o2 —1
0 -~ 0 -1 1],

The parameter 72 measures the smoothness of the Markov random field, and is
estimated by maximum likelihood estimation. Note that the distribution in (1)
is improper, since the precision matrix is singular. Our interest is, however, in
the posterior distribution p(@|y), which is proper in our case.

Let Z;rj be the 2-dimensional row vector containing the covariates measured at
location ij: The second coordinate and the percentage of organic matter. Let
B = (B1,02) be the corresponding vector of coefficients. We aim at assessing
the posterior distribution of B and assign the prior distribution

p(B) ~ N (0,100 - I). (2)

We assume that the observations are independent Poisson observations condi-
tional on @ and S,
Hij
—
Yi;1(0,8) ~ Po(exp(z;8 + 0,))- (3)
——
Xij

Here, p1;; denotes the weed intensity.



3 State Space Formulation in Gaussian Case

Our aim is to write the model given by (1)-(3) as a non-Gaussian state space
model. However, first we treat the case with the Gaussian observation model,

yil(8:,8) ~ N(Z] B+ 6;, %),

where the design matrix Z; has ziTj in the jth row. Lavine [1999] showed that
in this Gaussian case, the model can be expressed as a Gaussian state space
model, evolving following the rows.

Yi Z/B+6,\ [= 0
(Xi> ‘ (0:,8) NN[( Ho, ), {O 721J1H

0,10;—1 ~ N(0,-1,7°1;)

p(61) 1,
where
1 -1 0 0
H— 0 1
.o —-1 0
0 0 1 -1

Thus y, are the observed rows, 6, are the corresponding latent variables and
x; are so-called pseudo observations. The analysis of the model is carried out
conditional on the pseudo observations being observed to zero as this ensures the
equivalence of the state space model with the Markov random field model. In
other words, p(8|x = 0) is the Markov random field prior (1) and p(8|x = 0,y)
is the posterior.

If we introduce a more compact notation, letting Y; = (y;,x;), ©; = (6;,03),
we may write the model as

Y@ ~ N(F/O,V)
0,0,1 ~ N(©O;,_1,W,;)
Oy ~ N(mg,Cy),

where

r [ 1 z] =0
Fi_[H 0] VZ_[O 721}

21 0]

Wi:[ 0 0

The Kalman filter recursively yields p(©;|D;), the conditional distribution of
®; given all information available, D;, at current row ¢,

R,
a; ?
. —_—
®i|Di71 ~ ./\/'(mi,l,Ci,l + "Vl)



f; Q,
—~ ——
Y:|Di_1 ~ N(F/ a;, F/ R;F; + V)

A,
—
©;|D; ~ N(a; + R;F;Q; ' (Y; — ), Ri — A, QA ).

Assessment of the state vector, ©;, using all available information, Dy, is called
Kalman smoothing and we write (©;|Dy) ~ N (m;, (sz) Starting with m; = m;
and 61 = Cj, the Kalman smoother is a backwards recursion, i =1 —1,...,1,
with

m; =m; + B;(m 1 —a;41)

and B _
C;=C;+B;(Cit1 — Ri+1)B;-r,

where B; = CiR;_fl. It is often computationally faster to use the mathemati-
cally equivalent disturbance smoother, see Koopman [1993].

The log likelihood function for a vector of hyperparameters 1, e.g. 72 and
components of 3;, is given by

W) =D logp(yilyr,- - ¥i-1, %)

=1
1 - * * (12
=33 {loelail+ Iyl | (@

where 7 and Q] are the first J components of f; and Q, that corresponds to
y;» and ||x]|4 = x" Xx and c is a constant. The log likelihood for a given value
of ¥ can thus be obtained directly from the Kalman filter. The expression (4)
can then be maximised numerically yielding the maximum likelihood estimate.

4 State Space Formulation of the Poisson-Gaussian
Model

In the weed count application, the observation model is not Gaussian and the
result of Lavine [1999] cannot be applied directly. However, we may combine
the result with the framework of Durbin and Koopman [2001]. Amongst other
models, they treated state space models with observations from the exponen-
tial family, including the Poisson case. Following their approach, we linearise
the observation model and use the Kalman smoother iteratively to obtain an
approximating Gaussian state space model. The procedure is called iterated
extended Kalman smoothing. The approximating Gaussian state space model
has the same posterior mode and curvature at the mode as the non-Gaussian
model.



At coordinate level, we write the non-Gaussian state space model as

Hij
—_—
Yijl(0:,8) ~ PO(QXP(Z;':B‘F@M)) (5)
—_———
Ay
zij|(0i5,0i541) ~ N(0ij — 011,77 (6)
0:10i-1; ~ N(0i—1,,7%). (7)

As initialization, we have used
p(6g) ~ N (0,100 - T)

Theoretically, the prior for 8y should be improper, but we have not implemented
this feature and expect, that the above prior will behave similarly.

~(0 ~(0
To linearise the observation model, we use initial values ﬁ( ) and 01(- ). In the
~(k—1
kth iteration of the iterated extended Kalman smoother, we assume that ﬁ( )

~(k=1) .
and 0, are given. Let

~(k—1
Ay

7

_ ZTB(kfl) i bf(k*l)

~ (k
and let Vl(» ) be a diagonal matrix with

7R _ exp(—Xﬁf’l))

¥

Ek) be a vector with jth element gg’?) =

as jth diagonal element. Finally, let y
~(k—1 =k

)‘z(‘j )+ Vzg )yij -1

We now have the matrix form of the approximating state space model

CONGE)[a TIE)S 2]
(B0 )= (% ) [

which is analysed using the Kalman smoother conditional on x; = 0. When the
Kalman smoother is iterated until convergence, we obtain an approximating
state space model with the same posterior mode and curvature at the mode as
the non-Gaussian model (5)—- (7), see Durbin and Koopman [2001].

We have not made any action towards eliminating edge effects arising from
choosing a Markov random field as a prior. One way of eliminating the effect
would be to put extra frames of missing values around the measured area as
suggested by Besag and Higdon [1999].

5 Results

The parameter 72 was estimated using maximum likelihood estimation. As an

approximation to the likelihood, we have used the log likelihood (4) from the
approximating state space model.



We used the maximizer optimize in R and chose [—10,10] as the interval for
log 7. Using broader intervals, we ran into numerical difficulties. The resulting
estimate was 72 = 2.32-10~° and an approximate log likelihood of —460. The
maximum was obtained on the edge of the interval given, but we have chosen
to retain this estimate.

Figure 2: Posterior mean of random effects.

Using the iterated extended Kalman smoother with the maximum likelihood
estimate for 72, we get

B = 213
By = 2.42.

These estimates are within the reported 95% credible intervals from Christensen
and Waagepetersen [2002], respectively ]1.84,3.08] and ]0.82,2.94].

The average of the posterior mean of the random effects, 6;;, we call the inter-
cept, and we estimate this to be —0.543, which is just beyond the estimated
95% credible interval | —0.41,0.67[ from Christensen and Waagepetersen [2002].

The estimated random effects are shown in Figure 2. The values are very small
and the effect is negligible compared with the effect of the covariates. The
random effects were not reported in Christensen and Waagepetersen [2002].

The posterior mean of the weed intensity is shown in Figure 3. This map can
be used by the farmer to adjust the dose of herbicide applied at the different
locations on the field.



Figure 3: Posterior mean of weed intensity.

6 Discussion

In this paper we have formulated a model for the analysis of spatial count data.
Our analysis has been based on the approximative analysis by the iterated
extended Kalman smoother. The approximating state space model can be used
as importance density to provide exact sampling of quantities of interest, but
we have not implemented this.

Writing Markov random field models as state space models following Lavine
[1999], makes it possible to use Kalman filter techniques to extend and analyse
more complex Markov random field models. In Dethlefsen [2002] it is shown
how the methodology may be adopted for restoring digital images with focus
on finding edges in the image. However, the new class of models also have
applications within agricultural experiments, see e.g. Besag and Higdon [1999]
and within disease mapping, see e.g. Knorr-Held and Rue [2002].

Our results in the weed count analysis are very close to the results reported by
Christensen and Waagepetersen [2002], but we conclude that the effect of the
two explanatory variables overshadows the random effects. However, we had
problems finding the maximum likelihood estimate and must be cautious in our
conclusions.
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