Aalborg Universitet AALBORG

UNIVERSITY

Learning conditional Gaussian networks

Bgttcher, Susanne Gammelgaard

Publication date:
2005

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Bgttcher, S. G. (2005). Learning conditional Gaussian networks. Aalborg Universitetsforlag. Research Report
Series No. R-2005-22

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal -

Take down policy
If you believe that this document breaches copyright please contact us at von@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: July 16, 2025


https://vbn.aau.dk/en/publications/69e0c9a0-9ecb-11da-84ba-000ea68e967b

AALBORG UNIVERSITY

4 )

Learning conditional Gaussian networks
by

Susanne G. Bgttcher

Q_2005-22 June 2005J

DEPARTMENT OF MATHEMATICAL SCIENCES
AALBORG UNIVERSITY
Fredrik Bajers Vej 7G = DK-9220 Aalborg st = Denmark
Phone: +4596358080 = Telefax: +4598 158129
URL: http://www.math.aau.dk

ISSN 1399-2503 = On-line version ISSN 1601-7811




Learning Conditional Gaussian Networks

Susanne G. Bgttcher
Aalborg University, Denmark

Abstract

This paper considers conditional Gaussian networks. Thenpeters in the
network are learned by using conjugate Bayesian analysisofjugate lo-
cal priors, we apply the Dirichlet distribution for disceetariables and the
Gaussian-inverse gamma distribution for continuous et given a con-
figuration of the discrete parents. We assume parametepéndience and
complete data. Further, to learn the structure of the nétwibe network
score is deduced. We then develop a local master prior ppoegefbr deriv-
ing parameter priors in these networks. This procedursfesiparameter
independence, parameter modularity and likelihood etprivz. Bayes fac-
tors to be used in model search are introduced. Finally theds derived
are illustrated by a simple example.

1 Introduction

The aim of this paper is to present a method for learning tiherpaters and struc-
ture of a Bayesian network with discrete and continuousatdes. In Heckerman,
Geiger & Chickering (1995) and Geiger & Heckerman (19945 tias done for

respectively discrete networks and Gaussian networks.

We define the local probability distributions such that thiat distribution of the
random variables is a conditional Gaussian (CG) distrivutTherefore we do not
allow discrete variables to have continuous parents, sogtwork factorizes into a
discrete part and a mixed part. The local conjugate parampetes are for the dis-
crete part of the network specified as Dirichlet distriboi@nd for the mixed part
of the network as Gaussian-inverse gamma distributiongdoh configuration of
discrete parents.

To learn the structure, of a network from datag, we use the network score,
p(d, D), as a measure of how probahleis. To be able to calculate this score
for all possible structures, we derive a method for finding ginior distribution
of the parameters in the possible structures, from marginais calculated from
an imaginary database. The method satisfies parametereindepce, parameter
modularity and likelihood equivalence. If used on networkth only discrete or
only continuous variables, it coincides with the methodsettgped in Heckerman
et al. (1995) and Geiger & Heckerman (1994).



2 LEARNING CONDITIONAL GAUSSIAN NETWORKS

When many structures are possible, some kind of strategyaiek for the struc-
ture with the highest score, has to be applied. In Cooper &sktsiits (1992),
different search strategies are presented. Many of thestegies use Bayes fac-
tors for comparing the network scores of two different nekgdhat differ by the
direction of a single arrow or by the presence of a singlevari&e therefore de-
duce the Bayes factors for these two cases. To reduce theemwhbomparisons
needed, we identify classes of structures for which theesponding Bayes factor
for testing an arrow between the same two variables in a mkfwsthe same.

Finally a simple example is presented to illustrate soméehiethods developed.

In this paper, we follow standard convention for drawing g&saan network and
use shaded nodes to represent discrete variables and obies to represent con-
tinuous variables.

The results in Section 2 to Section 7 are also published itcBett (2001).

2 Bayesian Networks

A Bayesian network is a graphical model that encodes thepoabability distribu-
tion for a set of variableX'. For terminology and theoretical aspects on graphical
models, see Lauritzen (1996). In this paper we define it asistimg of

e A directed acyclic graph (DAGD = (V, E), whereV is a finite set of
vertices andE is a finite set of directed edges between the vertices. The
DAG defines the structure of the Bayesian network.

e To each vertexw € V in the graph corresponds a random variakle with
state spaceY,. The set of variables associated with the grdphs then
X = (Xy)vev. Often we do not distinguish between a varialllg and the
corresponding vertex.

e To each vertexw with parents pév), there is attached a local probability
distribution, p(x,|7p4,)). The set of local probability distributions for all
variables in the network is denoté&d

e The possible lack of directed edgesifihencodes conditional independen-
cies between the random variabl&sthrough the factorization of the joint
probability distribution,

p(@) = [ p(@olzpae))-

veV

A Bayesian network for a set of random variabl€ss thus the paifD, P). In
order to specify a Bayesian network far, we must therefore specify a DAG
and a sef® of local probability distributions.
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3 Bayesian Networksfor Mixed Variables

In this paper we are interested in specifying networks fadoem variablesX of
which some are discrete and some are continuous. So we eorsldAG D =
(V, E) with verticesV = A UT, whereA andI" are the sets of discrete and
continuous vertices, respectively. The correspondindaanvariablesX can then
be denotedX = (X,)vev = (1,Y) = ((Is)sen, (Y4)yer), i.e.we usel andY
for the sets of discrete and continuous variables, resdgtiWe denote the set of
levels for each discrete variabiec A asZ;.

In this paper we do not allow discrete variables to have ooltis parents. This
e.g.ensures availability of exact local computation methods, lsauritzen (1992)
and Lauritzen & Jensen (2001). The joint probability disition then factorizes
as follows:

p() = p(i,y) = [ plislipas)) | [ (0 lipatr) Ypain))s
0EA vyel

whereipy,) andypy,) denote observations of the discrete and continuous parents
respectively].e. ipy) IS an abbreviation of,4,)na etc.

We see that the joint probability distribution factorizesoi a purely discrete part
and a mixed part. First we look at the discrete part.

3.1 TheDiscrete Part of the Network

We assume that the local probability distributions are sitnigted discrete distri-
butions with

p(i5|ipa(5)) >0 V JdeA.

A way to parameterize this is to let

Oislipasy = P(i5]ipas): Osipgs) ) 1)

Wher695|ipa(§> == (Gi(;‘ipa((s))iéezé.

Then)_, o7, bislipys = 1 and0 < 6;
noded is denotedly, i.e. 05 = (

slipas) < 1. All parameters associated with a

95|ipa(5> )ipa(é) €Lpas)
Using this parameterization, the discrete part of the jprnbability distribution is
given by

p(il(0s)sen) = || P(is|ipa(s)s Oslinas) )-
EA
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3.2 TheMixed Part of the Network

Now consider the mixed part. We assume that the local prébadistributions are
Gaussian linear regressions on the continuous parentspasameters depending
on the configuration of the discrete parents. Let the parmmét the distribution

i ) = . ) 2
00 GVEN DY ) = (s B g, - THET

. 2
(Y5 lipats)s Ypats) Olinacry ) ~ N (Miy + Brligasy Yoa(1) 2 Oliggry ) (2)

whereﬁwp « are the regression coefficients

2 lipsy 1S the regression intercept,
ando?, )

. is the conditional variance. Thus for each configuratiorhefdiscrete
5

parents ofy, the distribution ofY,, is Gaussian with mean and variance given as
in (2). There are three special cases of the above situat@onely wheny has no
discrete parents, when it has no continuous parents and iivhaa no parents at
all. If it has no discrete parents, (2) is just the Gaussiatritution,

(Y [Ypayy» 0) ~ N (my + Bytpay) > 3),

andf., = (m., 3y,02). Wheny has no continuous parents, we have

. 2
(Y lipatr)s Orligary ) ~ N (i i) )

with 97|Zpam = (mwllpa(wgvlipa(v))’ i.e. for eachv, the mean depends solely on

ipa)- Finally, wheny has no parents at all,
(Y5]6) ~ N(mw,gi),
with 6, = (m,02).

With 6, = (6
written as

v\ipam)ipaméfpam- the mixed part of the joint distribution can be

p(y|27 (G’Y)VEF) = H p(y’ylipa('y)a Ypa(v)> e'y|ipa(,y>)'
vel’

3.3 TheJoint Network

Ifwe letd = ((65)sca, (64)-er), the joint probability distribution folX = (1,Y")
is given by

p(x|0) = T plislipas), Osipes) ) 1T 2+ lipay)s pan)» Or ey )- 3)
dEA vyel

It can easily be shown by induction that when the local prdlldistributions
are given as defined in (1) and (2), the joint probabilityritisttion for X is a CG
distribution with density of the form

p(elf) = p(i,10) = p(O)2nil~exp{—(y — M) TSy — M)},
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For each, M; is the unconditional mean, that is unconditional on corgirsvari-
ables and; is the covariance matrix for all the continuous variableh@mnetwork.
In Shachter & Kenley (1989) formulas for calculatifigfrom the local probability
distributions can be found.

A Bayesian network, where the joint probability distrilmrtiis a CG distribution is
in the following called &G network

4 Learningthe Parametersin a CG Network

When constructing a Bayesian network there is, as mentieaddr, two things

to consider, namely specifying the DAG and specifying thmalgrobability dis-

tributions. In this section we assume that the structuré®MAG is known and

the distribution type is given as in the previous sectionamdconsider the spec-
ification of the parameters in the distributions. For this wezd the concept of
conjugate Bayesian analysis.

4.1 Conjugate Bayesian Analysis

There are several ways of assessing the parameters in gitytadibtributions. An
expert could specify them, or they could be estimated frota.dia our approach
we encode our uncertainty about the paramétera prior distributionp(6), use
data to update this distributione. learn the parameter and hereby, by using Bayes
theorem, obtain thposteriordistributionp(#|data, see DeGroot (1970).

Consider a situation with one random variafile Let 8 be the parameter to be as-
sessedd the parameter space atid random sample of sizefrom the probability
distributionp(z|6). We calld our database ant € d a case. Then, according to

Bayes’ theorem,

_ p(dio)p(6)
p(0ld) = P,

wherep(d|0) = [] .., p(z°|0) is the joint probability distribution ofl, also called
the likelihood off. Furthermore the denominator is given by

p(d) = /@ p(d]6)p(6)do,

and for fixedd it may be considered as a normalizing constant. TherefQreai@
be expressed as

0eco, 4)

p(0]d) o< p(d|0)p(),
where the proportionality constant is determined by thatieh | p(0|d)d6 = 1.

When the prior distribution belongs to a given family of distitions and the pos-
terior distribution, after sampling from a specific distriton, belongs to the same
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family of distributions, then this family is said to be clasender sampling and
called aconjugate familyof distributions. Further, if a parameter or the distribu-
tion of a parameter has a certain property which is presameddr sampling, then
this property is said to be@njugate property

In a conjugate family of distributions it is generally sgaiforward to calculate the
posterior distribution.

4.2 Some Simplifying Properties

In the previous section we showed how to update a prior Higidn for a single
parametef. In a Bayesian network with more than one variable, we alse bha
look at the relationship between the different parametarthie different variables
in the network. In this paper we assume that the parametsogiased with one
variable is independent of the parameters associated étbther variables. This
assumption was introduced by Spiegelhalter & Lauritzer®Q)@nd we denote
it global parameter independencén addition to this, we will assume that the
parameters are independent for each configuration of tlueetésparents, which
we denote akcal parameter independencso if the parameters have the property
of global parameter independence and local parameterémdigmce, then

p@O) =11 I »Osius) [T TI POnie)): (5)

€A pa(s) ETpals) VEL ipa(y) ETpa()
and we will refer to (5) simply aparameter independence

A consequence of parameter independence is that, for eadlywation of the
discrete parents, we can update the parameters in the listdbdtions indepen-
dently. This also means that if we halaeal conjugacyi.e. the distributions of
05|ipa(6) andewpam belongs to a conjugate family, then because of parameter in-
dependence, we hagtobal conjugacyi.e. the joint distribution of belongs to a
conjugate family.

Further, we will assume that the databalsis complete, that is, in each case it
contains at least one instance of every random variableeimétwork. With this
we can show that parameter independence is a conjugaterfyrope

Due to the factorization (3) and the assumption of complata,d

p(df) = ]]p(=16)

ced
= H H P25 | 5> lis) ) Hp(yﬂyga(wiga(w)’ 0 lipa)) | o
ced \SeA yer

wherei® andy* respectively denotes the discrete part and the continuad®pa
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casez‘. Another way of writing the above equation is

p(dle) = H H H p(Zgllpa((Sﬁ 95|ipa<5))

OEA ipa5) ELpas) Cilpy ) =ipals)

<11 1I II  p515pa) dpan)s Ortipay )

VEL ipay) Epal) Cipgy) =lpaly)

(6)

where the product over cases is split up into a product owectimfigurations of
the discrete parents and a product over those cases, whemifiguration of
the discrete parents is the same as the currently processfiguration. Notice
however that some of the parent configurations might not peesented in the
database, in which case the product over cases with thistpemafiguration just
adds nothing to the overall product.

By combining (5) and (6) it is seen that

pld) =11 TI P0stipus D IT TI PO, D)

OEA ipas) €Tpa(s) VEL ipa(y) ELpa)

i.e. the parameters remain independent given data. We call tbjgepy poste-
rior parameter independencdn other words, the properties of local and global
independence are conjugate.

Notice that the posterior distributiop(|d), can be found usingatchlearning or
sequentialearning. In batch learningy(6|d) is found by updating/(6¢) with all

cases ind at the same time,e. in a batch. In sequential learning(¢) is updated

one case at a time, using the previous posterior distribatiathe prior distribution

for the next case to be considered. When the databsssomplete, batch learning

and sequential learning leads to the same posterior ditisiband the final result

is independent of the order in which the casegd &re processed. It is of course
also possible to process some of the cases in a batch andstheecpientially,
which could be done i€é.g.a new case is added to an already processed database,
see Bernardo & Smith (1994).

4.3 Learningin the Discrete Case

We now consider batch learning of the parameters in the elisqgrart of the net-
work. Recall that the local probability distributions amrestricted discrete distri-
butions defined as in (1). As pointed out in the previous eaactie can, because
of the assumption of parameter independence, find the pmstéstribution of

95‘ipa<6) for eachd and each configuration of pg independently.

So given a specific configuration @f,;), we need to findp(0s;
Bayes’ theorem, Equation (4), we have that

POslivs | ) < TT PS5 Olines) )P Oslines))- ()

Crliga5) =tpa(s)

oas [4)- From
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A conjugate family for multinomial observations is the férf Dirichlet distri-
butions. So let the prior distribution @fmpa@ be a Dirichlet distributiorD with

hyperparameter@ﬂipa(&) = (awpw))iéezé, also written as

(06|ipa(5) |O[(5|7,'pa(5)) ~ D(a(s‘zpa((g)) (8)
The probability function for this Dirichlet distributiors igiven by

F(Oé+5|i ) o
a(d) a; |2
D515 | ¥1inns)) = I : Oislings)) PO
oty 20l is€Ls F(Oéiéﬁpa(&)) ig(s o ’

whereaﬂﬁpa(é) = D iseTs i ioas) andI'(-) is the gamma function. Because of
notational convenience, we do not in what follows write tlypdrparameters ex-
plicitly in the conditioning.

It then follows from (7) and (8) that the posterior distrilout is given as
(Osipas) |d) ~ D(sings) + M6igas )

where the vecton); ., = (ni5|ipa(5))i5g§, also called the counts, denotes the
number of observations i@ wheres and pdd) have that specific configuration.
Notice that, for at given parent configuration, the numbertasfervations in a batch,
0], is the same a8, ;. ,,» Wheren ;o =3

is€Ls nié”pa(é) '
Because of parameter independence, the joint prior distoitb of all the parame-

ters for the discrete variables in the network, is given iy pghoduct of the local
parameter priors.

The above learning procedure can also be used for sequleatining by applying
the above formulas one case at a time, using the previousrmradistribution as
the prior distribution for the next case to be processed.

4.4 LearningintheMixed Case

In the mixed case we write the local probability distribucas

. T 9
(Y5 lipacy) > Ypaiy) H'Y'ipa('y)) ~ N(Zpa(v)(mv\ipam’ﬁﬂipa(w)) ’U’Ylipam)’

wherez.pa(v) = (1, Ypa~))- This vector has dimensidi+- 1, wherek is the number
of continuous parents t.

As in the discrete case we can because of parameter independpdate the pa-
rameters for each and each configuration of the discrete parents indeperydentl
By Bayes’ theorem,

p(e’y\ipa(,y) ‘d> X H p(yfﬂyga(v) ’ ipa(’y)a e’y|ipa(4{) )p(e’ﬂipa(,y) )

C:iga(w):ipa(w)
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We now join all the observationg, for which iga(v) = lpy(y) IN @ vectoryg, ie.

yg = (y'i)i;a(fy):ipa(’v)' The same is done with the observations of the continu-
ous parents ofy, i.e. yga(,y) = (ch)a(’Y))iga(fy):ipa(’Y)' As the observations id are

. b b . . . . . . .
|ndependentp(y7|ypa(y), ipay)s Qv\ipam) is the likelihood function for a multivari-
ate normal distribution with mean vect%(v) (M, o) Plina) )T and covariance

. 2 . . . . b - .
matrix Jvlipamj’ wherel is the identity matrix andpa(v) is defined througlhy

The posterior distribution cﬂ,ﬂipam

b
pa(y)’
can now be written as

by, b .
p(e’yﬁpa(,y) |d) X p(yq |ypa(»y) » bpa(y) e’y\ipaﬁ) )p(e’y\ipaﬁ) )

A standard conjugate family for these observations is tmeiljaof Gaussian-
inverse gamma distributions. Let the prior joint distribatof (m

ando2,.  be as follows.
Vlipac)

Vi) Prlipary)

2 2 -1
(i) Bl [ iy ) N1 (1 i T ipa) Tvlipaw)

(0_2 ) ) ~ IF prliPB(’Y) ¢7|Z’Pa(“/) .
Vlipa)

2 72
The posterior distribution is then

2 / 2 -1 /
(M lipatay s Polipay [T iy &) Nk+1(“7\ipa<~/)’avlipa<w (Tvlipam))

/ /
p . .
2 ipay) T lipay)
(i 1) = ( 2 72 ) ’

where
Dlipary = Tl T (o)) 2pay)
Klivay = Mlipany) Wlivay Py + (Zpa) )
p;‘ipa(w) = Prlipayy T 10
Dty = Polivany T U5~ Zpatn) i) U

+('u7|ipa<v) M'Y\ipam) Ty lipa) Hlipas)
where|b| denotes the number of observation$.in

As for the discrete variables, we can with these formulas ate the sequential
approach and update the parameters one case at a time.

Further, because of parameter independence, the joimtdisitnibution is given as
the product of the local prior distributions for all paraerstin the network.
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5 Learningthe Structureof a CG Network

In this section we consider how to learn the structure of a E€@ork.

5.1 TheNetwork Score

There are basically two ways of determining which DAG shaelotesent the con-
ditional independencies between a set of random varialblest, if the relations
between the variables are well understood by an expert,itbaould specify the
DAG, using a causal interpretation of the arrows. Second;aud learn the DAG
from data. That s, we could find out how well a DAGrepresents the conditional
independencies, by measuring how probables, given that we have observed
datad. Different approaches use different measures. An ofted osasure is the
posterior probability of the DAGy(D|d), which from Bayes’ theorem is given by

p(D|d) o p(d|D)p(D),
wherep(d| D) is the likelihood ofD andp(D) is the prior probability. As the nor-
malizing constant does not depend upon structure, anotbasume, which gives
the relative probability, is

p(D,d) = p(d|D)p(D).
We refer to the above measuresiaswork scoresSo learning the DAG from data,
we can in principle first calculate the network scores forpaksible DAGs and
then select the DAG with the highest network score. If manyG3Aare possible,
it is computationally infeasible to calculate the netwockr® for all these DAGs.

In this situation it is necessary to use some kind of searelesty to find the DAG
with the highest score, seeg.Cooper & Herskovits (1992).

In some cases it can be more accurate to average over thblpd3AiGs for predic-
tion, instead of just selecting a single DAG. Sa iis the quantity we are interested
in, we can use the weighted average,
p(zld)= > pl(z|d, D)p(Dld),
DeDAG
whereDAG is the set of all DAGs ang(D|d) is the weight.

Again, if many DAGs are possible, this sum is to heavy to campsp instead, by
using a search strategy, we can find a few DAGs with high sawleasierage over
these.

5.2 TheNetwork Scorefor a CG Network

In order to calculate the network score for a specific DAGwe need to know
the prior probability and the likelihood of the DAG. For sihimity, we could for
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example choose to let all DAGs be equally likely, then

p(Dl|d) o p(d|D).
In a CG network, the likelihood of the DA® is given by

p(d|D) = /9 B, D)p(6\D)de

=H H / H D5 ool 8)> O liasy » DIP(Os[inegs) | 2) 05,
OEA ipas) €pa(s) © CHigy ) =lpa(s)

=0 1 B U G (N ) U AT o N )L A
YET tpay) EZpay) " Ciipy 4y =ipa)

Again we see that we can consider the problem for the dispaateand the mixed
part of the network separately.

The discrete part is from the formulas in Section 4.3 founbleo

H H D i) (i ipas) + Mislipas))
I (Qisligas))

POt s igasy T Mtslipas))

ISTAN ipa(é) EIpa((;) is€Ls

In the mixed part of the network, the local marginal likekifits are non-central

t distributions withpw-p o) degrees of freedom, location vectxgra(v) Hey e and

_ Plipay) b -1 b \T i i
scale parametey, = —PU(] 4 (zpa('y))Tv\ipam(zpa(v)) ). The indexb is

% .
‘ pa(~y) p'y"pa('y)

defined as in Section 4.4.

So the mixed part is given by

M 11 L((Prylipe, +101)/2)
T
€T ioatr) ETpary T (Pl /2 AU i iy T2
(0 iy H1PD
1 2
b b -1 b b T
1+ i (Y5 — Zpa(v)/‘vlipw)svlipam (Y = Zpan) M ipar) )
Vlipa(y)

The network score for a CG network is thus the product of tier probability for
the DAG D, the term for the discrete part and the term for the mixed. pémtice
that the network score has the property that it factorizesarproduct over terms
involving only one node and its parents. This property iseckdecomposability

To evaluate which DAG or possible several DAGs that repriedenconditional
independencies in a Bayesian network well, we want to findDA& or DAGs
with the highest network scores. To calculate these scaresnust specify the
local probability distributions and the local prior diswiions for the parameters
for each network under evaluation. In the next section, @atefor doing this is
developed.



12 LEARNING CONDITIONAL GAUSSIAN NETWORKS

6 TheMaster Prior Procedure

The papers Heckerman et al. (1995) and Geiger & Heckerma®jldevelops
a method for finding the prior distributions for the parameie respectively the
purely discrete case and the purely continuous case. Thie iwdnased on prin-
ciples of likelihood equivalence, parameter modularityd garameter indepen-
dence. It leads to a method where the parameter priors fpoalible networks
are deduced from one joint prior distribution, in the foliogy called amaster prior
distribution.

In this paper we will build on this idea, which can be used amvoeks with mixed
variables. We will therefore in the following describe theiethod for the pure
cases.

6.1 TheMaster Prior in the Discrete Case

In the purely discrete case, or the discrete part of a mixégar, the following
is a well known classical result.

Let A be a subset o\ and letB = A\ A. Let the discrete variableshave the
joint distribution

p(i|¥) = V;.
Notice here, that the s& = (;);c7 contains the parameters for the joint distribu-
tion, contrary tod in Section 3, which contains the parameters for the conitio
local distributions.

In the following we use the notation, = Zj:jA:iA zj, wherez is any parameter.

Then the marginal distribution af; is given by
p(ia|¥) = ¥;,,
and the conditional distribution @f giveni 4 is

v,
L=

plislia, V) =

. iglia
iA
Further if the joint prior distribution for the parametekss Dirichlet, that is
() ~ D(a),
wherea = («;)cz, then the marginal distribution of 4 is Dirichlet,i.e.
(Pa) ~ D(aa),

with a4 = (e, )i, ez,- The conditional distribution g, is

(Ypji,) ~ Dlapjiy)s
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with agji, = ()i, )igers aNda;,);, = a;. Furthermore the parameters are
independent, that is

p(®) = ] p(¥pi,)p(Ta). )

iA€TA

From the above result we see, that for each possible pahnédtrelationship, we
can find the marginal parameter pripf¥ s p4s))- Further, from this marginal
distribution we can, for each configuration of the parentsl fhe conditional local
prior distributionp(\If(;ﬁp 5)). Notice that\If(;‘ipa(a) = Hélipa@)’ where95|ipa(6) was
specified for the conditional distributions in Section §3.Further, because of
parameter independence, given by (9), we can find the joiranpeter prior for
any network as the product of the local priors involved.

To use this method, we must therefore specify the joint Digtdistribution,i.e.
the master Dirichlet prior. This was first done in Heckermial &(1995) and here
we follow their method. We start by specifying a prior Bayesnetwork(D, P).
From this we calculate the joint distributigi{i| ) = ;. To specify a master
Dirichlet distribution, we must specify the parameters= («;;);cz and for this
we use the following relation for the Dirichlet distributip

673

with n = .. o;. Now we let the probabilities in the prior network be an esti-
mate ofE(V;), so we only need to determimegin order to calculate the parameters
a;. We determine: by using the notion of an imaginary database. We imagine that
we have a database of cases, from which we from total igneraae updated the
distribution of . The sample size of this imaginary database is thughere-
fore we refer to the estimate af as theimaginary sample sizand it expresses
how much confidence we have in the dependency structuressqarén the prior
network.

6.2 TheMaster Prior in the Gaussian Case

For the Gaussian case, the following result is used,esgdbawid & Lauritzen
(1993). LetA be a subset df and letB =T'\ A. If

(y|m7 E) ~ N(mv 2)7

then
(yalm, ) ~ N(ma, Eaa)
and
(yBlya, mpa; Beias Xpja) ~ N(mpja + Bpjaya, Xpja);
where

$_ < YAA XaB

 YpA=28E — XAY N Z 4B,
EBA EBB) B|A BB BA AA AB
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mpia =mp — Bpama and Bpa = Lpal .
Further, if 1
(m|%) ~ N (p, —%) and () ~ IW(p, @),

where the scale matrik is partitioned ag:, then

mal¥aa) ~ N(pa, £544)
Yaa) ~IW(p, Paa)
Ypja) ~IW(p+|Al, Ppa)

(
(
(
(

mp|a, Bp|alEp1a) ~ N (1pa, Spja © 7504

® ma,Xaa L mpa, BpaXpla

where

ppja = (1B — Ppa® A, Ppa® L))
and 1 TFd—1 TgH—1

. v a®aara —1a®an

BlA T -1 -1 ’
IV Paa

and® denotes the Kronecker product. Notice that the dimensiqrsof is given
as(|B|, B x |Al).

As in the discrete case, this result shows us how to deduclodaé probability
distributions and the local prior distributions from thénjiodistributions. Further,
because of parameter independence, the joint parametefq@rany Gaussian net-
work can be specified as the product of the local priors. Kdtiat the parameters
found here for a node given its parents, coincides with thiarpaters specified in
Section 3.2.

Before we show how to construct the master prior, we needdt@ning result.
The Gaussian-inverse Wishart prior is conjugate to obsenafrom a Gaussian
distribution (DeGroot 1970). So let the probability dibtrtion and the prior distri-
bution be given as above. Then, given the databasgy!, . ..,y"}, the posterior
distributions are

(m]%,d) ~ N (i, %) and (S]d) ~ TW (7, &),

where
Vo= V+n,
T— 1/,u—+ny7 (10)
v+n
po= ptn,

vn
d = d+ssd+——(u—7)(pn—7)7T
+ ss +V+n(u 7w —17)",



6.3 PROPERTIES OF THEMASTER PRIOR PROCEDURE 15

with

n

I _ _
v= Ezyi and ssd=>» (yi—9)(wi—7)".
=1 =1

From these updating formulas we see thaand ' are updated with the number
of cases in the database. Furthéis a weighted average of the prior mean and the
sample mean, each weighted by their sample sizes. Fifalbyupdated with the
ssd, which expresses how much each observation differs fronsdingple mean,
and an expression for how much the prior mean differs fronsémple mean.

To specify the master prior, we need to specify the four patarsv, u, p and

®. As for the discrete variables we start by specifying a pBayesian network,
(D,P). From this, a prior joint probability distributiop(y|m,>) = N(m,X)

can be deduced. Now imagine that the meaand the varianc& were calculated
from an imaginary database, so that they actually are thpleamean and the sam-
ple variance. Further, assume that before this imaginaabdae was observed, we
were totally ignorant about the parameters. The formuld$® can now be used

to “update” the parameters on the basis of the imaginanbdata As we have not
seen any cases beforeandp are estimated by the size of the imaginary database.
Further

w=m and & =ssd=(v—1)%.

In Geiger & Heckerman (1994), and ® are found in a slightly different way.
They use the fact that the marginal likelihop@)) is a multivariate non-central
distribution with p degrees of freedom, location vecterand scale matrixs =
"V—J;lcb. Now the mean and covariance matrix in thdistribution is given by

E(y) = and Covy) = L2s.
p [e—
They then let the mean and covariance matrix from the pritwoik estimate the
mean and covariance matrix in thdistribution, which implies that

v(p—2)s,

= and ¢ =
p=m v+1

Experimental results have not shown noticeable differefetween the two ap-
proaches.

6.3 Propertiesof the Master Prior Procedure

The method for finding prior parameter distributions ddsaxliin the previous sec-
tion has some properties, which we will describe here. Ia #eiction we us&
as a parameter defined for a joint distributior, ¥ can be the parameter for the
discrete variables or in the continuous caBes (m, X).
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Clearly a consequence of using the above method is that taenpters are inde-
pendent. Further it can be seen, that if a nodies the same parents in two DAGs
D andD*, then

P(Yypaw)| D) = P(Yypa) | D*)-

This property is referred to gmrameter modularityNow both the discrete and the
Gaussian distribution has the property that if the jointyataility distributionp(x)
can be factorized according to a DAL, then it can also be factorized according
to all other DAGs, which represents the same set of conditiordependencies
asD. A set of DAGs,D¢, which represents the same independence constraints is
referred to asndependence equivaleDAGs. So letD and D* be independence
equivalent DAGs, then

p(x|W, D) = p(|¥, D¥).

This means, that from observations alone we can not disghdnetween different
DAGs in an equivalence class. In the papers Heckerman ét#l5§ and Geiger &
Heckerman (1994) it is for respectively the discrete and3hassian case shown,
that when using the master prior procedure for the constructf parameter pri-
ors, the marginal likelihood for data is also the same foepehdence equivalent
networks,i.e.

p(d|D) = p(d| D).

This equivalence is referred to #ikelihood equivalence Note that likelihood
equivalence imply that ifD and D* are independence equivalent networks, then
they have the same joint prior for the parametees,

p(¥[D) = p(¥|D").

7 Local Mastersfor Mixed Networks

In this section we will show how to specify prior distributi® for the parameters

in a CG network. In the mixed case, the marginal of a CG digtidim is not
always a CG distribution. In fact it is only a CG distributibave marginalize over
continuous variables or if we marginalize over a Betf discrete variable, where
(B 1.T) | (A\ B), see Frydenberg (1990). Consider the following example. We
have a network of two variablesandy, and the joint distribution is given by

p(i,y) = p(i)N (m;, o7).

Then the marginal distribution @fis given as a mixture of normal distributions

p(y) = 3" p(OIN (mi, 0?),

1€l

so there is no simple way of using this directly for finding tbeal priors.
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7.1 The Suggested Solution

The suggested solution is very similar to the solution fer plure cases. We start
by specifying a prior Bayesian netwo(k, P) and calculate the joint probability
distribution

p(i,y|H) = p(i|¥)N (mi, i),

with H = (U, (m;);ez, (X:)icz). S0 from the conditional parameters in the local
distributions in the prior network, we calculate the partere for the joint dis-
tribution. Then we translate this prior network into an inmagy database, with
imaginary sample size. From the probabilities in the discrete part of the network,
we can, as in the pure discrete case, calculati®r all configurations of. Now

«; represents how many times we have observeds in the imaginary database.
We can assume that each time we have observed the discrigtelesrf, we have
observed the continuous variablésand therefore set; = p; = a;. Now for each
configuration ofi, we letm; be the sample mean in the imaginary database, and
Y; the sample variance. Further, as for the pure Gaussianwasasem,; = u;
and®; = (v; — 1)X;. However, for®; to be positivey; has to larger tham, for

all configurationg and this has an impact on how small we can choogebe, as

n = ), v;. If the number of discrete variables is large, and/or the lmemof con-
figurations of the discrete variables is large, then we migive to letn be larger
than the value, that really reflects our confidence in therpréwork. For these
situations it might therefore be bettereaay.let ®;, = v;X; as we then can choose
the value ofn any way we want. Or, we can just choageandp; independently of

n.

All the parameters needed to define the joint prior distidng for the parameters
are now specified, so
p(¥) = D(a),
1
p(M;|%;) = N (i, ;Zi),
7
p(Xi) = IW(pi, ;).
But we can not use these distributions to derive priors foeohetworks, so instead
we use the imaginary database to derive local master distits.
Let, for each familyd = v U pa(v), the marginal CG distribution ok, given H 4
be given by

(XA’HA) ~ CG(\IliAﬁA ) mAﬂFHAmA y ZA["IF‘@‘AQA)'

Then we suggest that the marginal prior distributions, eddled thdocal masters
are found in the following way:
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Let, for any variable:, z;, ., = zj. Then

ZjijAmA=iAmA

(Yana) ~ D(aana),
(EAmFliAmA) ~ IW(piAmA7((I)AﬁF|iAmA)7

_ 1
(mAﬂF‘iAmA|EAﬂF|iAmA> ~ N(:LLAQFHAQA? » EAth:AﬂA)?
TANA
where
— _ (Zj:jAﬁA:iAmA Kivj)
/’LlAmA - VAAA 9
and

(I)iAmA = CI)iAmA + Z Vj(luj - HiAmA)(ﬂj - ﬁiAmA)T

JIJANA=TANA
The equations in the above result are well known from theysimabf variance
theory, see.g.Seber (1984). The marginal mean is found as a weighted averag
of the mean in every group, where a group here is given as agewafion of the
discrete parents we marginalize over. The weights are th#etof observations
in each group. The marginakd is given as the within group variation plus the
between group variation. Notice that with this method, ipassible to specify
mixed networks, where the mean in the mixed part of the nétwepends on the
discrete parents, but the variance does not.

From the local masters we can now, by conditioning as in tme pases, derive the
local priors needed to specify the prior parameter distidimfor a CG network. So
the only difference between the master procedure and tla hoaster procedure
is in the way the marginal distributions are found.

7.2 Properties of the Local Master Procedure

The local master procedure coincides with the master proedd the pure cases.
Further, the properties of the local master procedure imilxed case, are the same
as of the master prior procedure in the pure cases.

Parameter independence and parameter modularity follmmsediately from the
definition of the procedure. To show likelihood equivalernee need the following
result from Chickering (1995). LeD and D* be two DAGs and leRp p- be the

set of edges by whicth and D* differ in directionality. Then,D and D* are

independence equivalent if and only if there exists a secpief| Rp p-| distinct

arc reversals applied t© with the following properties:

e After each reversal, the resulting network structure is &Dife. it contains
no directed cycles and it is independence equivaleft'to

o After all reversals, the resulting DAG is identical £&".
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e If w — visthe nextarcto be reversed in the current DAG, tleandv have
the same parents in both DAGs, with the exception thit also a parent of
vinD.

Note that as we only revers&p p-| distinct arcs, we only reverse arcsip p-.
For mixed networks this means that we only reverse arcs legtdiscrete variables
or between continuous variables, as the only arcs that dger th directionality
are these. So we can use the above result for mixed networks.

From the above we see that we can show likelihood equivalepahowing that
p(d|D) = p(d|D*) for two independence equivalent DAGsand D* that differ
only by the direction of a single arc. Agxz|H, D) = p(z|H, D*) in CG networks,
we can show likelihood equivalence by showing th@ | D) = p(H|D*).

In the following letv — w in D andw — v in D*. Further letV be the set of
common discrete and continuous parentsff@ndw. Of course, ifv andw are
discrete variables, the¥W only contains discrete variables. The relation between
p(H|D) andp(H|D*) is given by:

p(H|D) _ p(HvleVvD)p(Hw|V7D)
p(H|D*) p(Hw|vUV7D*)p(Hv|V>D*)
p(HUUw|Va D)

_ 11
p(HUUw|VaD*) ( )

When using the local master procedure, the terms in (11)caraleThis is evident,
as we find the conditional priors from distributions over fis@s A, in this case

A = v U w UV, which is the same for both networks. Therefore likelihood
equivalence follows.

8 Moded Search

In the search for Bayesian networks with high network scawecan, in theory,
calculate the network score for all possible DAGs and thevosh the DAG or
DAGs with the highest score.

In Robinson (1977), a recursive formula for the number ofsgde DAGs that
containsn nodes, is found to be

n

o = Y0 () 20000,

¢ (3
=1

where 7Z are the binomial coefficient. As we in mixed networks do ntival

discrete nodes to have continuous parents, the number sibp@sixed DAGS is
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given by
FAAL I = FOA] x f(T) x 2141,

wheref(|A]) andf(|T'|) are the numbers of DAGs for respectively the discrete and
the continuous nodes, ant®!*IT'l denotes the number of different combinations
of arrows from discrete to continuous nodes. If the numbeanfiom variables in
the network is large, it is computationally infeasible técadate the network score
for all the possible DAGs. Therefore different methods fearshing for DAGs
with high network score have been tried, seg. Cooper & Herskovits (1992). In
Section 8.3 we will describe one of these methods, namelgdyreearch with
random restarts. This method, like many others, make useagpé®8factors as a
way of comparing the network scores for two different DAGstHe next section
we will therefore consider Bayes factors for mixed networks

8.1 BayesFactors

A way to compare the network score for two different netwpisand D*, is to
calculate theposterior oddsgiven by

p(Dld) _ p(D.d) _ p(D)  p(dD)
p(D*|d) — p(D*,d)  p(D*) ~ p(d|D*)’

wherep(D)/p(D*) is theprior oddsandp(d|D)/p(d|D*) is theBayes factor

The posterior odds is for numerical reasons often calcdilaséng the logarithm,

p(D|d) \ .
g ( 2510 ) = 10s(a(D1a) ~ tos(o(D" ).

For two models that differ only by a single arrow, the Bayestdais, because
of decomposability, especially simple. In this section, wilt specify the Bayes
factor in the case where two DAGs differ by the direction ofregke arrow and in
the case where two DAGs differ by the presence of a singlevarro

First we look at the former case. As discrete nodes can n@ bemtinuous par-
ents, we only look at reversing an arrow between two disorati@&bles or two
continuous variables. In the following let— w in D andv — w in D*. Further
let V,, be the parents ofy in D andV, the parents ob in D*. As D and D*
only differ by the direction of the arrow betweerandw, the parents ofv in D*
areV,, andv and the parents af in D areV,, andw. Notice that ifv andw are
discrete nodes, then the nodesip andV,, can only be discrete, whereagind
w are continuous nodes, they can be both discrete and consnuo

To simplify, we let the database consist of just one case] so {z}. As the
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likelihood terms are decomposable, the Bayes factor isxgiye

p|D) _ p|Vy,w,D)p(w|Vwy, D)
p(z[D*) — p(w|Vu,v, D*)p(v|Vy, D¥)
fp($v|$wuvw Hv|wUVvv D)p(Hv\wuVU |D)dHu|wqu
fp($w|$vuvw7 Hw|vUVw7 D*)p(Hwh;UVw ’D*)dH’wh)UVw
[ r(xwlrv,, Hyw,, D)p(Hyv, |D)dH,v,

fp(.fv‘.%'vv ) HUIVU ) D*)p(Hv|Vv ’D*)de\VU '

So to calculate the Bayes factor betwdermand D*, we only need to consider the
terms involving the conditional distributions ofand ofw.

Notice that if V,, = V., thenD and D* are independence equivalent networks
and the Bayes factor is equal to one.

Now let D and D* be two different networks, that differ by a single arrow beén
the node® andw, withv < w in D andv + w in D*. Herev andw can be either
both discrete variables, both continuous)@ontinuous andv discrete. Again, let
V., be the set of variables that are parents af D*, so in D the parents o are
V, andw. As the likelihood terms are decomposable, the Bayes fistven by

palD) _ plafzis. D)
p(z|D¥) p(zylzy,, D*)
fp(xv‘xwuvuy Hv|wUVU> D)p(thuUVU |D)de|wUVU

fp(a:v ’va’ Hv\Vw D*)p(Hv\VU ’D*)de|VU

8.2 Equivalent Bayes Factors

To compare network scores for all networks which differ byyoone arrow, is
computationally inefficient. When using the local mastegedure, we can reduce
the number of comparisons needed.

Our goal is to identify classes of DAGs for which the corresginog Bayes factors
for testing an arrow between the same two variables in thearkt are the same.
So letD; and Dj be two different networks that differ by a single arrow begwe
the nodes andw, with v «— w in D; andv «+ w in Dj. Further, letV,, be the
set of variables that are parentswoh both Dy and D7, i.e.in D the parents ob
areV,, andw and inDj justVp,.

Further letDy and D3 be another two networks different frof; and D} that
differ by an arrow between andw and letV,, be the set of variables that are
parents ob in both D, andD3. There are two situations to consider, namely when
v« w in Dy and wherv — w in Ds.

Consider first the former situation. The Bayes factor fotingsD; againstD; was
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Vo,

O

__OW ——OW

Figure 1: Equivalence due to parameter modularity.

in the previous section found to be

p(CL‘|D1) . fp($v|$wuvvl7Hv\wUVU1?D1)p(Hv|wUVU1|D1)de|wUVv1

p(z|D7) [ p(xolre, , Hyv, » DY)p(Hyv,, | DY) dHyy,,
Likewise the Bayes factor for testing, againstD3 is
p(l’|D2) fp(ﬂfv\xwqu ) I_I'u|wuvv2 ) D2)p(Hv|wUVv2 ‘DQ)dHMwUVUQ

p(x‘D;) B fp($v|xVU27Hv|Vv27D;)p(Hv|VU2|D§)de|VU2

As the local master procedure has the property of parametdularity, then if
V., = V,, it follows that

p(Hv|wUVUI ‘Dl) = p(Hv|wUVv2 ‘DQ)a

and
p(xlewuvul ) Hv\wuvvl y Dl) = p(afv ’waVUQ ) Hv\wuvv2 ; DQ)'
So the Bayes factor for testing the arrow freno w is equivalent to testing this

arrow in any other network, wherehas the same parents asin, i.e.if V,, =
V., Thisis illustrated in Figure 1.

Consider now the situation where— w in D,. LetV,,, be the set of variables,
that are parents af in both Dy andD;. The Bayes factor is given as

p(z|D2)  p(ww|reuv,,, D2)
p@lD;) ~ pladev.,. D)
fp(xwm'UUVwQ ’ Hw\vUVwQ ’ DQ)p(Hw|UUVw2 |D2)de|vUVw2

fp(l’w‘l'qu ) Hw|Vw2 ) D;)p(HudeQ ‘D;)de\Vw2

Again we see that because of parameter modularity, thisEfageor is the same as
the Bayes factor given in (12), W,, = V,, i.€.if w in D has the same parents
asv does inD1, with the exception that is a parent ofv in D5. For an illustration,
see Figure 2.

To show that these situations are the only ones where thesBag®ors always are
the same, it is easy to find an example where # V,, and the Bayes factors are
not same.

The above result is summarized in the following theorem.
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Vo,

—Ow

Figure 2: Equivalence due to property of local master proced

Theorem 8.1

The Bayes factor for testing the arraw— w in a DAG D; is equivalent to the
Bayes factor for testing the same arrow in any other netviyrkf and only if the
following two criteria are met:

(1) v — w andv in D, has the same parents adin.

(2) v — w andw in Dy has the same parentsiadoes inD1, with the exception
thatv is a parent ofv in D-.

Although using the two criteria reduces the number of coiispas, there will still,
for large networks, be too many comparisons needed for finttie most likely
DAG. Therefore it is still necessary to use some kind of deatategy.

8.3 Greedy search with random restarts

As mentioned earlier, many search strategies use Bayessas a way to compare
the network score for two different networks. In the follogiwe will describe one
such strategy callegreedy search

Greedy search is initialized by choosing a netwdkfrom which to start the
search. LefAe be the posterior odds between two networks that differ byreowa
Calculate then\e for all DAGs D* that differ from D by a single arrowe, either
added, removed or reversed. Make the chanfge which Ae is a minimum, that

is wherep(D*|d) is a maximum and continue the search from this new network.
The search is terminated when there isenwith Ae smaller thanl. As shown in

the previous section, the posterior odds is because of deasability especially
simple, asD and D* only differ by one arrow. Further, it is possible to reduce th
time complexity by using the equivalence criteria devetbpeSection 8.2.

As this search is local in the sense that it only evaluateal Icltanges to the net-
work, there is a chance that the found maximum is only a loeaiimum. A way to
overcome this problem is to randomly perturb the structitee start networkD
and restart the greedy search from this new network. Thidbeaepeated a man-
ageable number of times and between the networks found bsetireh strategy,
the network with the highest score is chosen.
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Dl D2
% w q % w q
Figure 3: Models for which the Bayes factors are equivalent.

8.4 Priorson DAGs

In this section we will consider how to assign prior probitiei$ to the possible
DAGs in a given problem. As shown in various papers, thereldferent ways of

doing this. The Bayesian way would be to assess the pricgfirleach DAG, but

as the number of different DAGs grow, this is not managedbktead automated
methods is being used.

An often used approach is to assume that all DAGs are equigdlly,| thus letting
the prior probability distribution over DAGs be uniform. iShapproach is mostly
used only for simplicity and can be refined in various wayst é&ample, if we
know that some of the DAGs are not possible, then we can apsidrability zero
to these and equal probabilities to the rest. Because dffid@d equivalence,
DAGs within the same equivalence class will, with this agoty be assigned the
same network score.

One argument against letting the prior over DAGs be unifarthat the number of
different DAGs in an equivalence class varies between etprice classes. This
means that the conditional independencies representedeiguavalence class with
many DAGs, a priori are more probable than those represémtaal equivalence
class with fewer DAGs. When using model averaging, this isablem because
it involves a sum over all the different DAGs. The conditibiralependencies
represented by a large equivalence class, therefore icfuthie result more than
those represented by a small equivalence class. A way toléhdmd problem
is to either include only one DAG from each equivalence ctasmstead let all
equivalence classes be equally likely and assign to each ®a@or probability
inversely proportional to the number of DAGs in the equinake class it belongs
to.

This last approach has, however, an affect on the postedids.o Consider the
following example, illustrated in Figure 3.

According to criteria one in Theorem 8.1, the Bayes factotdsting the presence
of the arrowv < w in D1 is equivalent to testing «— w in Do, i.e.

p(vhw, D) _ plvjw, Dy)
p(eID}) — p(vID3)

If we assign equal priors to all DAGs, the posterior odds hessame as the Bayes
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factors and they will therefore also be equivalent in thevatexample. However,
if we let all equivalence classes be equally likely and assigeach DAG a prior
probability inversely proportional to the number of DAG4lire equivalence class
it belongs to, the posterior odds are no longer the same &=tyes factors. In the
above example, the number of DAGs in the equivalence cldesds;, D7, Do
andD; are respectively, 2, 2 and1. So the prior odds are not equivaleing,

1_ p(D2)
2 p(D3)’

2
:575

and therefore the posterior odds are not equivalent ei8wthis approach should
not be used if we in a search strategy want to utilize that soiittee Bayes factors
are equivalent.

9 Example

In the following, some of the methods derived are illustidig a simple example.
This example was constructed by Morrison (1976) and alsdiestiuin Edwards
(1995).

9.1 TheDataset

The dataset is from a hypothetical drug trial, where the hidigsses of male and
female rats under three different drug treatments have ineasured after one and
two weeks. Thus we have the discrete varialBles and/,,.,, With states

Ise, = {male= 1,female= 2}
Id’r‘ug = {17 27 3}7

and the continuous variabl&g, andY,,» which respectively represents the weight
losses after one and two weeks. For every drug, four ratsaf sex have been
treated, which gives a total of 24 observations. The obsiensare shown in
Table 1.

9.2 Specifying the Prior Network

We start by specifying a prior Bayesian netw@iR, P). To simplify the specifica-

tion of the joint parameter prior, we choose to let all thealales be independent,
so the local probability distribution for each node only diegs on the node itself,
and we can specify them as follows.
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sex | drug | wl | w2 || sex | drug | wl | w2
1 1 5 6 2 1 7 | 10
1 1 7 6 2 1 8 | 10
1 1 9 9 2 1 6 6
1 1 5 4 2 1 9 7
1 2 9 | 12 2 2 7 6
1 2 7 7 2 2 10 | 13
1 2 7 6 2 2 6 9
1 2 6 8 2 2 8 7
1 3 14 | 11 2 3 14 | 9
1 3 21| 15 2 3 14 | 8
1 3 12 | 10 2 3 16 | 12
1 3 17 | 12 2 3 10| 5

Table 1: Observations of weight loss of male and female nadeuthree different
drug treatments.

For each discrete variable, we let each state be equally, @

. . 1
p(lsex = 1) = p(Zse::: = 2) = 5

and

. . ) 1
p(ldrug - 1) - p(zdrug = 2) = p(Zdrug = 3) = §

This in fact is true by design.

For the continuous variables we use the sample mean andrtiesaariance as
an initial estimate of the mean and the variance. Using this@ach, the position
and scale of the parameters are determined. We find that

P(yw1) = N(9.6,17.1)

and
P(yw2) = N(8.7,7.6).
So jointly
(i, y) = p()N (mi, 5),
with

1 9.6 171 0
i) =75 mi_<8.7> and Ei_( 0 7.6)’

for all possible configurations aof

Be aware that in this way the dataset is used twice, namelytbanitially specify
the local probability distributions and later to find the foBr parameter distribu-
tions. This could result in parameter values that are otedfib data.
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se w2

drug‘ wl

Figure 4: The DAG in the example for specification of localgraeter priors.

9.3 Specifying Parameter Priors
In order to specify parameter priors for all possible nekspmwe use the local
master procedure.

First we translate the prior network into an imaginary datgb The parameters
needed to represent this imaginary database atg, v;, p;, 1; and®;.

Here we let®; = (v; — 1)%;, sor; must be larger than. This means in this
example that must be larger tha6. We choose: = 12 and find that

1
o =v;=p; =p(i)n = 612:2.

Further

9.6 170 0
uzml<87) and (I)Z'(Vi—l)zi< 0 7.6)7

for all configurations of.

We can now specify parameter priors for all possible net@o#s an illustration,
consider the parameter prior for the network in Figure 4.

We need to find the local masters for the following four faesli

Ay = {sex},

Ay = {drug},

Az = {wl},

Ay = {sex,wl,w2}.

As the variables i1, A and A3 do not have any parents, the local masters for
these families are also the local parameter priors. Thusotted parameter prior
for I, is given by

\I/sex ~ D(asez’)v

with
Q=1 = Z o = 6 and Qjgop=2 = Z a5 = 6.

JJGFTZI j:jse:c:2
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Similarly the local parameter prior fdj,.,, iS

\Ild'rug ~ D(adrug)a
with
aidrugzl = aidrugZZ = aidrug:?’ = 4
ForY, we find the local parameter prior to be

Z:wl ~ IW(paéuﬂ%

1
mw1|2w1 ~ N(ﬁwh;Zwl),

with
p:ZpJ:12andV:ZVj:12a
; j
and
o= it _ (9.6
= =,—=\s7 )
i 102.6 0
& = Z@ﬁZw(uz 1) (ki = 72) —( 0 45.6)’
3 %
SO

Tiy1 = 9.6 and @,,; = 102.6.

The local master for the familyl, is given as

(Eisez) ~ IW(pisez7 (éisez))7

(i (D)~ M)~ (5i))

lsex
with
pisemzl = Z 10] = 6 and Ioisem:2 = Z p,] = 6

Jijsex=1 JiJsex=2
Likewise fory;_ . Further

_ Zj:jsezzl Mjl/] _ < 96 >

Hisez:l B Visezzl 87
and
. _ _ T
Ciomt = Y B+ Y vy~ Ty =)y — T =)
Jijsex=1 Jiisex=1

(513 0
- 0 228
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and the same fai,.,; = 2.

The local parameter prior fdr,,» givenY,,; and/,., can now be found by condi-
tioning in this local master distribution.

We have now specified the parameters needed to calculaikehledod of a DAG,
p(d|D). To calculate the network score &f, we also need to specify the prior
probability of D. In this example we just choose to let all DAGs be equallylike
and thus use the likelihoge d| D) as the network score.

9.4 Result

Using the formula on page 20, we find that for a network with tigzrete and two

continuous nodes, there are 144 possible DAGs. So in thimgbea there are no
computational problems in calculating the network scoreafbthese DAGs. Fur-

ther, if we only calculate the score for DAGs that are not petelence equivalent,
the number of different DAGs are reduced to 88.
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continued from previous page
@ O
Prior network @ o Imaginary sample size| 12

AN DS G DA S D S AN P
1.3-107* 1.1-107* | 89-107% | 8.0-107° 7.2.107° 5.5-107°
AV 7 S D O S B - B AN o
5.2-107° 5.0-107° 4.7-107° 45-107° 4.2-107° 4.2.107°
3.9-107° 3.8-107° 3.4-107° | 3.2.107° 2.7-107° 2.4-107°
AN D S s S S B 7 S 4
2.2.107° 2.0-107° 1.6-107° 1.3-107° 1.1-107° 1.0-107°
59-107¢ | 49-107% |[36-10° |30-10% | 1.1-107% | 9.0-1077
P N el

(@] @ O (0] @ O (@]
3.2.1077 3.0-1077 2.6-107" 2.5-1077 1.5-1077 1.3-1077
O D S O P AN A

(@] (@] (@]
9.4-107% | 89-.-1078 7.8-1078 7.4-1078 7.2.1078 5.9-1078
O AN D S b
45-1078 3.8-1078 2.1-1078 1.8-1078

Table 2: The DAGs in the reduced search space, listed in dgiagorder of prob-
ability. The number below each DAG is the Bayes factor betwbe given DAG
and the DAG with the highest network score.

In Table 2 the result of the learning procedure is given. T&PB are listed in
decreasing order of probability, and the number below easB 3 the posterior
odds between the given DAG and the DAG with the highest nétwoore. This
number expresses the relative probability of a DAG, thatdktive to the DAG
with the highest network score. As we have chosen a unifoior prer DAGS,
the posterior odds is in this example equal to the Bayesifacto

Before analyzing the result, we can discard some of the mktna Table 2. By
design, the discrete variablesr anddrug are independent, so there should not
be an arrow betweesex anddrug. Further, there is a time restriction betweeh
andw?2, asw] is observed before2. So if wl andw?2 are dependent, the arrow
betweenuv1 andw?2 must go fromw1 to w2. Taking these restrictions into account,
we only consider th82 different DAGs listed in Table 3.
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@ O
Prior network e o Imaginary sample size| 12
ol et |4 N X |
1 0.68 0.12 0.075 0.051 0.023
. o | en |
@—0O @—O
0.0093 0.0020 0.0019 0.0017 9.6-107* | 45-107*
NSO 4 A I O D S AN
(@] (0] (0] (0]
1.6-1074 1.5-1074 1.4-1074 1.3-1074 1.1-107* | 89-107°
AN o= S %0 S I G 75 QR o
7.2.107° 3.4-107° 2.0-107° 1.6-1075 3.6-107% | 3.0-107C
P N el b
(@] @ O (@] @ O (0]
3.2.1077 3.0-1077 2.6-1077 2.5-1077 1.5-1077 1.3-1077
N s
72-107% | 5.9-10°8

Table 3: The DAGs in the reduced search space, listed in dgiagorder of prob-
ability. The number below each DAG is the Bayes factor betwbe given DAG
and the DAG with the highest network score.

In the most probable DAG, we see tha2 depends onwl andwl depends on
drug. Furtherw?2 anddrug are conditionally independent givenl and bothw1
andw?2 are independent osex.

Almost the same dependency structure is seen in the secanithiath best DAG,
except that here2 also depends on respectivelyr anddrug.

Generally we see that in the first 12 DAGs] depends orlrug. The first DAG
that does not show this dependency relation is @dp016 times as probable as
the best DAG. Likewise we see that in the first 7 DA@8,depends omw1 and the
first DAG that does not contain this dependency relation ig 010020 as probable
as the best DAG. Therefore we should not consider any modetites not include
these dependencies.

It is not clear which independencies should be included énnttodel, except for
those introduced when we reduced the search space. Thedseéahis for ex-
ample0.68 times as probable as the first DAG, and the third to the sixtiGD#\
between0.12 and0.023 as probable as the best DAG. This suggest that there is
some unexplained variation not accounted for in the best RAGit might there-
fore be more accurate to selecg.the first six models and use model averaging.
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In Edwards (1995) the dataset is analyzed using undirectgghgcal models. He
uses the software MIM for maximum likelihood estimation dikelihood ratio
test. The result is displayed in Figure 5 and we see that d@tisnnconflict with our

result.
sex@) w2

drug wl

Figure 5: Previous result.

9.5 Sensitivity to Prior Information

In this section we will explore how the size of the imaginaatabase and the
choice of the prior network influences the result. The findiagree with findings
for a purely discrete case described in Steck & Jaakkola2R00

(¢]
(0]

Prior network ) Imaginary sample size| 2000

Y

0.95

(0]

EIAN

Lo N
o8k
2 (855
N gL

AN
1IN

0.94 0.93 0.89 0.89 0.89 0.89

R - P A

0—0 ©—0

0.88 0.88 0.88 0.87 0.87 0.87

S P S PO S PO S P G AN

° ° ° °

0.86 0.86 0.85 0.85 0.84 0.83

7;) :/,o e o o
o o e o °

0.79 0.79 0.79 0.79 0.78 0.78

—0

e o °

0.78 0.78

Table 4: The revised result with the prior network and thegimary sample size
specified as in the first line of this table.

Recall that the prior network ideally expresses which ddpeny structure we
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believe there is between the variables in the network andieeof the imaginary
database expresses how much confidence we have in this éepgradructure.

In the previous section we used the empty network as the pdatwork and set
the sizen of the imaginary database 1@. This is less than the number of real
observations in the example, whicl2is We will therefore also learn the networks
using a larger value ot and to see the difference clearly, we use- 2000. The
result is given in Table 4.

If we look at the three best networks from the previous resuét see that the
relative probabilities for these networks in this resutg between 0.94 and 0.97.
They are no longer the most probable networks, but they #dreesty probable.
Actually all the networks are very probable and the relgbrabability of the least
probable network is as much a48.

The reason for this is that the prior network is the empty netwwhich represents
that all the variables are independent. This model is theeed submodel of all
other models. When is large, we have much confidence in these independencies,
so all networks will a priori be very probable. As the realatatse only contains
few observations, we have not enough information to difieete between these
networks and all the networks are therefore almost equiibyy
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Table 5. The revised result with the prior network and thegmary sample size

specified as in the first line of this table.
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Table 6: The revised result with the prior network and thegmary sample size
specified as in the first line of this table.

We will now explore what happens if we change the prior nekwdiirst we will
learn the structure using the most probable structure frainer3 as the prior
network. The results with, = 12 andn = 2000 are given in respectively Table 5
and Table 6.

Forn = 12 we see almost the same result as when using the empty netWoek.
best networks are, not surprisingly, the same, only therdsdaveen them are a
little different. To some extent, this also applies fox= 2000.

Further we see that for bothh = 12 andn = 2000, the 32 networks categorize
as follows. The8 networks with both arrowdrug — wl andwl — w2 are
the 8 most probable networks. In the succeedihgetworks we havelrug —
wl andwl —-» w2, after that the 8 networks witlhrug - wl andwl — w2.
In the last 8 networks we hawéug - wl andwl - w2. Also we see that
within each category, the networks are almost equally yikelostly pronounced
for n = 2000. These finding are what we expected. The arrows includedein th
prior network are all represented in the most probable nddsvand these networks
are all almost equally likely, as the prior network is a suldelamf these. Further
there is a large difference in relative score between tHeréifit categories, which
shows that networks which include the arro#s,g — w1l andwl — w2, are
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much more likely than those that do not. As this is valid fothbo = 12 and
n = 2000, it is not only due to the influence of the prior network, bigaabecause
the dataset supports these dependencies.

We will now explore what happens if we choose the prior nekwiorbe the least
probable network from Table 3. The results arerice 12 andn = 2000 given in
respectively Table 7 and Table 8.

Prior network o) z Imaginary sample size| 12
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Table 7: The revised result with the prior network and thegmary sample size
specified as in the first line of this table.

Forn = 12 we see almost the same result as with the other prior netwdits
n = 2000 we see that th® most probable models actually are thmodels that are
possible with both the arrowsx — wl andsex — w2. Further we see that all
networks are almost equally likely and there is not, as wieal@xpected, a large
difference in score between networks with both arrows aedothers. Actually
for bothn = 12 andn = 2000 the result is very similar to the result with the
empty network as the prior networks. The reason for this & the probability
distribution of the prior network is estimated from date,we use the sample mean
and sample variance as the mean and variance in the prioorietW data does
not support a dependence betwaen and respectively1 andw2, then this prior
network will be almost the same as the empty prior networksmdill the result
of the learning procedure. However, it can be seen that evefi differences from



36 LEARNING CONDITIONAL GAUSSIAN NETWORKS

<

Prior network Imaginary sample size| 2000

3%
>
-]

X[

1%

2k
LV

=]
€]
=)
=]
0
=)
o
=]
3
S
[=2)
ot
=]
[=
—
[=Ne]
(S
©

b
Vi
2%
N
1

o
(Sl
Nel
e
at
©
o
(S
>~
[S)]
w
e
w
oo
o
W
J

1
N
=

o
w
(@18
o
w
(@8
o
w
=~
o
w
w

AN
Lo
I
NN
s

o

oe@ o |o
[\ [\
C)O ot
ce o |o
[\
o
[\
[\
o
[\
[\
o
[\
[\
)
N 00

o
So o |

Table 8: The revised result with the prior network and thegmary sample size
specified as in the first line of this table.

the empty prior network have an impact wherns large, as th& most probable
networks actually are the ones with bethx — w1 andsex — w?2.
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