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Abstract

The present paper considers discrete probability models with exact

computational properties. In relation to contingency tables this means

closed form expressions of the maksimum likelihood estimate and its dis-

tribution. The model class includes what is known as decomposable graph-

ical models, which can be characterized by a structured set of conditional

independencies between some variables given some other variables.

We term the new model class decomposable log-linear models, which

is illustrated to be a much richer class than decomposable graphical mod-

els. It covers a wide range of non-hierarchical models, models with struc-

tural zeroes, models described by quasi independence and models for level

merging. Also, they have a very natural interpretation as they may be

formulated by a structured set of conditional independencies between two

events given some other event. In relation to contingency tables we term

such independencies as context specific independencies.

Key words: decomposable model, log-linear model, exact inference,

context specific independence, quasi independence, level merging, incom-

plete contingency table.

1 Introduction

The central issue of this paper is to study discrete probability models with exact
computational properties. We explore the structure of what we will call decom-
posable log-linear models and describe how exact inference can be performed.

Decomposable graphical models for contingency tables is a well studied class of
models and was originally introduced by Haberman (1970) in connexion with
hierarchical log-linear models. The interpretation in terms of Markov prop-
erties attached to undirected graphs is due to Darroch et al. (1980), whereas
exact results on distributional properties of estimators were given by Sundberg
(1975). A rigourous and comprehensive treatment of the subject may be found
in Lauritzen (1996).
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In recent years there has been a growing interest in non-hierarchical modelling
for contingency tables, where we allow that interactions may vanish in cer-
tain contexts. A subclass of these models focus on Markov properties and are
often called context specific independence models. Some recent papers are Wer-
muth and Cox (1998), Teugels and Van Horebeek (1998), Højsgaard (2004)
and Corander (2003), where the latter uses a labelled graph to display context
specific independence. Also within the computer science community, the ideas
have gathered substantial interest, e.g. illustrated by Poole and Zhang (2003)
and Rosen et al. (2004).

Another area of relevance to context specific independence in contingency tables
is level merging, which have recently been considered in Dellaportas and Forster
(1999).

Finally, we mention the analysis of contingency tables with structural zeroes,
also known as incomplete contingency tables. The socalled block-stairway tables
introduced by Bishop et al. (1975) is an example of a decomposable log-linear
model. The structure is intimately related to models for quasi independence,
when quasi independence actually can be interpreted in terms of conditional
independencies of events. A recent work on such structures is given by Ra-
pallo (2003), where the algebraic structure is used for developing simulation
algorithms.

Most applications of decomposable log-linear models are related to contingency
tables, but the formulation is free of ”coordinates”, as we do not explicitly
connect the outcome structure to some given factors.

The framework is intimately related to the concept of conditional independence
- but not in terms of some predefined factors. Rather, the models can be fully
specified by a set of conditional independence statements between two events
given another event.

2 Preliminaries and notation

We start by establishing some notation and definitions of fundamental concepts.
In order to motivate these we give a simple but hopefully illustrative example.

Example 2.1. Consider 3 binary variables A,B,C taking values {−,+}. Define

• v∗ = {V = ∗} when V ∈ {A,B,C} and ∗ ∈ {−,+}.

• V = {v−, v+} when V ∈ {A,B,C}, i.e. we allow that the variable is
identified with its corresponding events.

We study the model where B and C are independent given {A = +} = a+. If
a ∧ b denotes intersection of events a and b then we may state the assumption
as

P (a+ ∧ b∗ ∧ c∗) =
P (a+ ∧ b∗)P (a+ ∧ c∗)

P (a+)
b∗ ∈ B, c∗ ∈ C
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with the convention that 0·0
0 = 0. The crucial point to note is the factorization

in terms of probabilities of events, and we want to explore the structure of these
events.

Define

• a+V = {a+ ∧ v|v ∈ V }, V ∈ {B,C}.

• a∗BC = {a∗ ∧ b∗ ∧ c∗|b∗ ∈ B, c∗ ∈ C}, a∗ ∈ A.

• ABC = a−BC ∪ a+BC.

Then the outcome space ABC is the union of mutually disjoint events in a−BC
and a+BC. Furthermore, a+B and a+C both form a decomposition of a+ into
disjoint subevents, and

a+BC = {b ∧ c|b ∈ a+B, c ∈ a+C}

We may say that a+B, a+C form a cartesian product that spans a+BC.

�

The crucial points to emphasize is the decomposition of ABC into a−BC and
a+BC and the representation of a+BC as a cartesian product of a+B and a+C.
This should motivate the following definitions.

Definition 2.1.

Subsequently, we consider a finite set Ω, which we denote the outcome space.
Any subset of Ω is called an event. When a and b are events in Ω we use a∧ b
to denote their intersection.

A non empty set A of events is defined to be a paving on Ω.

If A and B are pavings on Ω, then we define the wedge product of pavings

A ∧ B to be all non empty events of the form a ∧ b, where a ∈ A and b ∈ B.

If A and B are pavings on Ω such that A∧ B = ∅, then we say that A ∪ B is a

direct sum of pavings and we use the notation A ⊕ B to denote the union of
pavings with empty wedge product.

A factor f on Ω is a set of disjoint events in Ω.

When f is a factor, we use s(f) to denote the union of the events in f .

Two factors f and g on Ω are cartesian factors if

a ∧ b 6= ∅, a ∈ f, b ∈ g

and we let f⊗g denote the wedge product of cartesian factors. �

Example 2.2. Turning back to example 2.1 we consider the factors

• f0 = a−BC, f1 = a+B and f2 = a+C.
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and we may represent the outcome space Ω = ABC as

Ω = f0 ⊕ (f1⊗f2)

Next let a ⊆ Ω and define

P (a)ω =

{

P (a) if ω ∈ a

1 otherwise

If we define the pavings A = f0 ∪ f1 ∪ f2 and S = {a+} then it is easily seen
that we may represent the distribution of (A,B,C) as

P ({ω}) =

∏

a∈A P (a)ω

∏

s∈S P (s)ω
ω ∈ Ω

We call a+ a separating event and note that it is attached to the cartesian
product f1⊗f2 and fulfills

P (a+) = P (s(f1)) =
∑

a∈f1

P (a) =
∑

a∈f2

P (a) = P (s(f2))

i.e. the probability of the separator is easily derived from events in A. �

Example 2.3. Let us consider a slightly more complicated example with 4
binary variables A,B,C,D where we suppose

• D is independent of C given (A,B) and D is independent of B given a+.

• C is independent of B given a+ and C is independent of A given b+.

Define events and factors

• e− = a− ∧ b− and e+ as the complementary event to e−.

• f1 = e−C and f2 = e−D are cartesian with separator e−.

• f3 = a+B and f4 = a+D are cartesian with separator a+.

• If f5 = a−b+D and f6 = e+C then (f3⊗f4)⊕ f5 and f6 are cartesian with
separator e+.

Also we may represent Ω = ABCD as

Ω = (f1⊗f2) ⊕ (((f3⊗f4) ⊕ f5)⊗f6)

Furthermore, if A is the union of f1, . . . , f6 and S = {a+, e−, e+} then one may
verify that

P ({ω}) =

∏

a∈A P (a)ω

∏

s∈S P (s)ω
ω ∈ Ω
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E.g. when A = + this reads

P (a+b∗c∗d∗) =
P (a+b∗)P (a+d∗)P (e+c∗)

P (a+)P (e+)

�

The crucial point to note is that the complete distribution is easily recovered
from knowing the probabilities of the events in A. Evidently, the distribution
can be characterized by allowing a factorization in terms of numbers attached to
events in A. So we aim at studying distributions with factorization properties.

2.1 Factorization of distributions

In order to describe the general structure we introduce some more notation and
concepts.

Definition 2.2.

Let A be a paving on Ω.

By σ(A) we denote the smallest σ-algebra containing A. Since A is finite, then
σ(A) is actually an algebra, which we call the algebra of A.

By the atoms of A denoted α(A), we mean the minimal elements of σ(A)\{∅},
when we consider the partial order given by set inclusion. �

The object of study is distributions - or equivalently - probability measures
on σ(A). We note that a distribution P can be characterized by the numbers
P (c), c ∈ α(A), i.e. the probabilities on atoms. We continue to tell what we
mean by factorization.

Definition 2.3.

Let A be a paving on Ω.

If a is an event in A ∪ {Ω} and λa is a non negative number we define the
quantity λc

a, c ∈ α(A) by

λc
a =

{

λa if c ⊆ a

1 otherwise

i.e. we assign the number λa to the atoms of the event a.

A distribution P on σ(A) is said to factorize w.r.t. A if we can find positive
numbers {λa|a ∈ A ∪ {Ω}} such that

P (c) =
∏

a∈A∪{Ω}

λc
a, c ∈ α(A)
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M(A) denotes the set of distributions that factorize w.r.t. A. We call M(A) a
log linear model on Ω since

log(P (c)) =
∑

a∈A∪{Ω}

βa1a(c) c ∈ α(A)

where βa = log(λa) and 1a(c) is the function indicating whether or not c is a
subset of the event a. So we can think of log(P ) as a linear combination of
indicator functions on α(A).

We let L(A) denote the vector space spanned by the above indicator functions,
i.e.

L(A) = span{1c|c ∈ A ∪ {Ω}}

By Σ(A) we denote all events, which has an indicator function belonging to
L(A), i.e.

Σ(A) = {c ∈ σ(A)|1c ∈ L(A)}

By the generator corresponding to A denoted γ(A), we mean the minimal
elements of Σ(A)\{∅}, when we consider the partial order given by set-inclusion.
�

Intuitively, the following proposition should be no surprise. The proof is deferred
to appendix A.2.

Proposition 2.1. Let A be a paving on Ω.

Then M(A) = M(Σ(A)) = M(γ(A)).

We do not consider the problem to actually construct a generator. The problem
is not trivial as illustrated by the next example.

Example 2.4. Let Ω = {1, 2, 3, 4} and consider the paving A = {12, 13, 14},
where we allow 12 to denote the event {1, 2} etc.

Obviously

123 = 1Ω − 114

such that 23 ∈ Σ(A). Furthermore

11 = (112 + 113 − 123)/2

We may conclude that γ(A) = α(A), i.e. the generator is actually the atomic
event. �

About generators we note the following, which should be fairly evident from the
definition.
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Proposition 2.2. Let A be a generator. Then a ∈ Σ(A) is a union of disjoint

events in A. Furthermore we have

• Ω ∈ Σ(A), i.e. Ω is the union of a set of disjoint events in A.

• If a, b ∈ Σ(A) are disjoint, then a ∪ b ∈ Σ(A).

• If a ∈ Σ(A) then the complement Ω− a ∈ Σ(A).

We use the term the set of marginal events in A to denote Σ(A).

Subsequently, we allways assume that A = γ(A), when we consider a model
M(A) and we will speak of a log linear model M(A) with generator A.

Actually, given a generator A we will focus on the extended model, where we
allow the representation to contain zeroes, i.e. we define

Definition 2.4.

Let A be a generator. We then define M(A) to be all distributions on σ(A)
satisfying

P (c) =
∏

a∈A

λc
a, c ∈ α(A)

for some λ(P ) = {λa ≥ 0|a ∈ A}, which we call a representation of P . �

Remark that λΩ is no longer included as a normalizing constant. When A is
a generator, we can by proposition 2.2 find disjoint events A0 ⊆ A, where the
union of these events is Ω. Hence we may absorb λΩ into {λa|a ∈ A0}.

A fundamental property of a distribution P that factorizes w.r.t. A is that the
distribution is uniquely determined, when we know the probabilities P (a), a ∈
A. This may represent a dramatic dimension reduction compared to specifying
P (c), c ∈ α(A). This property is summarized by

Proposition 2.3. Let P,Q ∈M(A). If P (a) = Q(a), a ∈ A then P = Q.

The proof is given in appendix A in a slightly extended version.

The above proposition does not describe how to construct P from P (a), a ∈ A,
and in general this requires what is known as iterative proportional scaling. We
do not pursue this issue, which in a more general setting requires extension of
M(A) such that it is closed, i.e. contains the limits of distributions in M(A).
Instead we consider situations, where exact reconstruction is possible, as this is
the actual focus of this paper.

3 Decomposable models

We are going to describe the setup, which allows an easy reconstruction of
P ∈M(A) from knowing the probabilities of the events in the generator A. We
start by returning to example 2.3.
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Example 3.1. Reconsider the paving A being the union of factors f1, . . . , f6
such that

α(A) = (f1⊗f2) ⊕ (((f3⊗f4) ⊕ f5)⊗f6)

with separators S = {s1, s2, s3} fulfilling

• s1 = s(f1) = s(f2) and s2 = s(f3) = s(f4).

• s3 = s(f6) = s2 + s(f5) and s1 + s3 = Ω.

The crucial point to note is that if we remove any one of f1, f2, f3, f4 or f6,
then we obtain a model with a similar structure. E.g. removing f4 we obtain a
model with atomic structure

α(A \ f4) = (f1⊗f2) ⊕ ((f3 ⊕ f5)⊗f6)

and separators S = {s1, s3}. If P ∈M(A) then we may consider the removal of
f4 as a marginalization of P in the universe s2 and - as we shall see - we obtain
a distribution in M(A \ f4) . �

The example above calls for some more definitions.

Definition 3.1.

A factor f on Ω is said to be a complete factor on Ω if s(f) = Ω.

A generator A on Ω is said to be a complete generator if A is a complete
factor.

Let A be a paving and α a complete factor. If A ⊆ σ(α) this is denoted by
A ≤ α.

A factor f ⊆ A is said to be simplicial in A if s(f) ∈ Σ(A \ f) and we have
the atomic structure

α(A \ f) = α0 ⊕ α1 (1)

α(A) = α0 ⊕ f⊗α1 (2)

The paving A is said to be decomposable if either A is complete or A has a
simplicial factor f such that A \ f is a decomposable paving. The factor f is
said to be a terminal factor in A.

Suppose that A is a decomposable paving. Clearly, this means that A can be
split into a sequence (f1, . . . fk) of subsets such that fi is a terminal factor in

i
∪

j=1
fj , i = 2, . . . , k.

We denote the sequence to be a perfect sequence of factors in A.

Suppose that A is a decomposable paving with (f1, . . . fk) as a perfect sequence
of factors. Let si = s(fi+1), i = 1, . . . , k − 1.

These events are called separators.

We denote (s1, . . . sk−1) to be a numbering of the separators of A. �
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Example 3.2. Reconsider example 3.1 with atomic structure

α(A) = (f1⊗f2) ⊕ (((f3⊗f4) ⊕ f5)⊗f6)

and separators S = {s1, s2, s3} fulfilling

• s1 = s(f1) = s(f2) and s2 = s(f3) = s(f4).

• s3 = s(f6) = s2 + s(f5) and s1 + s3 = Ω.

One example of a perfect sequence is (f1 ⊕ f3 ⊕ f5, f2, f4, f6) with (s1, s2, s3) as
a numbering of separators.

An alternative is (f2 ⊕ f6, f4 ⊕ f5, f3, f1) with (s3, s2, s1) as a numbering of
separators. �

Example 3.3. Let f = ⊕3
i=1fi and g = ⊕2

j=1gj be complete and cartesian
factors on Ω. Suppose that events in

N = (f1⊗g1) ⊕ (f3⊗g2)

have probalitity zero. This is an example of the socalled block-stairway incom-
plete table in Bishop et al. (1975). To avoid trivialities, we assume that all of
the fi, gj factors contain more that one event. Define

• Ω∗ = Ω \N .

• f∗i = fi ∧ Ω∗ , i = 1, 2, 3 and g∗j = gj ∧ Ω∗ , j = 1, 2.

• A0 = (∪3
i=1f

∗
i ) ∪ (∪2

j=1g
∗
j ).

One might be tempted to think that A0 is a generator, but remark that

s(f∗1 ) = s(f1) ∧ s(g2)

s(g∗2) = s(f1) ∧ s(g2) + s(f2) ∧ s(g2)

and hence we need to include a22 = s(f2)∧ s(g2) in a generator. Similarly, since
a22 ⊂ s(f2) we include a21 = s(f2)−a22 to get the generator A = A0∪{a21, a22}.
The atoms may be represented as

α(A) = (g∗1 ⊗ (({a21} ⊗ f∗2 )) ⊕ f∗3 ) ⊕ (g∗2 ⊗ (f∗1 ⊕ ({a22} ⊗ f∗2 )))

Both g∗1 and g∗2 are terminal with separators

• s1 = s(g∗1) = a21 + s(f∗3 ) and s2 = s(g∗2) = s(f∗1 ) + a22.

Once these are removed {a21, a22} is terminal with separator s2 = a21 + a22 =
s(f∗2 ) and we end up with the complete factor f∗1 ⊕ f∗2 ⊕ f∗3 . �
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Example 3.4. Let f , g and h be complete and mutually cartesian factors on
Ω. Suppose that f0 ≤ f where each event in f0 corresponds to the union of
two or more events in f . Assume similarly about f1 ≤ f and consider the
decompositions, definition and paving

• f = ⊕a∈f0
fa
0 where s(fa

0 ) = a, a ∈ f0.

• f = ⊕b∈f1
f b
1 where s(f b

1) = b, b ∈ f1.

• Define ga = {a}⊗g, a ∈ f0 and hb = {b}⊗h, b ∈ f1.

• A = f ∪ (f0⊗g) ∪ (f1⊗h) = f ∪ (⊕a∈f0
ga) ∪ (⊕b∈f1

hb).

Then the atomic structure is given by

• α(A) = f⊗g⊗h =
∑

b∈f1
(f b

1⊗g)⊗hb, where hb is terminal with separator

b = s(hb) = s(f b
1⊗h), b ∈ f1.

• α(A \ h) = f⊗g =
∑

a∈f0
(fa

0 ⊗ga), where ga is terminal with separator
a = s(ga) = s(fa

0⊗h), a ∈ f1.

We conclude that A is decomposable with separators S = f0 ∪ f1.

One possible interpretation is that f, g, h represent categorical variables. And
that g is independent of (f, h) conditionally on the aggregation f0 of f , whereas
h is independent of (f, g) conditionally on the aggregation f1 of f .

Clearly, the model is a simple example, but anyhow it represents a structure,
which is more general than Dellaportas and Forster (1999), since we allow that
level merging is depending on local characteristics.

�

The preceeding examples indicate that decomposable log-linear models is a
very general class. Integrating local modelling of context specific independence,
structural zeroes and level merging demonstrates the applicability of decompos-
able log-linear models to a wide class of models, which - as we shall demonstrate
- allow exact inference.

In order to study models associated with decomposable pavings we need the
following, which is proved in appendix A.3.

Theorem 3.1. If A is a decomposable paving then A is a generator.

We have now set the scene for presenting the main theorem about the struc-
ture of decomposable models. The analogous result for decomposable graphical
models is originally due to Haberman (1970), but can also be found in Andersen
(1974). The proof is deferred to appendix C.

Theorem 3.2. Suppose that A is decomposable and let (s1, . . . , sk−1) be a num-

bering of the separators in A.
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Let P ∈M(A) and I = {i|P (si) > 0}. Then

P (c) =

∏

a∈A P (a)c

∏

i∈I P (si)c
c ∈ α(A)

where

P (b)c =

{

P (b) if c ⊆ b

1 otherwise

This finishes our description of decomposable models. We continue to study
inferential aspects.

4 Inference for decomposable models.

The kind of data at hand is represented by a vector nα = {n(a)}a∈α(A). Our
basic assumption is that these data represent a sample, which is modelled by a
multinomial distribution.

Definition 4.1.

Let α be a complete generator. The stochastic vector Nα = {N(a)}a∈α is said to
have a multinomial distribution with probabilities pα = {p(a)}a∈α and sample
size n+ =

∑

a∈α n(a) if

P (Nα = nα) =

(

n+

nα

)

pnα

α =
n+!

∏

a∈α n(a)!

∏

a∈α

p(a)n(a)

We denote this distribution Nα ∼ multα(n+, pα). �

When nα ∈ R
α we extend this to σ(α) by

nα(a) =
∑

c∈a∧α

nα(c) a ∈ σ(α)

Suppose A is a paving such that A ≤ α. Then the A marginal of nα is wellde-
fined as

nA = ΠA(nα) = {n(a)}a∈A

Remark that we allow the shorthand notation nA when no ambiguities are
present.

Concerning estimation in decomposable models we have the following result,
which is proven in appendix C.1.

Theorem 4.1. Suppose A is decomposable with separators (s1, . . . , sk).

Let nα be an observation of Nα ∼ multα(n+, pα) where pα ∈ M(A) and let

I = {1 ≤ i ≤ k|n(si) > 0}.

11



Then the maximum likelihood estimate of pα is given by

p̂(c) =

∏

a∈A n(a)c

n+

∏

i∈I n(si)c
c ∈ α(A) (3)

Subsequently, we describe the distribution of the estimator by characterizing
the distribution of the sufficient ”marginals” in a decomposable model. The
proof is given in appendix C.2.

Theorem 4.2. Let A be a decomposable paving with separators s1, . . . , sk and

let α = α(A). Suppose Nα ∼ multα(n+, pα), where pα ∈M(A). Then

P (NA = nA) =
∏

a∈A

p(a)n(a)

n(a)!

k
∏

i=1

n(si)!

p(si)n(si)

This generalizes the analogous result for decomposable graphical models as pre-
sented in (Sundberg 1975).

Example 4.1. Reconsider example 3.2 with the atomic structure

α(A) = (f1⊗f2) ⊕ (((f3⊗f4) ⊕ f5)⊗f6)

Let f∗i ≤ fi be a binary subfactor of fi, i = 3, 4 and suppose that we want to
test the model extended by including the factor f∗3⊗f

∗
4 against the model given

by A = ∪6
i=1fi.

By theorem 4.1 it is verified that the likelihood ratio test statistic correponds
to testing independence between the ”variables” f∗3 and f∗4 conditionally on the
”universe” s = s(f∗3 ) = s(f∗4 ).

Also - within the framework of full exponential families - the exact test would
be based on the distribution of Nf∗

3
⊗f∗

4
conditionally on NA, and referring to

theorem 4.2, it should be obvious that under the model M(A) we have

P (Nf∗
3
⊗f∗

4
= nf∗

3
⊗f∗

4
|NA = nA) =

∏

a∈f∗
3
∪f∗

4

n(a)!

n(s)!
∏

a∈f∗
3
⊗f∗

4

n(a)!
(4)

This is identified as the hypergeometric distribution for Fisher’s usual exact
test of independence between the binary variables f∗3 and f∗4 within the uni-
verse given by s. Furthermore, we note that Nf∗

3
⊗f∗

4
and NA are conditionally

independent given N(s). �

5 Concluding remarks

We have demonstrated that log-linear decomposable models provide a very flex-
ible framework for integrating knowledge about context specific independence,
structural zeroes, and level merging. And that this integration allows exact
inference in terms of estimation and distribution of estimates.
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Another, very substantial point, in connexion with decomposable graphical
models, is effective algorithms for calculating posterior probabilities, i.e. condi-
tional probabilities of a marginal event given an event specified by the intersec-
tion of a set of generating events. In relation to graphical models for discrete
variables, this problem was originally treated in Lauritzen and Spiegelhalter
(1988), and the algorithms have gathered widespread use in diverse areas, e.g.
illustrated by Xiang (2002) and Storkey (2004). Remarking the similarity be-
tween decomposable log-linear models and decomposable graphical models, it
seems to be straight forward to generalize these results.

Finally, one should mention the challenge to do model selection within the
universe of decomposable log-linear models. Example 4.1 illustrates a basic
step in a forward model selection algorithm, but evidently there is a need for
clever search strategies to limit a search space, which can be prohibitively large.
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A Properties of log linear models

A.1 Proof of proposition 2.3

It turns out that proofs may me simplified by relazing the assumption, that
we are dealing with probability distributions. Instead we consider set functions
representing abstract measures on σ(A) that factorize on α(A), where A is a
generator. We denote these measures by H(A).

Definition A.1.

An element h ∈ H(A) is a function on σ(A) defined by a representation

µ(h,A) = {µa ≥ 0|a ∈ A}

such that

h(c) =
∏

a∈A

µc
a c ∈ α(A)

h(a) =
∑

c∈a∧α(A)

h(c) a ∈ σ(A)

�

Suppose that h, g ∈ H(A) i.e.

h(c) =
∏

a∈A

λc
a c ∈ α(A)

g(c) =
∏

a∈A

µc
a c ∈ α(A)

14



for suitable representations of h and g.

We now consider the situation h(a) = g(a) when a ∈ A and want to show that
h = g.

First of all we show that h and g have common support. Let c0 ∈ α(A) and
assume h(c0) = 0. By the representation of h we conclude that λa = 0 for some
a ∈ A, where c0 ⊆ a. Hence h(c) = 0 for any c ⊆ a, c ∈ α(A) whereby

∑

c∈a∧α(A)

g(c) = g(a) = h(a) =
∑

c∈a∧α(A)

h(c) = 0

such that

h(c) = 0 ⇔ g(c) = 0 c ∈ α(A) (5)

By analogous considerations, it is clear that we may change the representation
such that we obtain

λa = µa = 0 ⇔ h(a) = g(a) = 0 ⇔

{g(c) = h(c) = 0, c ∈ α(A), c ⊆ a} a ∈ A (6)

Next, note that since A is a generator, then - by proposition 2.2 - it has a
factor f such that s(f) = Ω and hence h(Ω) = g(Ω). So actually, we may by
normalization suppose that g and h are probabilities. Let I(h||g) denote the
Kullback Leibler distance between h and g considered as probability densities
on α(A). Then with the usual convention that 0 log( 0

0 ) = 0 and (5), (6) we
obtain

I(h||g) =
∑

c∈α(A)

h(c) log(
h(c)

g(c)
) =

∑

c∈α(A)

h(c) log(
∏

a∈A

λc
a

µc
a

) =
∑

c∈α(A)

h(c)
∑

a∈A

log(
λc

a

µc
a

)

=
∑

a∈A

∑

c∈α(A)

h(c) log(
λc

a

µc
a

) =
∑

a∈A

h(a) log(
λa

µa

) =

∑

a∈A

g(a) log(
λa

µa

) =
∑

a∈A

∑

c∈α(A)

g(c) log(
λc

a

µc
a

) =

∑

c∈α(A)

g(c)
∑

a∈A

log(
λc

a

µc
a

) =
∑

c∈α(A)

g(c) log(
∏

a∈A

λc
a

µc
a

) =

∑

c∈α(A)

g(c) log(
h(c)

g(c)
) = −I(g||h) ≤ 0

such that I(h||g) = 0 and thereby h(c) = g(c), c ∈ α(A). �
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A.2 Proof of proposition 2.1

It should be fairly obvious that

L(γ(A)) ⊆ L(Σ(A)) = L(A)

i.e. we only need to show that if 1c ∈ L(Σ(A)) then 1c ∈ L(γ(A)), which we do
by induction on the number n = |c| of elements in c.

If n = 1 then clearly c is minimal, i.e. c ∈ γ(A). So suppose that n > 1 and
c 6∈ γ(A), i.e. we can find b ∈ γ(A) such that b ⊂ c, whereby 1c−b = 1c − 1b ∈
L(Σ(A)). By induction 1c−b ∈ L(γ(A)) and hence 1c = 1b + 1c−b ∈ L(γ(A)).

A.3 Proof of theorem 3.1

Proof. If A is complete, then the statement should be obvious. So, let f be a
terminal factor in A, A0 = A\ f and suppose that c ∈ γ(A), i.e. c is a minimal
set fulfilling

1c =
∑

a∈A0

λa1a +
∑

b∈f

λb1b (7)

We then need to show that c ∈ A.

By induction on the number of separators we have γ(A0) = A0. Combining
this with the terminality of f means that we can find a factor g in A0 such that
s(g) = s(f). Remark that we can add any constant to {λa}a∈f by subtracting
the same constant from {λa}a∈g. This means that we may assume that

λb ≥ 0, b ∈ f (8)

λb0 = 0 for some b0 ∈ f (9)

Terminality of f also means that

α(A0) = α0 ⊕ α1

α(A) = α0 ⊕ (f ⊗ α1)

s(f) = s(α1)

In general we have that c is the sum of its atoms in α(A), i.e.

1c =
∑

a∈α0

µa1a +
∑

a∈α1,b∈f

µab1a∧b µa ∈ {0, 1}, µab ∈ {0, 1} (10)

Similarly, any a ∈ A0 is the sum of its atoms in α(A0) whereby (7) writes

1c =
∑

a∈α0∪α1

ψa1a +
∑

b∈f

λb1b (11)
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Now, comparing (10) and (11) yields

ψa = µa ∈ {0, 1}, a ∈ α0

ψa + λb = µab ∈ {0, 1}, a ∈ α1, b ∈ f

By the last equation and (9) we obtain that ψa ∈ {0, 1}, a ∈ α1, ie. we actually
have that ψa ∈ {0, 1}, a ∈ α0 ∪ α1. Hence we may rewrite (11) as

1c = 1d +
∑

b∈f

λb1b, d ∈ σ(A0), λb ≥ 0

Obviously, this means that d ⊆ c. If d = c we must have λb = 0, b ∈ f whereby
c ∈ Σ(A0) and by the induction hypothesis this means that c ∈ A0. If d ⊂ c
then we infer that c − d ∈ Σ(A) and minimality of c then means that d = ∅.
Removing 1d from the above equation, it should be obvious from the minimality
of c that c ∈ f .

B Proof of factorization theorem

In order to prove theorem 3.2 we first establish a lemma, which shows that
the factorization property is carried over, when we ”marginalize out” terminal
factors. The lemma is formulated for decomposable pavings, but actually only
exploits the terminality. The set-up is slightly generalized as we extend it to
H(A), i.e. non negative functions that factorize without necessarily summing to
unity.

Lemma B.1. Suppose that A is decomposable and incomplete, let f be a ter-

minal factor and A0 = A \ f .

Let h ∈ H(A) and h0 the restriction of h to σ(A0).

Then h0 ∈ H(A0) and

h(a ∧ b)h(s) = h(a)h0(b) a ∈ f, b ∈ s(f) ∧ α(A0)

Proof. Terminality of f is summarized by the structure

α(A0) = α0 ⊕ α1 (12)

α(A) = α0 ⊕ (f⊗α1) (13)

s = s(f) = s(α1) ∈ Σ(A0) (14)

Let {µa|a ∈ A} be a representation of h.

By (13) we have the factorization

h(c ∧ d) =
∏

a∈f

µc∧d
a

∏

b∈A0

µc∧d
b c ∈ f, d ∈ α1 (15)
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Consider the number µc∧d
b , b ∈ A0, c ∈ f , d ∈ α1.

Now, if d 6⊆ b then b ∧ d = ∅ such that µc∧d
b = µd

b = 1. On the other hand, if
d ⊆ b then ∅ ⊂ c ∧ d ⊆ d, such that we must have µc∧d

b = µd
b = µb.

In summary, we conclude that µc∧d
b = µd

b , when b ∈ A0, c ∈ f , d ∈ α1.

Similarly, µc∧d
a = µc

a, a, c ∈ f , d ∈ α1 which allows us to rewrite (15) as

h(c ∧ d) =
∏

a∈f

µc
a

∏

b∈A0

µd
b c ∈ f, d ∈ α1 (16)

Summing out c ∈ f in (16) and noting d ⊆ s(f) = s yields

h(d) = (
∑

c∈f

∏

a∈f

µc
a)

∏

b∈A0

µd
b d ∈ α1 (17)

So we need to include the term λs =
∑

c∈f

∏

a∈f µ
c
a in the representation of h0.

Since s ∈ Σ(A0) and A0 is a generator by decomposability, then we can choose
g ∈ A0 such that s(g) = s. Define

λa =

{

µa a ∈ A0 \ g

λsµa a ∈ g

and observe that

h0(d) = h(d) =
∏

b∈A0

λd
b d ∈ α1

By (13) it should also be evident that since g∧α0 = ∅ we have the factorization

h0(c) = h(c) =
∏

a∈A0\g

µc
a =

∏

a∈A0\g

λc
a =

∏

a∈A0

λc
a c ∈ α0

i.e. h0 ∈ H(A0).

Next, summing out d ∈ α1 in (16) and noting c ⊆ s(α1) = s yields

h(c) =
∏

a∈A

µc
a(

∑

d∈α1

∏

b∈A0

µd
b ) c ∈ f (18)

Summing out c ∈ f in (18) yields

h(s) = (
∑

c∈f

∏

a∈f

µc
a)(

∑

d∈α1

∏

b∈A0

µd
b ) (19)

It is now easy to combine the above equations to see that

h(c ∧ d)h(s) = h(c)h(d)
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B.1 Proof of theorem 3.2

Again we give a proof in a slightly more general version, where we assume that
h ∈ H(A) and A is decomposable with (f1, . . . , fk) as a perfect sequence.

If I = {1 < i ≤ k|h(s(fi)) > 0} then we intend to show

h(c) =

∏

a∈A h(a)
c

∏

i∈I h(s(fi))c
c ∈ α(A) (20)

The proof is induction on k. If k = 1 the theorem just states that

h(c) =
∏

a∈f1

h(a)c, c ∈ f1

which is trivially true since f1 is a complete factor.

So let k > 1. For notational convenience let s = s(fk) and A0 = A \ fk.

Consider the preceeding lemma, by which we have

h(c) = h0(c) c ∈ α0 (21)

h(c ∧ b)h(s) = h0(c)h(b) c ∈ α1, b ∈ fk (22)

where α(A) = α0 ⊕ (α1⊗fk) and h0 ∈ H(A0) coinsides with h on σ(A0).

If I0 = I \ {k} then by the induction hypothesis we obtain

h0(c) = h(c) =

∏

a∈A0
h(a)c

∏

i∈I0
h(s(fi))c

c ∈ α0 ⊕ α1

where we have exploited that h(a) = h0(a), a ∈ A0.

If c ∈ α0 the result in (20) is obvious since then c ∧ s = ∅, which means that
the contributions attached to fk and s(fk) disappear, so that we have the above
representation of h0.

So let us consider c ∧ b ∈ α1⊗fk. If h(s) = 0 then h(b ∧ c) = h(b) = 0 and
the result follows by noting that h(b) enters the product on the right hand
side of (20). Otherwise, we just need to divide by h(s) in (22) and use the
representation of h0. �

C Properties of estimation

C.1 Proof of theorem 4.1

Let pα ∈M(A) and I(pα) = {1 ≤ i ≤ k|p(si) > 0}.

Then the likelihood is by theorem 3.2 proportional to

L(pα|nα) =
∏

c∈α(A)

p(c)n(c) =

∏

a∈A p(a)
n(a)

∏

i∈I(pα) p(si)n(si)
pα ∈M(A)
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Define the function n∗α on σ(A) by

n∗(c) =

∏

a∈A n(a)c

∏

i∈I n(si)c
c ∈ α(A) (23)

where I = {1 ≤ i ≤ k|n(si) > 0}. We note by section B.1 that

n∗(a) = n(a) a ∈ A (24)

and in particular that n∗(Ω) = n+ since Ω ∈ Σ(A) whereby

p∗α =
n∗α
n+

∈M(A)

Furthermore, it is easy to verify that

L(pα|nα) = L(pα|n
∗
α)

and as L(p∗α|n
∗
α) > 0, this allows us to consider the alternative likelihood

L∗(pα) =
L(pα|n

∗
α)

L(p∗α|n
∗
α)

pα ∈M(A) ∩ {pα|L
∗((pα) ≥ 1}

Hence

log(L∗(pα)) = n+

∑

c∈α(A)

p∗(c) log(
p(c)

p∗(c)
) = −n+I(p

∗
α||pα) (25)

where the Kullback-Leibler distance is minimized when p∗α = pα.

C.2 Proof of theorem 4.2

Induction on k. If k = 1 the result is obvious. Next consider k = 2, i.e. we must
have that A = f0 ∪ f1 ∪ f2 and

α = α(A) = f0 ⊕ (f1⊗f2)

If we let s0 = s(f0) and s1 = s(f1) = s(f2) then Z = (N(s0), N(s1)) is binomial.

If Yi = {N(c)c∈fi
}, i = 0, 1, 2 and X = {N(c)c∈f1⊗f2

} then (Y0, X) are inde-
pendent given Z, and Y0 given Z is multinomial.

Similarly X given Z is multinomial corresponding to a twoway table, where the
model specifies independence, which allows us to conclude independence and
multinomial distributions of (Y1, Y2) conditionally on Z. Piecing this together
gives the prescribed distribution of (Y0, Y1, Y2).

So let k > 2 and f be terminal in A, A0 = A \ f , β = α(A0) = α0 ⊕ α1 and
α = α(A) = α0 ⊕ f⊗α1. We then refer to the case k = 2 to obtain that

P (Nβ = nβ, Nf = nf ) = P (Nβ = nβ)

∏

a∈f p(a)
n(a)

p(s(f))n(s(f))
(26)
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As Nβ is marginal to Nα it is multinomial and by lemma B.1 we obtain that
pβ ∈M(A0).

By the induction assumption we obtain a factorization of P (NA0
) which com-

bined with (26) yields the result, when we note that {NA0
, Nf} = NA.
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