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Learning Conditional Gaussian Networks

Susanne G. Bøttcher

Aalborg University, Denmark

Abstract

This paper considers conditional Gaussian networks. The parameters in the
network are learned by using conjugate Bayesian analysis. As conjugate lo-
cal priors, we apply the Dirichlet distribution for discrete variables and the
Gaussian-inverse gamma distribution for continuous variables, given a con-
figuration of the discrete parents. We assume parameter independence and
complete data. Further, to learn the structure of the network, the network
score is deduced. We then develop a local master prior procedure, for deriv-
ing parameter priors in these networks. This procedure satisfies parameter
independence, parameter modularity and likelihood equivalence. Bayes fac-
tors to be used in model search are introduced. Finally the methods derived
are illustrated by a simple example.

1 Introduction

The aim of this paper is to present a method for learning the parameters and struc-
ture of a Bayesian network with discrete and continuous variables. In Heckerman,
Geiger & Chickering (1995) and Geiger & Heckerman (1994), this was done for
respectively discrete networks and Gaussian networks.

We define the local probability distributions such that the joint distribution of the
random variables is a conditional Gaussian (CG) distribution. Therefore we do not
allow discrete variables to have continuous parents, so thenetwork factorizes into a
discrete part and a mixed part. The local conjugate parameter priors are for the dis-
crete part of the network specified as Dirichlet distributions and for the mixed part
of the network as Gaussian-inverse gamma distributions, for each configuration of
discrete parents.

To learn the structure,D, of a network from data,d, we use the network score,
p(d, D), as a measure of how probableD is. To be able to calculate this score
for all possible structures, we derive a method for finding the prior distribution
of the parameters in the possible structures, from marginalpriors calculated from
an imaginary database. The method satisfies parameter independence, parameter
modularity and likelihood equivalence. If used on networkswith only discrete or
only continuous variables, it coincides with the methods developed in Heckerman
et al. (1995) and Geiger & Heckerman (1994).
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When many structures are possible, some kind of strategy to search for the struc-
ture with the highest score, has to be applied. In Cooper & Herskovits (1992),
different search strategies are presented. Many of these strategies use Bayes fac-
tors for comparing the network scores of two different networks that differ by the
direction of a single arrow or by the presence of a single arrow. We therefore de-
duce the Bayes factors for these two cases. To reduce the number of comparisons
needed, we identify classes of structures for which the corresponding Bayes factor
for testing an arrow between the same two variables in a network, is the same.

Finally a simple example is presented to illustrate some of the methods developed.

In this paper, we follow standard convention for drawing a Bayesian network and
use shaded nodes to represent discrete variables and clear nodes to represent con-
tinuous variables.

The results in Section 2 to Section 7 are also published in Bøttcher (2001).

2 Bayesian Networks

A Bayesian network is a graphical model that encodes the joint probability distribu-
tion for a set of variablesX. For terminology and theoretical aspects on graphical
models, see Lauritzen (1996). In this paper we define it as consisting of

• A directed acyclic graph (DAG)D = (V, E), whereV is a finite set of
vertices andE is a finite set of directed edges between the vertices. The
DAG defines the structure of the Bayesian network.

• To each vertexv ∈ V in the graph corresponds a random variableXv, with
state spaceXv. The set of variables associated with the graphD is then
X = (Xv)v∈V . Often we do not distinguish between a variableXv and the
corresponding vertexv.

• To each vertexv with parents pa(v), there is attached a local probability
distribution,p(xv|xpa(v)). The set of local probability distributions for all
variables in the network is denotedP.

• The possible lack of directed edges inD encodes conditional independen-
cies between the random variablesX through the factorization of the joint
probability distribution,

p(x) =
∏

v∈V

p(xv|xpa(v)).

A Bayesian network for a set of random variablesX is thus the pair(D,P). In
order to specify a Bayesian network forX, we must therefore specify a DAGD
and a setP of local probability distributions.
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3 Bayesian Networks for Mixed Variables

In this paper we are interested in specifying networks for random variablesX of
which some are discrete and some are continuous. So we consider a DAGD =
(V, E) with verticesV = ∆ ∪ Γ, where∆ and Γ are the sets of discrete and
continuous vertices, respectively. The corresponding random variablesX can then
be denotedX = (Xv)v∈V = (I, Y ) = ((Iδ)δ∈∆, (Yγ)γ∈Γ), i.e. we useI andY
for the sets of discrete and continuous variables, respectively. We denote the set of
levels for each discrete variableδ ∈ ∆ asIδ.

In this paper we do not allow discrete variables to have continuous parents. This
e.g.ensures availability of exact local computation methods, see Lauritzen (1992)
and Lauritzen & Jensen (2001). The joint probability distribution then factorizes
as follows:

p(x) = p(i, y) =
∏

δ∈∆

p(iδ|ipa(δ))
∏

γ∈Γ

p(yγ |ipa(γ), ypa(γ)),

whereipa(γ) andypa(γ) denote observations of the discrete and continuous parents
respectively,i.e. ipa(γ) is an abbreviation ofipa(γ)∩∆ etc.

We see that the joint probability distribution factorizes into a purely discrete part
and a mixed part. First we look at the discrete part.

3.1 The Discrete Part of the Network

We assume that the local probability distributions are unrestricted discrete distri-
butions with

p(iδ|ipa(δ)) ≥ 0 ∀ δ ∈ ∆.

A way to parameterize this is to let

θiδ|ipa(δ)
= p(iδ|ipa(δ), θδ|ipa(δ)

), (1)

whereθδ|ipa(δ)
= (θiδ|ipa(δ)

)iδ∈Iδ
.

Then
∑

iδ∈Iδ
θiδ |ipa(δ)

= 1 and0 ≤ θiδ|ipa(δ)
≤ 1. All parameters associated with a

nodeδ is denotedθδ, i.e.θδ = (θδ|ipa(δ)
)ipa(δ)∈Ipa(δ)

.

Using this parameterization, the discrete part of the jointprobability distribution is
given by

p(i|(θδ)δ∈∆) =
∏

δ∈∆

p(iδ|ipa(δ), θδ|ipa(δ)
).
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3.2 The Mixed Part of the Network

Now consider the mixed part. We assume that the local probability distributions are
Gaussian linear regressions on the continuous parents, with parameters depending
on the configuration of the discrete parents. Let the parameters in the distribution
be given byθγ|ipa(γ)

= (mγ|ipa(γ)
, βγ|ipa(γ)

, σ2
γ|ipa(γ)

). Then

(Yγ |ipa(γ), ypa(γ), θγ|ipa(γ)
) ∼ N (mγ|ipa(γ)

+ βγ|ipa(γ)
ypa(γ) , σ2

γ|ipa(γ)
), (2)

whereβγ|ipa(γ)
are the regression coefficients,mγ|ipa(γ)

is the regression intercept,

andσ2
γ|ipa(γ)

is the conditional variance. Thus for each configuration of the discrete

parents ofγ, the distribution ofYγ is Gaussian with mean and variance given as
in (2). There are three special cases of the above situation,namely whenγ has no
discrete parents, when it has no continuous parents and whenit has no parents at
all. If it has no discrete parents, (2) is just the Gaussian distribution,

(Yγ |ypa(γ), θγ) ∼ N (mγ + βγypa(γ) , σ2
γ),

andθγ = (mγ , βγ , σ2
γ). Whenγ has no continuous parents, we have

(Yγ |ipa(γ), θγ|ipa(γ)
) ∼ N (mγ|ipa(γ)

, σ2
γ|ipa(γ)

),

with θγ|ipa(γ)
= (mγ|ipa(γ)

, σ2
γ|ipa(γ)

), i.e. for eachγ, the mean depends solely on

ipa(γ). Finally, whenγ has no parents at all,

(Yγ |θγ) ∼ N (mγ , σ2
γ),

with θγ = (mγ , σ2
γ).

With θγ = (θγ|ipa(γ)
)ipa(γ)∈Ipa(γ)

, the mixed part of the joint distribution can be
written as

p(y|i, (θγ)γ∈Γ) =
∏

γ∈Γ

p(yγ |ipa(γ), ypa(γ), θγ|ipa(γ)
).

3.3 The Joint Network

If we let θ = ((θδ)δ∈∆, (θγ)γ∈Γ), the joint probability distribution forX = (I, Y )
is given by

p(x|θ) =
∏

δ∈∆

p(iδ|ipa(δ), θδ|ipa(δ)
)
∏

γ∈Γ

p(yγ |ipa(γ), ypa(γ), θγ|ipa(γ)
). (3)

It can easily be shown by induction that when the local probability distributions
are given as defined in (1) and (2), the joint probability distribution forX is a CG
distribution with density of the form

p(x|θ) = p(i, y|θ) = p(i)|2πΣi|
− 1

2 exp{−
1

2
(y −Mi)

TΣ−1
i (y −Mi)}.
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For eachi, Mi is the unconditional mean, that is unconditional on continuous vari-
ables andΣi is the covariance matrix for all the continuous variables inthe network.
In Shachter & Kenley (1989) formulas for calculatingΣi from the local probability
distributions can be found.

A Bayesian network, where the joint probability distribution is a CG distribution is
in the following called aCG network.

4 Learning the Parameters in a CG Network

When constructing a Bayesian network there is, as mentionedearlier, two things
to consider, namely specifying the DAG and specifying the local probability dis-
tributions. In this section we assume that the structure of the DAG is known and
the distribution type is given as in the previous section andwe consider the spec-
ification of the parameters in the distributions. For this weneed the concept of
conjugate Bayesian analysis.

4.1 Conjugate Bayesian Analysis

There are several ways of assessing the parameters in probability distributions. An
expert could specify them, or they could be estimated from data. In our approach
we encode our uncertainty about the parameterθ in a prior distributionp(θ), use
data to update this distribution,i.e. learn the parameter and hereby, by using Bayes’
theorem, obtain theposteriordistributionp(θ|data), see DeGroot (1970).

Consider a situation with one random variableX. Let θ be the parameter to be as-
sessed,Θ the parameter space andd a random sample of sizen from the probability
distributionp(x|θ). We calld our database andxc ∈ d a case. Then, according to
Bayes’ theorem,

p(θ|d) =
p(d|θ)p(θ)

p(d)
, θ ∈ Θ, (4)

wherep(d|θ) =
∏

xc∈d p(xc|θ) is the joint probability distribution ofd, also called
the likelihood ofθ. Furthermore the denominator is given by

p(d) =

∫

Θ
p(d|θ)p(θ)dθ,

and for fixedd it may be considered as a normalizing constant. Therefore (4) can
be expressed as

p(θ|d) ∝ p(d|θ)p(θ),

where the proportionality constant is determined by the relation
∫

Θ p(θ|d)dθ = 1.

When the prior distribution belongs to a given family of distributions and the pos-
terior distribution, after sampling from a specific distribution, belongs to the same
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family of distributions, then this family is said to be closed under sampling and
called aconjugate familyof distributions. Further, if a parameter or the distribu-
tion of a parameter has a certain property which is preservedunder sampling, then
this property is said to be aconjugate property.

In a conjugate family of distributions it is generally straightforward to calculate the
posterior distribution.

4.2 Some Simplifying Properties

In the previous section we showed how to update a prior distribution for a single
parameterθ. In a Bayesian network with more than one variable, we also have to
look at the relationship between the different parameters for the different variables
in the network. In this paper we assume that the parameters associated with one
variable is independent of the parameters associated with the other variables. This
assumption was introduced by Spiegelhalter & Lauritzen (1990) and we denote
it global parameter independence. In addition to this, we will assume that the
parameters are independent for each configuration of the discrete parents, which
we denote aslocal parameter independence. So if the parameters have the property
of global parameter independence and local parameter independence, then

p(θ) =
∏

δ∈∆

∏

ipa(δ)∈Ipa(δ)

p(θδ|ipa(δ)
)
∏

γ∈Γ

∏

ipa(γ)∈Ipa(γ)

p(θγ|ipa(γ)
), (5)

and we will refer to (5) simply asparameter independence.

A consequence of parameter independence is that, for each configuration of the
discrete parents, we can update the parameters in the local distributions indepen-
dently. This also means that if we havelocal conjugacy, i.e. the distributions of
θδ|ipa(δ)

andθγ|ipa(γ)
belongs to a conjugate family, then because of parameter in-

dependence, we haveglobal conjugacy, i.e. the joint distribution ofθ belongs to a
conjugate family.

Further, we will assume that the databased is complete, that is, in each case it
contains at least one instance of every random variable in the network. With this
we can show that parameter independence is a conjugate property.

Due to the factorization (3) and the assumption of complete data,

p(d|θ) =
∏

c∈d

p(xc|θ)

=
∏

c∈d





∏

δ∈∆

p(icδ|i
c
pa(δ), θδ|ipa(δ)

)
∏

γ∈Γ

p(yc
γ |y

c
pa(γ), i

c
pa(γ), θγ|ipa(γ)

)



 ,

whereic andyc respectively denotes the discrete part and the continuous part of a
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casexc. Another way of writing the above equation is

p(d|θ) =
∏

δ∈∆

∏

ipa(δ)∈Ipa(δ)

∏

c:icpa(δ)=ipa(δ)

p(icδ|ipa(δ), θδ|ipa(δ)
)

×
∏

γ∈Γ

∏

ipa(γ)∈Ipa(γ)

∏

c:icpa(γ)
=ipa(γ)

p(yc
γ |y

c
pa(γ), ipa(γ), θγ|ipa(γ)

),
(6)

where the product over cases is split up into a product over the configurations of
the discrete parents and a product over those cases, where the configuration of
the discrete parents is the same as the currently processed configuration. Notice
however that some of the parent configurations might not be represented in the
database, in which case the product over cases with this parent configuration just
adds nothing to the overall product.

By combining (5) and (6) it is seen that

p(θ|d) =
∏

δ∈∆

∏

ipa(δ)∈Ipa(δ)

p(θδ|ipa(δ)
|d)
∏

γ∈Γ

∏

ipa(γ)∈Ipa(γ)

p(θγ|ipa(γ)
|d),

i.e. the parameters remain independent given data. We call this propertyposte-
rior parameter independence. In other words, the properties of local and global
independence are conjugate.

Notice that the posterior distribution,p(θ|d), can be found usingbatchlearning or
sequentiallearning. In batch learning,p(θ|d) is found by updatingp(θ) with all
cases ind at the same time,i.e. in a batch. In sequential learning,p(θ) is updated
one case at a time, using the previous posterior distribution as the prior distribution
for the next case to be considered. When the databased is complete, batch learning
and sequential learning leads to the same posterior distribution and the final result
is independent of the order in which the cases ind are processed. It is of course
also possible to process some of the cases in a batch and the rest sequentially,
which could be done ife.g.a new case is added to an already processed database,
see Bernardo & Smith (1994).

4.3 Learning in the Discrete Case

We now consider batch learning of the parameters in the discrete part of the net-
work. Recall that the local probability distributions are unrestricted discrete distri-
butions defined as in (1). As pointed out in the previous section we can, because
of the assumption of parameter independence, find the posterior distribution of
θδ|ipa(δ) for eachδ and each configuration of pa(δ) independently.

So given a specific configuration ofipa(δ), we need to findp(θδ|ipa(δ)
|d). From

Bayes’ theorem, Equation (4), we have that

p(θδ|ipa(δ)
|d) ∝

∏

c:icpa(δ)=ipa(δ)

p(icδ|ipa(δ), θδ|ipa(δ)
)p(θδ|ipa(δ)

). (7)
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A conjugate family for multinomial observations is the family of Dirichlet distri-
butions. So let the prior distribution ofθδ|ipa(δ)

be a Dirichlet distributionD with
hyperparametersαδ|ipa(δ)

= (αiδ |ipa(δ)
)iδ∈Iδ

, also written as

(θδ|ipa(δ)
|αδ|ipa(δ)

) ∼ D(αδ|ipa(δ)
). (8)

The probability function for this Dirichlet distribution is given by

p(θδ|ipa(δ)
|αδ|ipa(δ)

) =
Γ(α+δ|ipa(δ)

)
∏

iδ∈Iδ
Γ(αiδ|ipa(δ)

)

∏

iδ∈Iδ

(θiδ |ipa(δ)
)
αiδ |ipa(δ)

−1
,

whereα+δ|ipa(δ)
=
∑

iδ∈Iδ
αiδ|ipa(δ)

andΓ(·) is the gamma function. Because of
notational convenience, we do not in what follows write the hyperparameters ex-
plicitly in the conditioning.

It then follows from (7) and (8) that the posterior distribution is given as

(θδ|ipa(δ)
|d) ∼ D(αδ|ipa(δ)

+ nδ|ipa(δ)
),

where the vectornδ|ipa(δ)
= (niδ|ipa(δ)

)iδ∈Iδ
, also called the counts, denotes the

number of observations ind whereδ and pa(δ) have that specific configuration.
Notice that, for at given parent configuration, the number ofobservations in a batch,
|b|, is the same asn+δ|ipa(δ)

, wheren+δ|ipa(δ)
=
∑

iδ∈Iδ
niδ|ipa(δ)

.

Because of parameter independence, the joint prior distribution of all the parame-
ters for the discrete variables in the network, is given by the product of the local
parameter priors.

The above learning procedure can also be used for sequentiallearning by applying
the above formulas one case at a time, using the previous posterior distribution as
the prior distribution for the next case to be processed.

4.4 Learning in the Mixed Case

In the mixed case we write the local probability distributions as

(Yγ |ipa(γ), ypa(γ), θγ|ipa(γ)
) ∼ N (zpa(γ)(mγ|ipa(γ)

, βγ|ipa(γ)
)T, σ2

γ|ipa(γ)
),

wherezpa(γ) = (1, ypa(γ)). This vector has dimensionk+1, wherek is the number
of continuous parents toγ.

As in the discrete case we can because of parameter independence update the pa-
rameters for eachγ and each configuration of the discrete parents independently.
By Bayes’ theorem,

p(θγ|ipa(γ)
|d) ∝

∏

c:icpa(γ)
=ipa(γ)

p(yc
γ |y

c
pa(γ), ipa(γ), θγ|ipa(γ)

)p(θγ|ipa(γ)
).
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We now join all the observationsyc
γ for which ic

pa(γ) = ipa(γ) in a vectoryb
γ , i.e.

yb
γ = (yc

γ)icpa(γ)
=ipa(γ)

. The same is done with the observations of the continu-

ous parents ofγ, i.e. yb
pa(γ) = (yc

pa(γ))icpa(γ)
=ipa(γ)

. As the observations ind are

independent,p(yb
γ |y

b
pa(γ), ipa(γ), θγ|ipa(γ)

) is the likelihood function for a multivari-

ate normal distribution with mean vectorzb
pa(γ)(mγ|ipa(γ)

, βγ|ipa(γ)
)T and covariance

matrixσ2
γ|ipa(γ)

I, whereI is the identity matrix andzb
pa(γ) is defined throughyb

pa(γ).

The posterior distribution ofθγ|ipa(γ)
can now be written as

p(θγ|ipa(γ)
|d) ∝ p(yb

γ |y
b
pa(γ), ipa(γ), θγ|ipa(γ)

)p(θγ|ipa(γ)
).

A standard conjugate family for these observations is the family of Gaussian-
inverse gamma distributions. Let the prior joint distribution of (mγ|ipa(γ)

, βγ|ipa(γ)
)

andσ2
γ|ipa(γ)

be as follows.

(mγ|ipa(γ)
, βγ|ipa(γ)

|σ2
γ|ipa(γ)

) ∼ Nk+1(µγ|ipa(γ)
, σ2

γ|ipa(γ)
τ−1
γ|ipa(γ)

)

(σ2
γ|ipa(γ)

) ∼ IΓ

(

ργ|ipa(γ)

2
,
φγ|ipa(γ)

2

)

.

The posterior distribution is then

(mγ|ipa(γ)
, βγ|ipa(γ)

|σ2
γ|ipa(γ)

, d) ∼ Nk+1(µ
′
γ|ipa(γ)

, σ2
γ|ipa(γ)

(τ−1
γ|ipa(γ)

)′)

(σ2
γ|ipa(γ)

|d) ∼ IΓ

(

ρ′
γ|ipa(γ)

2
,
φ′

γ|ipa(γ)

2

)

,

where

τ ′γ|ipa(γ)
= τγ|ipa(γ)

+ (zb
pa(γ))

Tzb
pa(γ)

µ′γ|ipa(γ)
= (τ ′γ|ipa(γ)

)−1(τγ|ipa(γ)
µγ|ipa(γ)

+ (zb
pa(γ))

Tyb
γ)

ρ′γ|ipa(γ)
= ργ|ipa(γ)

+ |b|

φ′γ|ipa(γ)
= φγ|ipa(γ)

+ (yb
γ − zb

pa(γ)µ
′
γ|ipa(γ)

)Tyb
γ

+(µγ|ipa(γ)
− µ′γ|ipa(γ)

)Tτγ|ipa(γ)
µγ|ipa(γ)

,

where|b| denotes the number of observations inb.

As for the discrete variables, we can with these formulas also use the sequential
approach and update the parameters one case at a time.

Further, because of parameter independence, the joint prior distribution is given as
the product of the local prior distributions for all parameters in the network.
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5 Learning the Structure of a CG Network

In this section we consider how to learn the structure of a CG network.

5.1 The Network Score

There are basically two ways of determining which DAG shouldrepresent the con-
ditional independencies between a set of random variables.First, if the relations
between the variables are well understood by an expert, thenhe could specify the
DAG, using a causal interpretation of the arrows. Second, wecould learn the DAG
from data. That is, we could find out how well a DAGD represents the conditional
independencies, by measuring how probableD is, given that we have observed
datad. Different approaches use different measures. An often used measure is the
posterior probability of the DAG,p(D|d), which from Bayes’ theorem is given by

p(D|d) ∝ p(d|D)p(D),

wherep(d|D) is the likelihood ofD andp(D) is the prior probability. As the nor-
malizing constant does not depend upon structure, another measure, which gives
the relative probability, is

p(D, d) = p(d|D)p(D).

We refer to the above measures asnetwork scores. So learning the DAG from data,
we can in principle first calculate the network scores for allpossible DAGs and
then select the DAG with the highest network score. If many DAGs are possible,
it is computationally infeasible to calculate the network score for all these DAGs.
In this situation it is necessary to use some kind of search strategy to find the DAG
with the highest score, seee.g.Cooper & Herskovits (1992).

In some cases it can be more accurate to average over the possible DAGs for predic-
tion, instead of just selecting a single DAG. So ifx is the quantity we are interested
in, we can use the weighted average,

p(x|d) =
∑

D∈DAG

p(x|d, D)p(D|d),

whereDAG is the set of all DAGs andp(D|d) is the weight.

Again, if many DAGs are possible, this sum is to heavy to compute, so instead, by
using a search strategy, we can find a few DAGs with high score and average over
these.

5.2 The Network Score for a CG Network

In order to calculate the network score for a specific DAGD, we need to know
the prior probability and the likelihood of the DAG. For simplicity, we could for
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example choose to let all DAGs be equally likely, then

p(D|d) ∝ p(d|D).

In a CG network, the likelihood of the DAGD is given by

p(d|D) =

∫

θ∈Θ
p(d|θ, D)p(θ|D)dθ

=
∏

δ∈∆

∏

ipa(δ)∈Ipa(δ)

∫

∏

c:icpa(δ)=ipa(δ)

p(icδ|ipa(δ), θδ|ipa(δ)
, D)p(θδ|ipa(δ)

|D)dθδ|ipa(δ)

×
∏

γ∈Γ

∏

ipa(γ)∈Ipa(γ)

∫

∏

c:icpa(γ)
=ipa(γ)

p(yc
γ |y

c
pa(γ), ipa(γ), θγ|ipa(γ)

, D)p(θγ|ipa(γ)
|D)dθγ|ipa(γ)

.

Again we see that we can consider the problem for the discretepart and the mixed
part of the network separately.

The discrete part is from the formulas in Section 4.3 found tobe

∏

δ∈∆

∏

ipa(δ)∈Ipa(δ)

Γ(α+δ|ipa(δ)
)

Γ(α+δ|ipa(δ)
+ n+δ|ipa(δ)

)

∏

iδ∈Iδ

Γ(αiδ|ipa(δ)
+ niδ|ipa(δ)

)

Γ(αiδ|ipa(δ)
)

.

In the mixed part of the network, the local marginal likelihoods are non-central
t distributions withργ|ipa(γ)

degrees of freedom, location vectorzb
pa(γ)µγ|ipa(γ)

and

scale parametersγ|ipa(γ)
=

φγ|ipa(γ)

ργ|ipa(γ)

(I + (zb
pa(γ))τ

−1
γ|ipa(γ)

(zb
pa(γ))

T). The indexb is

defined as in Section 4.4.

So the mixed part is given by

∏

γ∈Γ

∏

ipa(γ)∈Ipa(γ)

Γ((ργ|ipa(γ)
+ |b|)/2)

Γ(ργ|ipa(γ)
/2)[det(ργ|ipa(γ)

sγ|ipa(γ)
π)]

1
2

×

[

1 +
1

ργ|ipa(γ)

(yb
γ − zb

pa(γ)µγ|ipa(γ)
)s−1

γ|ipa(γ)
(yb

γ − zb
pa(γ)µγ|ipa(γ)

)T

]

−(ργ|ipa(γ)
+|b|)

2

.

The network score for a CG network is thus the product of the prior probability for
the DAGD, the term for the discrete part and the term for the mixed part. Notice
that the network score has the property that it factorizes into a product over terms
involving only one node and its parents. This property is calleddecomposability.

To evaluate which DAG or possible several DAGs that represent the conditional
independencies in a Bayesian network well, we want to find theDAG or DAGs
with the highest network scores. To calculate these scores,we must specify the
local probability distributions and the local prior distributions for the parameters
for each network under evaluation. In the next section, a method for doing this is
developed.
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6 The Master Prior Procedure

The papers Heckerman et al. (1995) and Geiger & Heckerman (1994) develops
a method for finding the prior distributions for the parameters in respectively the
purely discrete case and the purely continuous case. The work is based on prin-
ciples of likelihood equivalence, parameter modularity, and parameter indepen-
dence. It leads to a method where the parameter priors for allpossible networks
are deduced from one joint prior distribution, in the following called amaster prior
distribution.

In this paper we will build on this idea, which can be used on networks with mixed
variables. We will therefore in the following describe their method for the pure
cases.

6.1 The Master Prior in the Discrete Case

In the purely discrete case, or the discrete part of a mixed network, the following
is a well known classical result.

Let A be a subset of∆ and letB = ∆ \ A. Let the discrete variablesi have the
joint distribution

p(i|Ψ) = Ψi.

Notice here, that the setΨ = (Ψi)i∈I contains the parameters for the joint distribu-
tion, contrary toθ in Section 3, which contains the parameters for the conditional
local distributions.

In the following we use the notationziA =
∑

j:jA=iA
zj , wherez is any parameter.

Then the marginal distribution ofiA is given by

p(iA|Ψ) = ΨiA ,

and the conditional distribution ofiB giveniA is

p(iB|iA, Ψ) =
Ψi

ΨiA

= ΨiB |iA .

Further if the joint prior distribution for the parametersΨ is Dirichlet, that is

(Ψ) ∼ D(α),

whereα = (αi)i∈I , then the marginal distribution ofΨA is Dirichlet, i.e.

(ΨA) ∼ D(αA),

with αA = (αiA)iA∈IA
. The conditional distribution ofΨB|iA is

(ΨB|iA) ∼ D(αB|iA),
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with αB|iA = (αiB |iA)iB∈IB
andαiB |iA = αi. Furthermore the parameters are

independent, that is
p(Ψ) =

∏

iA∈IA

p(ΨB|iA)p(ΨA). (9)

From the above result we see, that for each possible parent/child relationship, we
can find the marginal parameter priorp(Ψδ∪pa(δ)). Further, from this marginal
distribution we can, for each configuration of the parents, find the conditional local
prior distributionp(Ψδ|ipa(δ)

). Notice thatΨδ|ipa(δ)
= θδ|ipa(δ)

, whereθδ|ipa(δ)
was

specified for the conditional distributions in Section (3.1). Further, because of
parameter independence, given by (9), we can find the joint parameter prior for
any network as the product of the local priors involved.

To use this method, we must therefore specify the joint Dirichlet distribution,i.e.
the master Dirichlet prior. This was first done in Heckerman et al. (1995) and here
we follow their method. We start by specifying a prior Bayesian network(D,P).
From this we calculate the joint distributionp(i|Ψ) = Ψi. To specify a master
Dirichlet distribution, we must specify the parametersα = (αiδ)i∈I and for this
we use the following relation for the Dirichlet distribution,

p(i) = E(Ψi) =
αi

n
,

with n =
∑

i∈I αi. Now we let the probabilities in the prior network be an esti-
mate ofE(Ψi), so we only need to determinen in order to calculate the parameters
αi. We determinen by using the notion of an imaginary database. We imagine that
we have a database of cases, from which we from total ignorance have updated the
distribution ofΨ. The sample size of this imaginary database is thusn. There-
fore we refer to the estimate ofn as theimaginary sample sizeand it expresses
how much confidence we have in the dependency structure expressed in the prior
network.

6.2 The Master Prior in the Gaussian Case

For the Gaussian case, the following result is used, seee.g.Dawid & Lauritzen
(1993). LetA be a subset ofΓ and letB = Γ \ A. If

(y|m, Σ) ∼ N (m, Σ),

then
(yA|m, Σ) ∼ N (mA, ΣAA)

and
(yB |yA, mB|A, βB|A, ΣB|A) ∼ N (mB|A + βB|AyA, ΣB|A),

where

Σ =

(

ΣAA ΣAB

ΣBA ΣBB

)

, ΣB|A = ΣBB − ΣBAΣ−1
AAΣAB ,
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mB|A = mB − βB|AmA and βB|A = ΣBAΣ−1
AA.

Further, if

(m|Σ) ∼ N (µ,
1

ν
Σ) and (Σ) ∼ IW (ρ, Φ),

where the scale matrixΦ is partitioned asΣ, then

• (mA|ΣAA) ∼ N (µA, 1
ν
ΣAA)

• (ΣAA) ∼ IW (ρ, ΦAA)

• (ΣB|A) ∼ IW (ρ + |A|, ΦB|A)

• (mB|A, βB|A|ΣB|A) ∼ N (µB|A, ΣB|A ⊗ τ−1
B|A)

• mA, ΣAA ⊥⊥ mB|A, βB|AΣB|A

where
µB|A = (µB − ΦBAΦ−1

AAµA, ΦBAΦ−1
AA)

and

τ−1
B|A =





1
ν

+ µT
AΦ−1

AAµA −µT
AΦ−1

AA

−Φ−1
AAµA Φ−1

AA



 ,

and⊗ denotes the Kronecker product. Notice that the dimension ofµB|A is given
as(|B|, |B| × |A|).

As in the discrete case, this result shows us how to deduce thelocal probability
distributions and the local prior distributions from the joint distributions. Further,
because of parameter independence, the joint parameter prior for any Gaussian net-
work can be specified as the product of the local priors. Notice that the parameters
found here for a node given its parents, coincides with the parameters specified in
Section 3.2.

Before we show how to construct the master prior, we need the following result.
The Gaussian-inverse Wishart prior is conjugate to observations from a Gaussian
distribution (DeGroot 1970). So let the probability distribution and the prior distri-
bution be given as above. Then, given the databased = {y1, . . . , yn}, the posterior
distributions are

(m|Σ, d) ∼ N (µ′,
1

ν ′
Σ) and (Σ|d) ∼ IW (ρ′, Φ′),

where

ν ′ = ν + n,

µ′ =
νµ + ny

ν + n
, (10)

ρ′ = ρ + n,

Φ′ = Φ + ssd +
νn

ν + n
(µ− y)(µ− y)T,
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with

y =
1

n

n
∑

i=1

yi and ssd =
n
∑

i=1

(yi − y)(yi − y)T.

From these updating formulas we see thatν ′ andρ′ are updated with the number
of cases in the database. Furtherµ′ is a weighted average of the prior mean and the
sample mean, each weighted by their sample sizes. FinallyΦ is updated with the
ssd, which expresses how much each observation differs from thesample mean,
and an expression for how much the prior mean differs from thesample mean.

To specify the master prior, we need to specify the four parametersν, µ, ρ and
Φ. As for the discrete variables we start by specifying a priorBayesian network,
(D,P). From this, a prior joint probability distributionp(y|m, Σ) = N (m, Σ)
can be deduced. Now imagine that the meanm and the varianceΣ were calculated
from an imaginary database, so that they actually are the sample mean and the sam-
ple variance. Further, assume that before this imaginary database was observed, we
were totally ignorant about the parameters. The formulas in(10) can now be used
to “update” the parameters on the basis of the imaginary database. As we have not
seen any cases before,ν andρ are estimated by the size of the imaginary database.
Further

µ = m and Φ = ssd = (ν − 1)Σ.

In Geiger & Heckerman (1994),µ andΦ are found in a slightly different way.
They use the fact that the marginal likelihoodp(y) is a multivariate non-centralt
distribution withρ degrees of freedom, location vectorµ and scale matrixS =
ν+1
νρ

Φ. Now the mean and covariance matrix in thet distribution is given by

E(y) = µ and Cov(y) =
ρ

ρ− 2
S.

They then let the mean and covariance matrix from the prior network estimate the
mean and covariance matrix in thet distribution, which implies that

µ = m and Φ =
ν(ρ− 2)

ν + 1
Σ.

Experimental results have not shown noticeable differences between the two ap-
proaches.

6.3 Properties of the Master Prior Procedure

The method for finding prior parameter distributions described in the previous sec-
tion has some properties, which we will describe here. In this section we useΨ
as a parameter defined for a joint distribution,i.e. Ψ can be the parameter for the
discrete variables or in the continuous case,Ψ = (m, Σ).
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Clearly a consequence of using the above method is that the parameters are inde-
pendent. Further it can be seen, that if a nodev has the same parents in two DAGs
D andD∗, then

p(Ψv|pa(v)|D) = p(Ψv|pa(v)|D
∗).

This property is referred to asparameter modularity. Now both the discrete and the
Gaussian distribution has the property that if the joint probability distributionp(x)
can be factorized according to a DAGD, then it can also be factorized according
to all other DAGs, which represents the same set of conditional independencies
asD. A set of DAGs,De, which represents the same independence constraints is
referred to asindependence equivalentDAGs. So letD andD∗ be independence
equivalent DAGs, then

p(x|Ψ, D) = p(x|Ψ, D∗).

This means, that from observations alone we can not distinguish between different
DAGs in an equivalence class. In the papers Heckerman et al. (1995) and Geiger &
Heckerman (1994) it is for respectively the discrete and theGaussian case shown,
that when using the master prior procedure for the construction of parameter pri-
ors, the marginal likelihood for data is also the same for independence equivalent
networks,i.e.

p(d|D) = p(d|D∗).

This equivalence is referred to aslikelihood equivalence. Note that likelihood
equivalence imply that ifD andD∗ are independence equivalent networks, then
they have the same joint prior for the parameters,i.e.

p(Ψ|D) = p(Ψ|D∗).

7 Local Masters for Mixed Networks

In this section we will show how to specify prior distributions for the parameters
in a CG network. In the mixed case, the marginal of a CG distribution is not
always a CG distribution. In fact it is only a CG distributionif we marginalize over
continuous variables or if we marginalize over a setB of discrete variable, where
(B ⊥⊥ Γ) | (∆ \B), see Frydenberg (1990). Consider the following example. We
have a network of two variables,i andy, and the joint distribution is given by

p(i, y) = p(i)N (mi, σ
2
i ).

Then the marginal distribution ofy is given as a mixture of normal distributions

p(y) =
∑

i∈I

p(i)N (mi, σ
2
i ),

so there is no simple way of using this directly for finding thelocal priors.



7.1 THE SUGGESTEDSOLUTION 17

7.1 The Suggested Solution

The suggested solution is very similar to the solution for the pure cases. We start
by specifying a prior Bayesian network(D,P) and calculate the joint probability
distribution

p(i, y|H) = p(i|Ψ)N (mi, Σi),

with H = (Ψ, (mi)i∈I , (Σi)i∈I). So from the conditional parameters in the local
distributions in the prior network, we calculate the parameters for the joint dis-
tribution. Then we translate this prior network into an imaginary database, with
imaginary sample sizen. From the probabilities in the discrete part of the network,
we can, as in the pure discrete case, calculateαi for all configurations ofi. Now
αi represents how many times we have observedI = i in the imaginary database.
We can assume that each time we have observed the discrete variablesI, we have
observed the continuous variablesY and therefore setνi = ρi = αi. Now for each
configuration ofi, we letmi be the sample mean in the imaginary database, and
Σi the sample variance. Further, as for the pure Gaussian case,we usemi = µi

andΦi = (νi − 1)Σi. However, forΦi to be positive,νi has to larger than1, for
all configurationsi and this has an impact on how small we can choosen to be, as
n =

∑

i νi. If the number of discrete variables is large, and/or the number of con-
figurations of the discrete variables is large, then we mighthave to letn be larger
than the value, that really reflects our confidence in the prior network. For these
situations it might therefore be better toe.g.let Φi = νiΣi as we then can choose
the value ofn any way we want. Or, we can just chooseνi andρi independently of
n.

All the parameters needed to define the joint prior distributions for the parameters
are now specified, so

p(Ψ) = D(α),

p(Mi|Σi) = N (µi,
1

νi
Σi),

p(Σi) = IW (ρi, Φi).

But we can not use these distributions to derive priors for other networks, so instead
we use the imaginary database to derive local master distributions.

Let, for each familyA = v ∪ pa(v), the marginal CG distribution ofXa givenHA

be given by

(XA|HA) ∼ CG(ΨiA∩∆ , mA∩Γ|iA∩∆
, ΣA∩Γ|iA∩∆

).

Then we suggest that the marginal prior distributions, alsocalled thelocal masters,
are found in the following way:
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Let, for any variablez, ziA∩∆ =
∑

j:jA∩∆=iA∩∆
zj . Then

(ΨA∩∆) ∼ D(αA∩∆),

(ΣA∩Γ|iA∩∆
) ∼ IW (ρiA∩∆ , (Φ̃A∩Γ|iA∩∆

),

(mA∩Γ|iA∩∆
|ΣA∩Γ|iA∩∆

) ∼ N (µA∩Γ|iA∩∆
,

1

νiA∩∆

ΣA∩Γ|iA∩∆
),

where

µiA∩∆
=

(
∑

j:jA∩∆=iA∩∆
µjνj)

νA∩∆
,

and
Φ̃iA∩∆ = ΦiA∩∆ +

∑

j:jA∩∆=iA∩∆

νj(µj − µiA∩∆
)(µj − µiA∩∆

)T.

The equations in the above result are well known from the analysis of variance
theory, seee.g.Seber (1984). The marginal mean is found as a weighted average
of the mean in every group, where a group here is given as a configuration of the
discrete parents we marginalize over. The weights are the number of observations
in each group. The marginalssd is given as the within group variation plus the
between group variation. Notice that with this method, it ispossible to specify
mixed networks, where the mean in the mixed part of the network depends on the
discrete parents, but the variance does not.

From the local masters we can now, by conditioning as in the pure cases, derive the
local priors needed to specify the prior parameter distribution for a CG network. So
the only difference between the master procedure and the local master procedure
is in the way the marginal distributions are found.

7.2 Properties of the Local Master Procedure

The local master procedure coincides with the master procedure in the pure cases.
Further, the properties of the local master procedure in themixed case, are the same
as of the master prior procedure in the pure cases.

Parameter independence and parameter modularity follows immediately from the
definition of the procedure. To show likelihood equivalence, we need the following
result from Chickering (1995). LetD andD∗ be two DAGs and letRD,D∗ be the
set of edges by whichD andD∗ differ in directionality. Then,D and D∗ are
independence equivalent if and only if there exists a sequence of |RD,D∗ | distinct
arc reversals applied toD with the following properties:

• After each reversal, the resulting network structure is a DAG, i.e. it contains
no directed cycles and it is independence equivalent toD∗.

• After all reversals, the resulting DAG is identical toD∗.
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• If w → v is the next arc to be reversed in the current DAG, thenw andv have
the same parents in both DAGs, with the exception thatw is also a parent of
v in D.

Note that as we only reverse|RD,D∗ | distinct arcs, we only reverse arcs inRD,D∗ .
For mixed networks this means that we only reverse arcs between discrete variables
or between continuous variables, as the only arcs that can differ in directionality
are these. So we can use the above result for mixed networks.

From the above we see that we can show likelihood equivalenceby showing that
p(d|D) = p(d|D∗) for two independence equivalent DAGsD andD∗ that differ
only by the direction of a single arc. Asp(x|H, D) = p(x|H, D∗) in CG networks,
we can show likelihood equivalence by showing thatp(H|D) = p(H|D∗).

In the following letv → w in D andw → v in D∗. Further let∇ be the set of
common discrete and continuous parents forv andw. Of course, ifv andw are
discrete variables, then∇ only contains discrete variables. The relation between
p(H|D) andp(H|D∗) is given by:

p(H|D)

p(H|D∗)
=

p(Hv|w∪∇, D)p(Hw|∇, D)

p(Hw|v∪∇, D∗)p(Hv|∇, D∗)

=
p(Hv∪w|∇, D)

p(Hv∪w|∇, D∗)
. (11)

When using the local master procedure, the terms in (11) are equal. This is evident,
as we find the conditional priors from distributions over families A, in this case
A = v ∪ w ∪ ∇, which is the same for both networks. Therefore likelihood
equivalence follows.

8 Model Search

In the search for Bayesian networks with high network score,we can, in theory,
calculate the network score for all possible DAGs and then choose the DAG or
DAGs with the highest score.

In Robinson (1977), a recursive formula for the number of possible DAGs that
containsn nodes, is found to be

f(n) =

n
∑

i=1

(−1)i+1

(

n
i

)

2i(n−i)f(n− i),

where

(

n
i

)

are the binomial coefficient. As we in mixed networks do not allow

discrete nodes to have continuous parents, the number of possible mixed DAGs is
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given by

f(|∆|, |Γ)|) = f(|∆|)× f(|Γ|)× 2|∆|×|Γ|,

wheref(|∆|) andf(|Γ|) are the numbers of DAGs for respectively the discrete and
the continuous nodes, and2|∆|×|Γ| denotes the number of different combinations
of arrows from discrete to continuous nodes. If the number ofrandom variables in
the network is large, it is computationally infeasible to calculate the network score
for all the possible DAGs. Therefore different methods for searching for DAGs
with high network score have been tried, seee.g.Cooper & Herskovits (1992). In
Section 8.3 we will describe one of these methods, namely greedy search with
random restarts. This method, like many others, make use of Bayes factors as a
way of comparing the network scores for two different DAGs. In the next section
we will therefore consider Bayes factors for mixed networks.

8.1 Bayes Factors

A way to compare the network score for two different networks, D andD∗, is to
calculate theposterior odds, given by

p(D|d)

p(D∗|d)
=

p(D, d)

p(D∗, d)
=

p(D)

p(D∗)
×

p(d|D)

p(d|D∗)
,

wherep(D)/p(D∗) is theprior oddsandp(d|D)/p(d|D∗) is theBayes factor.

The posterior odds is for numerical reasons often calculated using the logarithm,

log

(

p(D|d)

p(D∗|d)

)

= log(p(D|d))− log(p(D∗|d)).

For two models that differ only by a single arrow, the Bayes factor is, because
of decomposability, especially simple. In this section, wewill specify the Bayes
factor in the case where two DAGs differ by the direction of a single arrow and in
the case where two DAGs differ by the presence of a single arrow.

First we look at the former case. As discrete nodes can not have continuous par-
ents, we only look at reversing an arrow between two discretevariables or two
continuous variables. In the following letv ← w in D andv → w in D∗. Further
let ∇w be the parents ofw in D and∇v the parents ofv in D∗. As D andD∗

only differ by the direction of the arrow betweenv andw, the parents ofw in D∗

are∇w andv and the parents ofv in D are∇v andw. Notice that ifv andw are
discrete nodes, then the nodes in∇v and∇w can only be discrete, whereas ifv and
w are continuous nodes, they can be both discrete and continuous.

To simplify, we let the database consist of just one case, sod = {x}. As the
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likelihood terms are decomposable, the Bayes factor is given by

p(x|D)

p(x|D∗)
=

p(v|∇v, w, D)p(w|∇w, D)

p(w|∇w, v, D∗)p(v|∇v, D∗)

=

∫

p(xv|xw∪∇v , Hv|w∪∇v
, D)p(Hv|w∪∇v

|D)dHv|w∪∇v
∫

p(xw|xv∪∇w , Hw|v∪∇w
, D∗)p(Hw|v∪∇w

|D∗)dHw|v∪∇w

×

∫

p(xw|x∇w , Hw|∇w
, D)p(Hw|∇w

|D)dHw|∇w
∫

p(xv|x∇v , Hv|∇v
, D∗)p(Hv|∇v

|D∗)dHv|∇v

.

So to calculate the Bayes factor betweenD andD∗, we only need to consider the
terms involving the conditional distributions ofv and ofw.

Notice that if∇v = ∇w, thenD andD∗ are independence equivalent networks
and the Bayes factor is equal to one.

Now letD andD∗ be two different networks, that differ by a single arrow between
the nodesv andw, with v ← w in D andv 8 w in D∗. Herev andw can be either
both discrete variables, both continuous orv continuous andw discrete. Again, let
∇v be the set of variables that are parents ofv in D∗, so inD the parents ofv are
∇v andw. As the likelihood terms are decomposable, the Bayes factoris given by

p(x|D)

p(x|D∗)
=

p(xv|xw∪∇v , D)

p(xv|x∇v , D
∗)

=

∫

p(xv|xw∪∇v , Hv|w∪∇v
, D)p(Hv|w∪∇v

|D)dHv|w∪∇v
∫

p(xv|x∇D
, Hv|∇v

, D∗)p(Hv|∇v
|D∗)dHv|∇v

.

8.2 Equivalent Bayes Factors

To compare network scores for all networks which differ by only one arrow, is
computationally inefficient. When using the local master procedure, we can reduce
the number of comparisons needed.

Our goal is to identify classes of DAGs for which the corresponding Bayes factors
for testing an arrow between the same two variables in the network, are the same.
So letD1 andD∗

1 be two different networks that differ by a single arrow between
the nodesv andw, with v ← w in D1 andv 8 w in D∗

1. Further, let∇v1 be the
set of variables that are parents ofv in bothD1 andD∗

1, i.e. in D1 the parents ofv
are∇v1 andw and inD∗

1 just∇D1 .

Further letD2 andD∗
2 be another two networks different fromD1 andD∗

1 that
differ by an arrow betweenv andw and let∇v2 be the set of variables that are
parents ofv in bothD2 andD∗

2. There are two situations to consider, namely when
v ← w in D2 and whenv → w in D2.

Consider first the former situation. The Bayes factor for testing D1 againstD∗
1 was
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∇v

v w

∇v

v w

Figure 1: Equivalence due to parameter modularity.

in the previous section found to be

p(x|D1)

p(x|D∗
1)

=

∫

p(xv|xw∪∇v1
, Hv|w∪∇v1

, D1)p(Hv|w∪∇v1
|D1)dHv|w∪∇v1

∫

p(xv|x∇v1
, Hv|∇v1

, D∗
1)p(Hv|∇v1

|D∗
1)dHv|∇v1

. (12)

Likewise the Bayes factor for testingD2 againstD∗
2 is

p(x|D2)

p(x|D∗
2)

=

∫

p(xv|xw∪∇v2
, Hv|w∪∇v2

, D2)p(Hv|w∪∇v2
|D2)dHv|w∪∇v2

∫

p(xv|x∇v2
, Hv|∇v2

, D∗
2)p(Hv|∇v2

|D∗
2)dHv|∇v2

.

As the local master procedure has the property of parameter modularity, then if
∇v1 = ∇v2 it follows that

p(Hv|w∪∇v1
|D1) = p(Hv|w∪∇v2

|D2),

and
p(xv|xw∪∇v1

, Hv|w∪∇v1
, D1) = p(xv|xw∪∇v2

, Hv|w∪∇v2
, D2).

So the Bayes factor for testing the arrow fromv to w is equivalent to testing this
arrow in any other network, wherev has the same parents as inD1, i.e. if ∇v1 =
∇v2 . This is illustrated in Figure 1.

Consider now the situation wherev → w in D2. Let∇w2 be the set of variables,
that are parents ofw in bothD2 andD∗

2. The Bayes factor is given as

p(x|D2)

p(x|D∗
2)

=
p(xw|xv∪∇w2

, D2)

p(xw|x∇w2
, D∗

2)

=

∫

p(xw|xv∪∇w2
, Hw|v∪∇w2

, D2)p(Hw|v∪∇w2
|D2)dHw|v∪∇w2

∫

p(xw|x∇w2
, Hw|∇w2

, D∗
2)p(Hw|∇w2

|D∗
2)dHw|∇w2

.

Again we see that because of parameter modularity, this Bayes factor is the same as
the Bayes factor given in (12), if∇v1 = ∇w2 , i.e. if w in D2 has the same parents
asv does inD1, with the exception thatv is a parent ofw in D2. For an illustration,
see Figure 2.

To show that these situations are the only ones where the Bayes factors always are
the same, it is easy to find an example where∇v1 6= ∇v2 and the Bayes factors are
not same.

The above result is summarized in the following theorem.
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∇v

v w

∇v

v w

Figure 2: Equivalence due to property of local master procedure.

Theorem 8.1
The Bayes factor for testing the arrowv ← w in a DAG D1 is equivalent to the
Bayes factor for testing the same arrow in any other networkD2 if and only if the
following two criteria are met:

(1) v ← w andv in D2 has the same parents as inD1.

(2) v → w andw in D2 has the same parents asv does inD1, with the exception
thatv is a parent ofw in D2.

Although using the two criteria reduces the number of comparisons, there will still,
for large networks, be too many comparisons needed for finding the most likely
DAG. Therefore it is still necessary to use some kind of search strategy.

8.3 Greedy search with random restarts

As mentioned earlier, many search strategies use Bayes factors as a way to compare
the network score for two different networks. In the following we will describe one
such strategy calledgreedy search.

Greedy search is initialized by choosing a networkD from which to start the
search. Let∆e be the posterior odds between two networks that differ by an arrow.
Calculate then∆e for all DAGs D∗ that differ fromD by a single arrowe, either
added, removed or reversed. Make the changee for which ∆e is a minimum, that
is wherep(D∗|d) is a maximum and continue the search from this new network.
The search is terminated when there is noe with ∆e smaller than1. As shown in
the previous section, the posterior odds is because of decomposability especially
simple, asD andD∗ only differ by one arrow. Further, it is possible to reduce the
time complexity by using the equivalence criteria developed in Section 8.2.

As this search is local in the sense that it only evaluates local changes to the net-
work, there is a chance that the found maximum is only a local maximum. A way to
overcome this problem is to randomly perturb the structure of the start networkD
and restart the greedy search from this new network. This canbe repeated a man-
ageable number of times and between the networks found by thesearch strategy,
the network with the highest score is chosen.
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D1

v w q

D2

v w q

Figure 3: Models for which the Bayes factors are equivalent.

8.4 Priors on DAGs

In this section we will consider how to assign prior probabilities to the possible
DAGs in a given problem. As shown in various papers, there aredifferent ways of
doing this. The Bayesian way would be to assess the prior belief in each DAG, but
as the number of different DAGs grow, this is not manageable.Instead automated
methods is being used.

An often used approach is to assume that all DAGs are equally likely, thus letting
the prior probability distribution over DAGs be uniform. This approach is mostly
used only for simplicity and can be refined in various ways. For example, if we
know that some of the DAGs are not possible, then we can assignprobability zero
to these and equal probabilities to the rest. Because of likelihood equivalence,
DAGs within the same equivalence class will, with this approach, be assigned the
same network score.

One argument against letting the prior over DAGs be uniform is that the number of
different DAGs in an equivalence class varies between equivalence classes. This
means that the conditional independencies represented in an equivalence class with
many DAGs, a priori are more probable than those representedin an equivalence
class with fewer DAGs. When using model averaging, this is a problem because
it involves a sum over all the different DAGs. The conditional independencies
represented by a large equivalence class, therefore influence the result more than
those represented by a small equivalence class. A way to handle this problem
is to either include only one DAG from each equivalence classor instead let all
equivalence classes be equally likely and assign to each DAGa prior probability
inversely proportional to the number of DAGs in the equivalence class it belongs
to.

This last approach has, however, an affect on the posterior odds. Consider the
following example, illustrated in Figure 3.

According to criteria one in Theorem 8.1, the Bayes factor for testing the presence
of the arrowv ← w in D1 is equivalent to testingv ← w in D2, i.e.

p(v|w, D1)

p(v|D∗
1)

=
p(v|w, D2)

p(v|D∗
2)

.

If we assign equal priors to all DAGs, the posterior odds are the same as the Bayes
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factors and they will therefore also be equivalent in the above example. However,
if we let all equivalence classes be equally likely and assign to each DAG a prior
probability inversely proportional to the number of DAGs inthe equivalence class
it belongs to, the posterior odds are no longer the same as theBayes factors. In the
above example, the number of DAGs in the equivalence classesfor D1, D∗

1, D2

andD∗
2 are respectively3, 2, 2 and1. So the prior odds are not equivalent,i.e.

p(D1)

p(D∗
1)

=
2

3
6=

1

2
=

p(D2)

p(D∗
2)

,

and therefore the posterior odds are not equivalent either.So this approach should
not be used if we in a search strategy want to utilize that someof the Bayes factors
are equivalent.

9 Example

In the following, some of the methods derived are illustrated by a simple example.
This example was constructed by Morrison (1976) and also studied in Edwards
(1995).

9.1 The Dataset

The dataset is from a hypothetical drug trial, where the weight losses of male and
female rats under three different drug treatments have beenmeasured after one and
two weeks. Thus we have the discrete variablesIsex andIdrug with states

Isex = {male= 1, female= 2}

Idrug = {1, 2, 3},

and the continuous variablesYw1 andYw2 which respectively represents the weight
losses after one and two weeks. For every drug, four rats of each sex have been
treated, which gives a total of 24 observations. The observations are shown in
Table 1.

9.2 Specifying the Prior Network

We start by specifying a prior Bayesian network(D,P). To simplify the specifica-
tion of the joint parameter prior, we choose to let all the variables be independent,
so the local probability distribution for each node only depends on the node itself,
and we can specify them as follows.
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sex drug w1 w2 sex drug w1 w2

1 1 5 6 2 1 7 10
1 1 7 6 2 1 8 10
1 1 9 9 2 1 6 6
1 1 5 4 2 1 9 7
1 2 9 12 2 2 7 6
1 2 7 7 2 2 10 13
1 2 7 6 2 2 6 9
1 2 6 8 2 2 8 7
1 3 14 11 2 3 14 9
1 3 21 15 2 3 14 8
1 3 12 10 2 3 16 12
1 3 17 12 2 3 10 5

Table 1: Observations of weight loss of male and female rats under three different
drug treatments.

For each discrete variable, we let each state be equally likely, so

p(isex = 1) = p(isex = 2) =
1

2

and

p(idrug = 1) = p(idrug = 2) = p(idrug = 3) =
1

3
.

This in fact is true by design.

For the continuous variables we use the sample mean and the sample variance as
an initial estimate of the mean and the variance. Using this approach, the position
and scale of the parameters are determined. We find that

p(yw1) = N (9.6, 17.1)

and
p(yw2) = N (8.7, 7.6).

So jointly
p(i, y) = p(i)N (mi, Σi),

with

p(i) =
1

6
, mi =

(

9.6
8.7

)

and Σi =

(

17.1 0
0 7.6

)

,

for all possible configurations ofi.

Be aware that in this way the dataset is used twice, namely both to initially specify
the local probability distributions and later to find the posterior parameter distribu-
tions. This could result in parameter values that are overfitted to data.
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sex

drug

w2

w1

Figure 4: The DAG in the example for specification of local parameter priors.

9.3 Specifying Parameter Priors

In order to specify parameter priors for all possible networks, we use the local
master procedure.

First we translate the prior network into an imaginary database. The parameters
needed to represent this imaginary database aren, αi, νi, ρi, µi andΦi.

Here we letΦi = (νi − 1)Σi, so νi must be larger than1. This means in this
example thatn must be larger than6. We choosen = 12 and find that

αi = νi = ρi = p(i)n =
1

6
12 = 2.

Further

µi = mi =

(

9.6
8.7

)

and Φi = (νi − 1)Σi =

(

17.0 0
0 7.6

)

,

for all configurations ofi.

We can now specify parameter priors for all possible networks. As an illustration,
consider the parameter prior for the network in Figure 4.

We need to find the local masters for the following four families

A1 = {sex},

A2 = {drug},

A3 = {w1},

A4 = {sex, w1, w2}.

As the variables inA1, A2 andA3 do not have any parents, the local masters for
these families are also the local parameter priors. Thus thelocal parameter prior
for Isex is given by

Ψsex ∼ D(αsex),

with
αisex=1 =

∑

j:jsex=1

αj = 6 and αisex=2 =
∑

j:jsex=2

αj = 6.
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Similarly the local parameter prior forIdrug is

Ψdrug ∼ D(αdrug),

with
αidrug=1 = αidrug=2 = αidrug=3 = 4.

ForYw1 we find the local parameter prior to be

Σw1 ∼ IW (ρ, Φ̃w1),

mw1|Σw1 ∼ N (µw1,
1

ν
Σw1),

with
ρ =

∑

j

ρj = 12 and ν =
∑

j

νj = 12,

and

µ =

∑

i µiνi

ν
=

(

9.6
8.7

)

,

Φ̃ =
∑

i

Φi +
∑

i

νi(µi − µ)(µi − µ)T =

(

102.6 0
0 45.6

)

,

so
µw1 = 9.6 and Φ̃w1 = 102.6.

The local master for the familyA4 is given as

(Σisex) ∼ IW (ρisex , (Φ̃isex)),

(misex)|(Σisex) ∼ N ((µisex
),

1

νisex

(Σisex)),

with
ρisex=1 =

∑

j:jsex=1

ρj = 6 and ρisex=2 =
∑

j:jsex=2

ρj = 6.

Likewise forνisex . Further

µisex=1 =

∑

j:jsex=1 µjνj

νisex=1
=

(

9.6
8.7

)

and

Φ̃isex=1 =
∑

j:jsex=1

Φj +
∑

j:jsex=1

νj(µj − µisex=1)(µj − µisex=1)
T

=

(

51.3 0
0 22.8

)
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and the same forisex = 2.

The local parameter prior forYw2 givenYw1 andIsex can now be found by condi-
tioning in this local master distribution.

We have now specified the parameters needed to calculate the likelihood of a DAG,
p(d|D). To calculate the network score ofD, we also need to specify the prior
probability ofD. In this example we just choose to let all DAGs be equally likely
and thus use the likelihoodp(d|D) as the network score.

9.4 Result

Using the formula on page 20, we find that for a network with twodiscrete and two
continuous nodes, there are 144 possible DAGs. So in this example, there are no
computational problems in calculating the network score for all these DAGs. Fur-
ther, if we only calculate the score for DAGs that are not independence equivalent,
the number of different DAGs are reduced to 88.

Prior network Imaginary sample size 12

1 0.68 0.30 0.20 0.12 0.12

0.075 0.060 0.051 0.037 0.035 0.028

0.023 0.022 0.018 0.015 0.0093 0.0084

0.0076 0.0072 0.0069 0.0037 0.0028 0.0023

0.0022 0.0020 0.0019 0.0017 0.0011 9.6 · 10
−4

6.0 · 10
−4

5.6 · 10
−4

5.2 · 10
−4

4.5 · 10
−4

2.9 · 10
−4

1.9 · 10
−4

1.7 · 10
−4

1.7 · 10
−4

1.6 · 10
−4

1.5 · 10
−4

1.4 · 10
−4

1.4 · 10
−4

continued on next page
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continued from previous page

Prior network Imaginary sample size 12

1.3 · 10
−4

1.1 · 10
−4

8.9 · 10
−5

8.0 · 10
−5

7.2 · 10
−5

5.5 · 10
−5

5.2 · 10
−5

5.0 · 10
−5

4.7 · 10
−5

4.5 · 10
−5

4.2 · 10
−5

4.2 · 10
−5

3.9 · 10
−5

3.8 · 10
−5

3.4 · 10
−5

3.2 · 10
−5

2.7 · 10
−5

2.4 · 10
−5

2.2 · 10
−5

2.0 · 10
−5

1.6 · 10
−5

1.3 · 10
−5

1.1 · 10
−5

1.0 · 10
−5

5.9 · 10
−6

4.9 · 10
−6

3.6 · 10
−6

3.0 · 10
−6

1.1 · 10
−6

9.0 · 10
−7

3.2 · 10
−7

3.0 · 10
−7

2.6 · 10
−7

2.5 · 10
−7

1.5 · 10
−7

1.3 · 10
−7

9.4 · 10
−8

8.9 · 10
−8

7.8 · 10
−8

7.4 · 10
−8

7.2 · 10
−8

5.9 · 10
−8

4.5 · 10
−8

3.8 · 10
−8

2.1 · 10
−8

1.8 · 10
−8

Table 2: The DAGs in the reduced search space, listed in decreasing order of prob-
ability. The number below each DAG is the Bayes factor between the given DAG
and the DAG with the highest network score.

In Table 2 the result of the learning procedure is given. The DAGs are listed in
decreasing order of probability, and the number below each DAG is the posterior
odds between the given DAG and the DAG with the highest network score. This
number expresses the relative probability of a DAG, that is,relative to the DAG
with the highest network score. As we have chosen a uniform prior over DAGs,
the posterior odds is in this example equal to the Bayes factor.

Before analyzing the result, we can discard some of the networks in Table 2. By
design, the discrete variablessex anddrug are independent, so there should not
be an arrow betweensex anddrug. Further, there is a time restriction betweenw1
andw2, asw1 is observed beforew2. So if w1 andw2 are dependent, the arrow
betweenw1 andw2 must go fromw1 to w2. Taking these restrictions into account,
we only consider the32 different DAGs listed in Table 3.



9.4 RESULT 31

Prior network Imaginary sample size 12

1 0.68 0.12 0.075 0.051 0.023

0.0093 0.0020 0.0019 0.0017 9.6 · 10
−4

4.5 · 10
−4

1.6 · 10
−4

1.5 · 10
−4

1.4 · 10
−4

1.3 · 10
−4

1.1 · 10
−4

8.9 · 10
−5

7.2 · 10
−5

3.4 · 10
−5

2.0 · 10
−5

1.6 · 10
−5

3.6 · 10
−6

3.0 · 10
−6

3.2 · 10
−7

3.0 · 10
−7

2.6 · 10
−7

2.5 · 10
−7

1.5 · 10
−7

1.3 · 10
−7

7.2 · 10
−8

5.9 · 10
−8

Table 3: The DAGs in the reduced search space, listed in decreasing order of prob-
ability. The number below each DAG is the Bayes factor between the given DAG
and the DAG with the highest network score.

In the most probable DAG, we see thatw2 depends onw1 andw1 depends on
drug. Furtherw2 anddrug are conditionally independent givenw1 and bothw1
andw2 are independent onsex.

Almost the same dependency structure is seen in the second and third best DAG,
except that herew2 also depends on respectivelysex anddrug.

Generally we see that in the first 12 DAGs,w1 depends ondrug. The first DAG
that does not show this dependency relation is only0.00016 times as probable as
the best DAG. Likewise we see that in the first 7 DAGs,w2 depends onw1 and the
first DAG that does not contain this dependency relation is only 0.0020 as probable
as the best DAG. Therefore we should not consider any model that does not include
these dependencies.

It is not clear which independencies should be included in the model, except for
those introduced when we reduced the search space. The second DAG is for ex-
ample0.68 times as probable as the first DAG, and the third to the sixth DAG is
between0.12 and0.023 as probable as the best DAG. This suggest that there is
some unexplained variation not accounted for in the best DAGand it might there-
fore be more accurate to selecte.g.the first six models and use model averaging.
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In Edwards (1995) the dataset is analyzed using undirected graphical models. He
uses the software MIM for maximum likelihood estimation andlikelihood ratio
test. The result is displayed in Figure 5 and we see that it is not in conflict with our
result.

sex

drug

w2

w1

Figure 5: Previous result.

9.5 Sensitivity to Prior Information

In this section we will explore how the size of the imaginary database and the
choice of the prior network influences the result. The findings agree with findings
for a purely discrete case described in Steck & Jaakkola (2002).

Prior network Imaginary sample size 2000

1 0.99 0.97 0.96 0.96 0.95

0.94 0.93 0.89 0.89 0.89 0.89

0.88 0.88 0.88 0.87 0.87 0.87

0.86 0.86 0.85 0.85 0.84 0.83

0.79 0.79 0.79 0.79 0.78 0.78

0.78 0.78

Table 4: The revised result with the prior network and the imaginary sample size
specified as in the first line of this table.

Recall that the prior network ideally expresses which dependency structure we
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believe there is between the variables in the network and thesize of the imaginary
database expresses how much confidence we have in this dependency structure.

In the previous section we used the empty network as the priornetwork and set
the sizen of the imaginary database to12. This is less than the number of real
observations in the example, which is24. We will therefore also learn the networks
using a larger value ofn and to see the difference clearly, we usen = 2000. The
result is given in Table 4.

If we look at the three best networks from the previous result, we see that the
relative probabilities for these networks in this result, are between 0.94 and 0.97.
They are no longer the most probable networks, but they are still very probable.
Actually all the networks are very probable and the relativeprobability of the least
probable network is as much as0.78.

The reason for this is that the prior network is the empty network, which represents
that all the variables are independent. This model is therefore a submodel of all
other models. Whenn is large, we have much confidence in these independencies,
so all networks will a priori be very probable. As the real database only contains
few observations, we have not enough information to differentiate between these
networks and all the networks are therefore almost equally likely.

Prior network Imaginary sample size 12

1 0.59 0.38 0.34 0.17 0.10

0.064 0.056 2.7 · 10
−4

1.3 · 10
−4

1.2 · 10
−4

4.8 · 10
−5

4.5 · 10
−5

2.2 · 10
−5

1.9 · 10
−5

7.9 · 10
−6

7.5 · 10
−8

5.0 · 10
−8

4.4 · 10
−8

2.9 · 10
−8

2.9 · 10
−8

2.6 · 10
−8

1.9 · 10
−8

1.7 · 10
−8

2.1 · 10
−11

1.4 · 10
−11

9.9 · 10
−12

8.9 · 10
−12

6.5 · 10
−12

5.8 · 10
−12

3.6 · 10
−12

2.4 · 10
−12

Table 5: The revised result with the prior network and the imaginary sample size
specified as in the first line of this table.
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Prior network Imaginary sample size 2000

1 1 0.99 0.98 0.98 0.98

0.97 0.96 6.5 · 10
−4

6.4 · 10
−4

6.4 · 10
−4

6.3 · 10
−4

1.9 · 10
−4

1.8 · 10
−4

1.8 · 10
−4

1.8 · 10
−4

3.5 · 10
−9

3.5 · 10
−9

3.5 · 10
−9

3.5 · 10
−9

3.4 · 10
−9

3.4 · 10
−9

3.4 · 10
−9

3.4 · 10
−9

2.2 · 10
−12

2.2 · 10
−12

2.2 · 10
−12

2.2 · 10
−12

6.4 · 10
−13

6.4 · 10
−13

6.4 · 10
−13

6.4 · 10
−13

Table 6: The revised result with the prior network and the imaginary sample size
specified as in the first line of this table.

We will now explore what happens if we change the prior network. First we will
learn the structure using the most probable structure from Table 3 as the prior
network. The results withn = 12 andn = 2000 are given in respectively Table 5
and Table 6.

For n = 12 we see almost the same result as when using the empty network.The
best networks are, not surprisingly, the same, only the order between them are a
little different. To some extent, this also applies forn = 2000.

Further we see that for bothn = 12 andn = 2000, the 32 networks categorize
as follows. The8 networks with both arrowsdrug → w1 andw1 → w2 are
the 8 most probable networks. In the succeeding8 networks we havedrug →
w1 andw1 9 w2, after that the 8 networks withdrug 9 w1 andw1 → w2.
In the last 8 networks we havedrug 9 w1 andw1 9 w2. Also we see that
within each category, the networks are almost equally likely, mostly pronounced
for n = 2000. These finding are what we expected. The arrows included in the
prior network are all represented in the most probable networks and these networks
are all almost equally likely, as the prior network is a submodel of these. Further
there is a large difference in relative score between the different categories, which
shows that networks which include the arrowsdrug → w1 andw1 → w2, are
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much more likely than those that do not. As this is valid for both n = 12 and
n = 2000, it is not only due to the influence of the prior network, but also because
the dataset supports these dependencies.

We will now explore what happens if we choose the prior network to be the least
probable network from Table 3. The results are forn = 12 andn = 2000 given in
respectively Table 7 and Table 8.

Prior network Imaginary sample size 12

1 0.25 0.13 0.094 0.023 0.012

0.0079 0.0020 0.0018 9.6 · 10
−4

7.4 · 10
−4

3.9 · 10
−4

1.8 · 10
−4

1.7 · 10
−4

1.6 · 10
−4

1.4 · 10
−4

9.0 · 10
−5

3.9 · 10
−5

3.7 · 10
−5

3.5 · 10
−5

2.0 · 10
−5

1.8 · 10
−5

1.2 · 10
−6

1.1 · 10
−6

3.1 · 10
−7

2.9 · 10
−7

2.8 · 10
−7

2.6 · 10
−7

1.5 · 10
−7

1.4 · 10
−7

6.2 · 10
−8

5.5 · 10
−8

Table 7: The revised result with the prior network and the imaginary sample size
specified as in the first line of this table.

For n = 12 we see almost the same result as with the other prior networks. For
n = 2000 we see that the8 most probable models actually are the8 models that are
possible with both the arrowssex → w1 andsex → w2. Further we see that all
networks are almost equally likely and there is not, as wouldbe expected, a large
difference in score between networks with both arrows and the others. Actually
for both n = 12 andn = 2000 the result is very similar to the result with the
empty network as the prior networks. The reason for this is that the probability
distribution of the prior network is estimated from data,i.e.we use the sample mean
and sample variance as the mean and variance in the prior network. If data does
not support a dependence betweensex and respectivelyw1 andw2, then this prior
network will be almost the same as the empty prior network andso will the result
of the learning procedure. However, it can be seen that even small differences from
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Prior network Imaginary sample size 2000

1 0.99 0.94 0.94 0.91 0.90

0.86 0.86 0.67 0.65 0.61 0.59

0.59 0.59 0.54 0.53 0.38 0.37

0.35 0.35 0.34 0.33 0.32 0.31

0.25 0.25 0.22 0.22 0.22 0.22

0.20 0.20

Table 8: The revised result with the prior network and the imaginary sample size
specified as in the first line of this table.

the empty prior network have an impact whenn is large, as the8 most probable
networks actually are the ones with bothsex→ w1 andsex→ w2.
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