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PARAMETRICES AND EXACT PARALINEARISATION OF
SEMI-LINEAR BOUNDARY PROBLEMS

JON JOHNSEN

ABSTRACT. The subject is to establish solution formulae for elliptic (and para-
bolic) semi-linear boundary problems. The results should be new instttiea
respects: the desired formulae result from a parametrix constructicsemi-
linear problems, using only parametrices from the linear theory and the mild
assumption that the non-linearity may be decomposed into a suitable solution-
dependent linear operator acting on the solution itself. Secondly nornitiasa

of so-called product type are shown to admit such decompositions &t para-
linearisation. The parametrices give regularity properties under natteg con-
ditions, with examples of properties that are unobtainable by boot-strémdse
Regularity improvements in submanifolds are deduced from the auxiksitr
that operators of type,1 are pseudo-local on large parts of their domains. The
framework is flexible, encompassing a broad class of boundarjgmsband
Holder and Sobolev spaces, or the more general Besov and Triebmikibiz
spaces. The examples include the von Karman equation.

1. INTRODUCTION

This article presents a parametrix construction for semi-linear boundaby pr
lems along with the resulting regularity propertied irSobolev spaces. The con-
struction uses systematic investigations of pseudo-differential boungarators,
paramultiplication and function spaces of J.-M. Bony, G. Grubb, V. Rgetdad
the author [Bon81, Gru95b, Ryc99b, Joh95a, Joh96], but is alporé@usby a joint
work with T. Runst [JR97] on solvability of semi-linear problems.

The motivation was first of all to avoid some rather annoying technicalities met
earlier in boot-strap arguments, when these were applied under wesk@EmNS
to semi-linear boundary problems; cf [Joh95b]. Secondly it was hopduhdo
purely analytical proofs, without reiteration, of the regularity properties

These goals are achieved by means of the parametrix formula presertéed he
The formula also gives structural information about the solution, and aigting
stronger a priori regularity of the solution it allows increasingly weaksuagp-
tions on the data. (Boot-strap methods can do neither.)

As a further feature, the parametrix formulae give regularity propeotgsnd
those obtainable by boot-strap methods. Indeed, as a gratis conseapighe
method, solutions may (depending on the problem and its data) be proved to lie in
spaces, on which the non-linear terms lose more derivatives than thetbneas:

This possibility should also be a novelty. It is exemplified in Theorem 7.1 below
on quadratic perturbations of polyharmonic operators:

(=A)Mu(x)+u(X)2=c(x¢+x3)"%* in QCcR" n>2 (1.1)
Key words and phrase€xact paralinearisation, moderate linearisation, parameter domain, in-

verse regularity properties, parametrix, pseudo-differential opesatype 11.
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2 JON JOHNSEN

As shown below, there are for sufficiently smalt- 0 solutionsu € H(Q), and
sinceH™ c W;" for Q boundedD%u is a priori known to be an integrable function
for |a| < m. But the parametrices yield infinitely marg, m) for which this holds
for |a] <2m, ieue lem then. One example ia =5 andm= 1, so already
the classical Diriclét realisation of the Laplacian enters examples of such ‘extra’
regularity. In comparison boot-strap methods like the extended ones i85dpbh
do not suffice for thistm-property, sincgn,m) are chosen such that— u? is
undefined oW2™ in the distribution sense. Cf Theorem 7.1 ff.

Compared to the paradifferential theory of J.—M. Bony [Bon81], it is oa on
hand true that the set-up is restricted here to non-linearities of produst &g
defined below, but on the other hand it is a main point of the present watk th
the regularity of non-zero boundary data is taken fully into account (vthike
was undiscussed in [Bon81]). Special regularity properties in sidore@re also
carried over to the solutions.

A brief overview of the parametrix results has been given in [Joh03.prasent
paper gives the theory in full generality together with the underlying details.

The introduction proceeds to present the results and techniques; nagagitn
tled towards the end. Then the main result follows in a general frameworéan S
tion 2. Preliminaries on paramultiplication are given in Section 3. In Section 4 it
is verified that non-linearities of product type have the necessarepiep. Sec-
tion 5 presents the consequences for the stationary von Karman prololérhea
weak solutions are carried over to gendrglSobolev spaces; direct proofs are not
given in Section 5 because the results follow from those of Section 6. Uljecs
of Section 6 is the parametrix and regularity results obtained for systemaéf se
linear elliptic boundary problems in vector bundles; this somewhat heawypset-
should be well motivated by the von Karman problem treated in Section 5. The
analysis of (1.1) follows in Section 7.

1.1. The model problem. The subject is exemplified in the following by means of
the below Dirichét problem on an open s@tc R", which isboundedan essential
assumption, made throughout) wiff¥ -boundaryl” := 29Q,

—Au+u-dyu="F in Q,

you=¢ on T. (1.2)

(A =02 +---+02 is the Laplacianypu = u|r is the trace.) This model problem
has been chosen instead of the stationary Navier—Stokes equation, wgth itvh
has much in common except that it is not a system, hence is simpler to present.

It is a main point to establish parametridé@”, which for N € N are certain
linear operators yielding the following new formula for

u=PRN (Rof +Kp¢)+ (RoLu)u. (1.3)
Here(Ro ko ) is the inverse of ) (the subscripD refers to the Dirictét problem

for —A), andL, is an exact paralinearisation of— udiu. In (1.3), PSN) can
roughly be seen as a modifier of data’s contributiorutavhile (RoLy)N is an
‘error term’ analogous to the negligible errors in pseudo-differentikutia As
explained latery’s regularity can be read off directly on the right hand side.

The formula (1.3) should be new even when data and solutions are damburib
the usuaHs-Sobolev spaces. But the usefulness of the parametrices gets an extra
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dimension when thép-theory is discussed, so it will be natural to consider the
Sobolev spacel3(Q) and the Holder—Zygmund classe&(Q) .
However, these are contained in the scales of Besov smg{@) and Triebel—

Lizorkin spaced=;,(Q), since

Hy=Fy, forl<p<wandscR, (1.4)
C’=B;, forseR. (1.5)
(For the well-knownWgs spacest p for non-integers > 0 andW" = Fm

for me N). To avoid formulatlons W|th many scales, the exposition WI|| be based
on theBS. and Fﬁ spaces, anE n.q Will denote a space which can be eit
or ng (ih every occurrence within, say the same formula or theorem).

Moreover, B;q(ﬁ) and ng(ﬁ) are defined fomp, q €]0,0] (p < o for F3,)
ands € R, where the incorporation gb, q < 1 in general is convenient for non-
linear problems (théi®- andHg-scales would be too tight frameworks). The price
one pays for this roughly equals the burdening of the exposition that wesidt
from a limitation top, q > 1.

Furthermore it is noted that?fm , 1< p < o recently [Joh04b, JohO4a] was
shown to play a fundamental roIe for pseudo-differential operatotygpef Sf',,
that show up in the linearisations. Cf Section 4.5 below.

If desired, the reader can of course specialise tolHgys described above. The
main part of the paper deals with the parametrix construction and its comsexgie
and it does not rely on a specific choicelgf Sobolev spaces.

&3

For simplicity, (1.2) will in the introduction be discussed in the Besov scale
Byg- As a basic requirement the spaces should fulfil the two inequalities (where
t, :=max0,t) is the positive part of)

s>f+(N—1)(5-1)+ (1.6a)
s>3+n(5—3),. (1.6b)
It is known how they allow one to make sense of the trace and the prodsipeae

tively. Working under such conditions, a main question for (1.2) is the faigw
inversé regularity problem:

given a solutioru in one Besov spacB;q(ﬁ)
for dataf in B.;2(Q) and¢ in Bro (M), (IR)
will ubeinB;,(Q) too?

Consider eg a solution in H(Q) for dataf in C%(Q) and¢ in C?+9(I") with
a €]0,1[. (For ¢ =0 and ‘small' f € H~! solutions exist irH3 for n = 3 by the
below Proposition 2.4.) The question is then whethaiso belongs € (Q).
Here the latter space equzﬂé“’ ) while H! = Bzz, so the above problem (IR)
clearly contains a classical issue; actually (IR)is somewhat sharpauseof the
third parameter.

It is hardly surprising that the answer to (IR) will be affirmative undetadly
strong conditions on the parametéssp, q) and (t,r,0). But the purpose is to go
much further by testing how weak conditions one can impose along with (1.6).

Iin comparisordirect regularity properties are used for the collection of mapping properbes, f
example ofu — udiu or of —Au+ udyu.
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More importantly, it is described how thgarametrixformula in (1.3) (cf also
(1.18) and Theorems 2.2 and 6.7 below) yields the expected conclusigRfe+
as well as for a general class of semi-linear problems. The result isibldlex
framework implying thau € Bm, also in certain cases when— udiu has higher
order than—A on B} ,, or whenud;u is undefined o} ;.

Moreover, if in a subregiorz C Q the data has additional properties such as
f € B 2(Z,loc) and¢ € B /" (9=, loc), thenu is locally in B o, (%) too.

Briefly stated, the above programme uses paramultipllcatlom'bnn a lin-
earisation ofudiu together with the parametrigro Ko ) of ( ) belonging to
the Boutet de Monvel calculus of pseudo-differential boundaryaipes when

combined with a Neumann series these ingredients )FPé'}'dI, and thus the ap-
proximative inversion in formula (1.3). This resembles the usual elliptic thabry
the place where non-principal terms are included, but one differeribatisiere a
finite series suffices, as in [Bon81], since the er(ﬂabLu) uin (1.3) only needs
to belong toB! ,. The local improvements i& C Q are deduced from a quite gen-
eral result about pseudo-locality of typellpseudo-differential operators, proved
below in Section 4.5 for this purpose.

1.2. About the linearisations. It is necessary for the present techniques that the
non-linear term allows aoderatdinearisation, in the sense of Definition 4.6 be-
low (two of the most natural linearisations are not moderate, cf RemarkHetg.
moderate linerisations are obtained by an exact version of Bony’siffaradtial
linearisation without regularising remainder terms. Roughly describedea go-

lution u € Hy leads to operators in the ‘exotic’ class @%’Jr P ++£) where the
order beS|des the number 1, coming fraky, as a novelty contalnS— —9)1+€
becausei(x) may be unbounded of2.

More specifically, the linearisation has the following form, o= R" and with
4 (u,-) denoting paramultiplication by (cf (3.13) below)

—Lug = mm(u,019) + (U, 019) + TB(Q, 1U). (1.7)

In the usual paralinearisation, thig-term is omitted since it is of higher regularity
(leading to the famous formul(u(x)) = m (F’(u(x)),u(x))+ smoother terms).

But r»(u, 0:-) is first of allnotregularising in the present context, wherenay
be given inBj , or F5, also fors < § (this is possible by (1.6b)), thus allowing
to be unbounded. Secondly, the only non-linear’ limitation within the theargh(s
as (1.6b)) arises becausg(u,d19) may or may not be defined; by incorporation
of this term intoL, as in (1.7), the resulting limitation is whether or rigtitself is
defined ong. Motivated by this discussion, it might be appropriate to characterise
formula (1.7) as thexactparalinearisation ofid;u (‘full’ or ‘complete’ could also
be used); this terminology is adopted throughout.

As described in connection with the von Karman equation for buckling plates in
Section 5 below, it could be important that the theory is established under minimal
assumptions, for the well-known weak solutions for this problem are loatgly
covered by a direct application of the present set-up.
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1.3. On the parametrices. Itis perhaps instructive first to review the correspond-
ing linear problem, withu, f and¢ as in (IR):

G- (1)

For boundary problems like (1.8), there is a straightforward proof meitttook
duced by G. Grubb in [Gru90, Th 5.4] in a context Idg and classical Besov
spaces with k p < w. The advantage is that it altogether avoids the cumbersome
boot-strap arguments used earlier on (as in eg V. A. Solonnikov's §Sp&6])
when neitherB} ; — B}, nor B, — B}, holds. This problem of non-existing
embeddings is not even felt in the passage from (1.8) to (1.10) below.

To give the argument, note that the mat(i;bA) is an elliptic Green operator be-
longing to the Boutet de Monvel calculus of such systems; hence it haametix
(Ro Ko ) belonging to the calculus . As first shown by G. Grubb, it is possible to
take (Ro Ko ) such that the claésf Rp, by [Gru90, Th 5.4], equals

clasgy) —orde(—A) =1-2=—1. (1.9)

For such a choice ofRs ko ), the continuity fromB};?(Q) & Btr;,% (M) to BL,(Q)
follows from [Joh96, Th 5.5] under the assumptions in (1.6a); cf also ¢theise
description in the introduction of [Joh96].

Being a parametrix(Ro Kp ) (%A) = | — % for some regularising operatc¥
with range inC*(Q), and class 1 (although ) is invertible, so thatZ =0
would be possible as in (1.3% has been retained here for easier comparison with
the general case). So, using the just mentioned continuity, it follows Hicappn
of (Ro Ko ) to both sides of (1.8) that

u=Rpf+Kpp+2u belongsto B;,(Q). (1.10)

This only requires the continuity of &) and (ro ko), and it holds whenever
(s,p,q) and(t,r,0) both satisfy the condition in (1.6a). The formula (1.10) should
be compared to the corresponding non-linear one in (1.3) or (1.18) below

For semi-linearproblems boot-strap techniques have seemingly prevailed. It
would be pointless to account for the numerous papers adopting sudiatieite
methods, but a few remarks are made in order to shed light on the presdat w
For one thing, there is a boot-strap treatment of the stationary Naviers3tgkea-
tion in [Joh93, Th 5.5.3], with a review in [Joh95b]. It is noteworthy thatrtiegh-
ods are rather cumbersome in cases wigh p (whenr, p play roles as in (IR)).
The difficulties come from intermediate spaces, with integral-exponents éetwe
r and p, that must be carefully chosen to make sense of the boundary condition
([Joh95b] explains the procedure). In 2 and 3 dimensions, R. Temamg4]
derived hypoellipticity (ieC* data yieldC> solutions) for the semi-homogeneous
Navier—Stokes problem with the Diri@tlcondition, for which the mentioned diffi-
culties do not show up. These results are all direct corollaries of tiseptréheory.

For non-linear terms of composition type, ie of the fag(w(x)), a longer boot-
strap argument (almost a formal algorithm) was introduced together withnstRu
[JRIT7]. Earlier on eg H. Amann, A. Ambrosetti and G. Mancini [AAM78],Am-
brosetti and G. Mancini [AM78] and H. Bris and L. Nirenberg [BN78] obtained

2The class is the minimal € ZU { £} with continuityH" — 2’ of the operator.
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hypoellipticity (in various frameworks) by reiteration with sevepéd. For super-
linear NemytsKi operators, S. |. Polzaev has used analogous arguments [Poh93,
Th 1]. (This list is not intended to be complete.) J.-Y. Chemin and C.-J. Xu
[CX97] used a boot-strap method to give a simplified proof of the smoothness
of weak solutions to the Euler—Lagrange equations of harmonic maps; $ie ba
step was to obtain hypoellipticity of a class of semi-linear problems with terms of
the form ¥ a; k(x,u(x))djudcu. Formally this incorporates both composition and
product type non-linearities, but since the weak solutions in this case@ared

to be bounded, the difficulties met in [JR97] did not show up in [CX97]. How
ever, this well indicates that even larger families of non-linearities will bevagile

and require disturbingly many additional efforts, so since the produet dpera-
tors defined below lead to treatments of several well-known semi-lineardiaoyn
problems, this class should suffice for now.

As indicated the above works had a restricted scope (to hypoellipticisg-ta
or bounded functions) and thereby avoided consideratiam-efg(u) on thefull
Hp spaces with k s < § —which require much sharper arguments. A fortiori
there was no need to specify the borderline of the so-cald@dmeter domaincf
[JR97, Fig 1] and the discussion of this notion in Section 1.4 below.

The present article does not directly deal with composition type problems (al-
though Section 2 applies to bounded solutions of these), but this sphprelnf
lems could also deserve stronger methods, say to get rid of the algorithrofdrpro
[JRI7]. The paper [JR97] has not only been a source of inspirdiidnhere is also
a common theme of determining a useful parameter doiédior the semi-linear
operators. Although only product type problems are analysed in dept#tiios 3
onwards, a minimal set of assumptions is madéadn Section 2, bearing in mind
the more general examples of parameter domains established in [JR97].

In the parametrix construction (which is to be introduced in a general way in
Section 2 below) the first step is this: given a solutioaf (1.2) as in (IR), find a
linear, but u-dependent operatdy, such that

Lyu= —udyu. (1.11)

At this point it seems decisive to utilise paramultiplication. ®f this yields a
decomposition of the usual ‘pointwise’ product

V-W = T8(V,W) + TB(V,W) + TB(V, W), (1.12)

where ther (-, -) are the paraproducts (cf the formulae in (3.13) below).

The difficulty of working on an open s€ C R" is handled here via the opera-
torsrq and/q, whererq denotes restriction frorR" to Q whilst /g is a universal
extension operator faR (cf (1.35) below). Using this, the operatby is for (1.2)
taken as the exact paralinearisation,

Lug = —ra7a(lou,01loQ) — ra({qu, 014aQ) — raTs(fag,dilqu).  (1.13)

It is noteworthy that the last term, in its action gnis comprised of the operator
rams({q-, d1qu) — thatformally differs from the rest of the right hand side.
However with this definitionl, has certain mapping properties that are decisive
for the argument below (precise assumptions are suppressed hemmdicity’s
sake). In fact, has an ordet(s, p,q) on all admissible spaces ,, and under
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mild conditions oru it fulfils cmax(Ly) < 2 if

Wmax(Lu) ‘= supw(s, p,q). (1.14)
s,p.q
This means thdt, is amoderatdinearisation of—udy u, in the terminology of Def-
inition 4.6 in below; in fact, even A-moderate decomposition becausgax(Lu)
is less than the order 6fA. Cf Remark 1.1 below.
By means ofL,, equation (1.2) implies

U—RpLyu=Rpf +Kp¢p +Z2y; (1.15)

this follows simply by application o(fég) to both sides of (1.2) and insertion of
(1.11). The idea is now to apply the finite Neumann series (which will equal the
desired parametrix)

R :=1 +RoLy+---+ (RoLy)N L. (1.16)
BecausgRpLy)! is linear it follows that
V(1 —RoLy) =1 = (RoLu)™, (1.17)
hence the resulting formula is
u=PR"(Rof +Kpd +2u) + (RoLy)V(u). (1.18)

Note that in comparison with (1.10), there are two extra ingredients hemelpa

PSN) and (RpL,)Nu which are manageable in the following way:
A crucial, but not difficult, analysis given in Section 2 below shows twalamn
mental results, namely that

Ay (RoLu)"

AN: B 4(Q) ——— B,(Q) (1.19)

_ (N) _
YN BLo(Q) = B! o(Q). (1.20)

Using this, all terms on the right hand side of (1.18) are seen to beloBft@as
desired, provided\ is chosen as in (1.19). '

Clearly the ma[PlEN) is non-local becaus®p is so, andu-dependent as one
could expect. Moreover, from the family of parametri@ég) one has the free-
dom to pick a sufficiently regularising one (this situation resembles the Hadamar
parametrix construction somewhatdis5s, 17.4]).

It is not intended to present a symbolic calculus containing the parametrices
PSN); the difficulties in doing so are elucidated in Section 4.5 below. It is rather a
point of the paper that the parametrices (and resulting inverse regulapgnies)
may be established by simpler means.

Remarkl.1 With the third term ofL, equal to—rq1B(¢q-,01¢qu), the regularity
of Lyg mainly depends ory. More precisely, ifu € Bﬁ,ooﬁqo(ﬁ), thenL,g has in
general only( & o — S0)+ + 1 derivatives less thag, and eg this would simply be 1
in the infinite region wherBSO g < L, hencew =1 there.

The choicergmg(/qu, (MQ ) would have rendered-L,g equal tog — udig,
that might look like a natural linearisation. But sineg g € B} , can be shown to
hold if s < 59, the order ofg — ud: g fulfils w(t,r,0) >t —s5 onBL,. Clearly this
order is larger than that 6f A whent > 55+ 2; regardless of wheth@80 g < Leo
or not,t > 55+ 2 holds for ‘most’ spaces (whereas with the above deflnltlohuof
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the action of—A is the dominant one, at least fB‘%qO — L according to the first
part of this remark), and sp+— udig is not even a moderate linearisation because
Wmax > SURt — sp = . These properties @f — udig do not suffice for the proof

of this article’s main theorem. For the same reasons it would be equally unfruitf
to define—L, from the differential ofu — ud,u at u, for this entails takingy —
udi1g+go1u. The present definition df,g is a suitable choice inbetween the other
two just mentioned; and while this choice has been known, its consequiemces
semi-linear boundary problems have seemingly been unexplored hitherto.

1.4. Remarks on parameter domains.When justifying the rather formal steps

in (1.15)—(1.18), it is convenient to depart from theadratic standard domain
D(Q). This notion is introduced in Section 4.2 below, and for the quadratic opera-
tor Q(u) := udyu of the model problem,

DQ) ={(spq|s>3+(5—3)+}; (1.21)

it is chosen so thad is well defined on aIBfJq and FS in this domain; cf (1.6b).
However, it is equally important that the DII‘I(EHlCOhdItlon makes sense on all
the considered spaces. For this one can (cf (1.36) below, and als) (&6

Di={(sp,a) s> 5+ (N-1)(§-1)+}, (1.22)

and use this as the parameter domain of the Digicidalisatiomy, ie D(Ay,) =
;. (Reference ta\, is convenient, although (1.2) has an inhomogeneous bound-
ary condition.) It is convenient to introdu@g(s, p,q) such thatQ is bounded

Q: By — By P9, (1.23)

so the crucial question wheth@rhas order stricly less than that efA amounts to
o(s,p,q) < 2. Combining the requirements one is lead to the domain

D(Ay, Q) = D(By) ND(Q) N {(s.p,0) | o(s,p,a) < 2}. (1.24)

If for simplicity n > 3 is assumed, one finds from the general rules in the below
Corollary 4.8 that

DAy, Q) ={(spa)[s>3+(F—3)+}. (>3 (1.25)

In the terminology of Section 4.2 is Ay -moderate on every space (with its
parameter) in this domain, and accordingjli{A,, Q) is also said to be a domain of
Ay,-moderacy for the non-linear opera@r It will be convenient throughout to say
that “u is in D(Q)” when u belongs toE; , for some parametes, p,q) € D(Q).

The formulaQ(u) = —L(u) is valid onD(Q) cf Lemma 4.3 below, but it turns
out thatg — Ly(g) for a fixedu € BY, ,, is defined on every space in

D(Ly) ={(sp.a) [s>1-so+ (5 +p —M+ 1} (1.26)

Here D(L,) D D(Q), in general with a large gap, and it is clear tfixtL,) in-
creases with improving a priori regularity af(ie with increasingsy or pp). This

is exploited in the analysis of (1.1) in Theorem 7.1 below.

Although parameter domains at first glance may seem to be a notion of minor

importance, these four domains and their general counterparts ate fasdfoth

the ideas and the exposition of this article. Among thBfk,) is a novelty in
particular, and it clearly gives a concise explanation of how the propeufi€

differ from those of its paralinearisatidy,.
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However, in this article, the main motivation for a systematic use of parameter
domains is that the parametrices, and the resulting inverse regularity fiespare
established in the domain

Dy =Dy ND(Ly). (1.27)

By (1.24), this is larger thaid(Ay,, Q) sinceD(Q) C D(Ly). But the situation

is delicate, for the introduction db, presupposes that a solutianis fixed in
D(Ay,Q), and it is only afterwards one can replace thislhy These domains do
differ, and they are a little tedious to explain, so for a clarification of the sitnatio
it seems instrumental to use parameter domains consistently.

Notice that canonical choices of parameter domains do not exist, sinGe eg
for different purposes may be considered witfQ) or D(Ay, Q). The quadratic
standard domaii)(Q) is always easy to determine, cf the general rule in Propo-
sition 4.4 below. By comparison, domains of moderacy sucb@s,,, Q) do not
follow a single rule, for these are obtained frdQ) by removal of certain sub-
regions, depending both on the class of the boundary condition and ordals
entering the linear and non-linear operators; cf Corollary 4.8 ff below.

However, using the above formulae, it is not difficult to point to a centoattp
of the main theorem’s proof. Introducing the defidit= 2 — o (s, p,q), clearly
o > 0 holds inD,, andRpL, has order—¢d onall spacesl?%q in D,. So whenu
is in a fixed spac@y . in D(Ay,Q), it follows that (RpL)N has order-N& on
Dy, and hence has the property (1.19). (This argument breaks doviinefather
linearisations in Remark 1.1, since they are not moderate.)

For other types of problems the relevant parameter domain will in general be
a rather more complicated set than the polygon in (1.25). In particular, it may
indeed be non-convex and operators correspondingrgt,)N can have orders
bounded with respect td (unlike —NJ). This is exemplified by the composition
type problems in [JR97]; cf Figure 1 there.

In view of this, it seems practical to assume that the parameter domain is con-
nected (although a ‘path ©©*’ would suffice by (2.20) below). Under this hypoth-
esis it is possible to prove the existence of the deditdd (1.19) by continuous
induction along a curve froni}, s) to (7,t), running inside the parameter domain
Dy. Actually any such curve will do, in contrast with a boot-strap argumenthvh
for r # p relies on the choice of a specific, suitable curve. Cf Section 2.

1.5. Notation and preliminaries. The space of smooth functions with compact
supported is denoted I (Q) or Z(Q), whenQ C R" is open;Z’(Q) is the dual
space of distributions of2. (u, ¢) denotes the action afe 2'(Q) on ¢ € C3(Q).
The restrictiorg : 2'(R") — 2/(Q) is the transpose of the extension by 0 outside
of Q, denotedey : C(Q) — C&'(R™M). Using this,C*(Q) = roC®(R") etc.

The Schwartz space of rapidly decreadiiyfunctions is written (R"), while
' (R") stands for the space of tempered distributions. The Fourier transformation
of uis Zu(&) = U(E) = fene *¥u(x)dx, with inverse.Z ~1v(x) = V(x).

For simplicity ty := max0,+t) for t € R. As in [Knu92], the brackefA]
stands for 1 and 0 when the assertiis true and false, respectively.

Norms and quasi-norms are writtém | X|| for x in a vector spac; recall that
X is quasi-normed if the triangle inequality is replaced by the existence>ol
such that allk andy in X fulfil || x+y|X]| <c(||x|X]|| + ||y|X]||) (“quasi-" will be
suppressed when the meaning is settled by the context), ') and/,(N) for
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p €]0,] are quasi-normed witle = 25D+, by Hdlder’s inequality this holds
because botl, andLp for 0 < p <1 satisfy the following, fold = p,

I gl < (1A +llgl*)M. (1.28)

For brevity || f|| is also used instead d¢iff [Lp|| for f € Lp(Q), with Q C R" an

open set.X; & X, denotes the product space topologised |ty |Xq || + || X2 |X2| .

For a bilinear operatoB(-,-): X1 & X2 — Y, continuity is equivalent to existence

of a constant such thatl| B(xq, x2) [Y]| < c||x1 | X1 || X2|X2|| and to boundedness.
TheBj 4(R") andF;,(R") spaces are defined as follows, with conventions as in

[Yam86a] Firsta thtlewood —Paley decomposition is constructed usingcifum

W in C*(R) for which ¥ =0 and¥ = 1 holds fort > 13/10 andt < 11/10,

respectively. Thew;(&) := W(271|&]) and

®j(&) =wi(§)-Wj-1(&)  (W-1=0) (1.29)

gives Wj = &g +--- + @ for every j € No, hence 1= 37 ,®j onR". As a
shorthand¢ (D) will denote the pseudo-differential operator with symiggl ie
9(D)u=7F L$(§)Fu()), say forg € 7 (R").

Now, for asmoothness indexssR, anintegral-exponent g |0, ] and asum-
exponent ¢ |0,«], the Besov space B, (R") and theTriebel-Lizorkin space
Foq(R") are defined as

Byq(R") = {ue . (R") | || {27 | ®;(D)u(-) |Lpll}T o |4a]| <},  (1.30)
FS (R") = {ue.”'(R") | ||[[{2%I0j(D)u}iollqll(-) |Lp|| < }.  (1.31)

Throughout this paper it will be tacitly understood the& o whenever Triebel-
Lizorkin spaces are under consideration.

The spaces are described in eg [RS96, Tri83, Tri92, Yam86a]. Tieegumsi-
Banach spaces with the quasi-norms given by the finite expressions @) éh8
(1.31). They have the property (1.28) for= min(1, p,q).

Among the embedding properties of these spaces onghgs- B} { for € >0,
and if in the second lin€@ C R" is open and bounded,

Byq— Bio for S—%=t—?, p>r;o0=q, (1.32)
Bpq(Q) — Bg(Q) for p>r. (1.33)

The analogous holds fd¥S

5q» except thafs, — F'; ifonly s— 3 _t— 1 p>r.

Example 1.2. Forb > —n, the locally integrable functiog = |x|® is in Bpﬁo% (R™)
for 0 < p< o, since®;(D)g(x) = 2<1‘j)b$1*g(2j‘1x) gives that||®;(D)g| p
equals 2 (B +D) |, «g|p. The delta measur& € B« (R") for 0 < p < c.

A (possibly non-linear) operatdr is said to have ordew on Eg’q if T maps
this space intde5, and || T(f)[E5,“l| < cl| f [E} 4l for some constant. The
order may depend on the specﬁgq, hence in general be a functian(s, p,q).
Typically T is given along with a natural range of parametex$, ) for which it
makes sense dB; ,; then the set of sucts, p, q) is denoted byD(T) and is called
the parameter domaiwf T. If T has an order on eveiyg , with (s, p,q) € D(T)
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the following quantity is well defined,

wmax(T) = sup _ a(s,p,q)- (1.34)
(s p.a)eD(T)
(The order is differently defined E&; , andEj * are considered over underlying
manifolds of unequal dimensions, but this will be unnecessary here.)
WhenQ C R" is open, ther] (Q) '=rq(Ep 4(R")) endowed with the infimum
norm. An extension operatofg ,' isa continuoUs linear map

lo: E3q(Q) — ESq(R"), (1.35)

such thatrg o/ = 1. WhenQ is a bounded domain for which the boundary lo-
cally is the graph of a Lipschitz function,umiversalextension operataofg exists,
that is/q can be constructed such that it has the stated properties for all admissi-
ble (s, p,q); ie such thafD(/q) = Rx]0,»]2. See V. Rychkov’s paper [Ryc99b]
(together with [Ryc99al]) for this result, which is convenient here.

Thekth parameter domaif)y, is

Dy={(spa)|s>k+5-1+(n—1)(3 -1}, (1.36)

which is the usual choice for elliptic problems of class Z and for the outward,
normal derivative of ordek— 1 atl", ie for y_1f := (((,ﬁ)k ).

For the reader’s sake a few lemmas are recalled. They are conceithezbn-
vergence of a seriegj’_( u; fulfilling the dyadic ballcondition for someA > 0
suppZu; C {E eR"[ || <A2l}, for j>0. (1.37)

Lemma 1.3(The dyadic ball criterion)Let s> max(0, % —n) for0< p< o and
0 < g < = and suppose juc ./ (R") fulfil (1.37)and

F(q) = ||( J;zsiq\u,-(-nqﬁup <o, (1.38)

Theny? ou;j converges in?”/(R") to some u lying in f(R") for
r>q, r>-- (1.39)

I‘H—S’
and ||u|FS, || < cF(r) for some c> 0 dependingonn, s, pandr.

As remarked in [Joh04a, Lem 6.1], this follows from the usual versionhickv
s> max0, § —n, g —n) is required, for one can just pass to larger valueg if
necessary. The above lemma emphasises that the interrelationship betarekn

g is inconsequential for the mere existence of the sum. In the Besov cabasne
Lemma 1.4(The dyadic ball criterion)Let s> max(0, % —n) for p,q€]0,] and
suppose pe .«/(R") fulfil (1.37)and
B:= (%2Siquu,-ug)é < oo, (1.40)
=
Theny f_ou; converges in’(R") to some u lying in §4(R") and || u|B} o < cB
for some ¢~ 0 depending on n, s, p and q.

It is also well known that the restrictions @can be entirely removed i u;
fulfils the dyadiccoronacondition: for someA > 0, suppZ#up C {|&| <A} and

suppZu; C {E eR" | 120 < || <A21}, for j>O0. (1.41)
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Lemma 1.5(The dyadic corona criterion) et uy; € ./(R") fulfil (1.41)and(1.40)
Theny$ ouj converges in’(R") to some u for whichj u|Bj 4| < cB for some
¢ > 0 depending on n, s, p and g. And similarly fof FR"), if F (q) < e.

These lemmas are proved in eg [Yam86a].

In Lemma 1.4 the restrictions acannot be improved, for as soon@s- 1 on
the borderlines= (% —n);, then convergence is not implied by (1.40); cf [Joh95a,
Ex 2.4]. A substitute is outlined and used for Theorem 4.11 below, werelaso
next borderline result, taken from [Joh95a, Prop. 2.5(2)], enters.

Lemmal6.Let0<g<1<p<oand Ietz‘fzouj be such that Fq) < . Then
Y uj converges in k. to a sum u fulfilling|| u|Lp|| < F.

Proof. With 3 [uj(x)| as a majorant (sincE (1) < F(q)), || 37k |uj|[Lpll — 0.
Hencey u; is a fundamental series Iy, and the estimate follows. O

For the estimates of the exact paralinearisation in Section 4.4 and 4.5, the fol-
lowing vector-valued Nikolski-Plancherel-Polya inequality will be convenient.

Lemmal.7.LetO<r < p<o,0<qg<c and A> 0. There is a constant ¢ such
that for f € L, (R") N.#/(R") with suppZ fx C B(0,A2Y),

(3 199l < o sup

n_
T

K| fi | Le | (1.42)

The usual Nikolski-Plancherel-Polya inequality results from this if only dpe
is non-trivial. (Lemma 1.7 itself can be reduced to this by [BM01, Lem. 4])

2. THE GENERAL PARAMETRIX CONSTRUCTION

2.1. An abstract framwork. For the applications’ sake the below Theorem 2.2 is
proved under rather minimal assumptions; examples are given later.irédi¢ise

reader may think of the below spacé$asHp(Q) and consideA to be an elliptic
operator like( 1) etc.

For the full generality it is assumed that for some N andd € R (playing
the role of the dimension and the order of the linear operataespectively) the
following five conditions are fulfilled:

(I) Two scalesXs andY; of vector spaces are defined with) p) belonging to
a common parameter sgtlying insideR x |0, «]. In the X3 scale there are
the usual simple, Sobolev and finite measure embeddings; i.e(s,foy

and(t,r)in S,
X5 C X5 ¢ when &>0, (2.1)
XsC X when s>t and s—j§=t—7, (2.2)
X5CX® when p>r. (2.3)

(1) There is a linear map\s ,), written A for short,
A XS — Y5 (2.4)

for (s,p) in a setD(A) C S, termed the parameter domainAf
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There is also, for alls, p) € D(A), a linear mapA: YS*d — X5 such that

R = xs —~AA hasrangein [ X5 (2.5)
(sp)ED(A)
InclusionsUpa) X5 € 2™ and Up(a) Ygfd C % hold for some vector
spaces?’, #; and for(s, p), (t,r) € D(A) there is a commutative diagram

XSNX —— X3
| l lA@p)‘ (2.6)
Xt Aty w

Likewise A should be unambiguoustyefined onYs=9 Y.

() There is a non-linear operator”, with parameter domaii(.4"), which
for every (so, po) in D(-#") and for everyu € X3 decomposes ag’ (u) =
—Bu(u), where

By: X§— Yy 4TOP 2.7)
is a linear map endowed with a parameter donfiaiB,,) that is required to
fulfil D(.4") C D(By). For (s, p) and(t,r) both inD(.4") or D(By) there
should be a commutative diagram analogous to (2.6)foandB,.

(IV) For u as in (lll), the parameter domain(A) NID(By) is curve-connected

with respect to the metric digs, p), (t,r)) given by ((s—t)?+ (5 — ?)2)% ;
ie the Euclidean metric after the transformati@np) — (,S).
(V) Foruasin (), the functiond (s, p) satisfies
(s+9(s,p),p) eD(A) forevery (s p)eD(A)ND(By), (2.8)
inf{3(s,p) | (s p) €K} >0 forevery KeDA)ND(By). (2.9
For the proof of Theorem 2.2 below it is unnecessary to assume that thedemb
dings in (1) should hold for théfg spaces too (although they often do hold in prac-
tice); as it stands (1) is easier to verify in applications to parabolic initial-daon
problems; cf Remark 2.3 below.

For X5 = H5(Q) itis natural to letS = Rx |1, o0[ ; the Lo-theory comes out for
S =R x {1}. Besov spaces would often requijeo be fixed andS = Rx |0, co].
Anyhow 2" = 2'(Q) could be a typical choice. Continuity @ and A is not
required (although both will be bounded in most applications).

By (2.6) ff, % may be thought of as an operator frqpp ) X3 to Mpa) Xp-

For simplicity the argumentsy, po are usually suppressed in the functidn
By (Ill), the non-linear map/#~ sendsxs into Y5 4P for each(s, p) in D(.A)
(sinceD(.#") C D(By) for everyu in X5). This fact is tacitly used in the following.

Note thatd(s, p) > 0 by (2.9), so that (Ill) implies4# (u) hasB, as a moderate
linearisation (according to Definition 4.6 below).

3Suppressings, p) in Ais harmless in the sense tlmpy (2.6) is a well-defined map with domain

Un(a) Xp in 27, itis linear on each ‘fibreXg. Similarly A is a map orp ) std. Moreover,A eg
extends to a linear map on the algebraic direct §pié; C 2" if and only if

0=3"Vsp = ¥ AspVsp) =0
D) D)

(’ indicates finitely many non-trivial vectors.)
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Applying the transformation in condition (IV), the reader should constantly
think of D(A), D(.#") andD(By) as subsets dD, o[ xR.

Since the boundary db(.4") (or a part thereof) often consists of tfe, pg) for
which 8 = 0, it may seem natural to requif®./") to be open in0, e[ xR. How-
ever, such an assumption is avoided because it is unnecessary artcfpimight
exclude application to weak solutions of certain problems; cf the below Segtion

Evidently the strict positivity in (2.9) is implied by the conjunction of point-
wise positivity and lower semi-continuity a¥(s, p) on D(A) ND(B,). However,
with respect ta(s, p) the functiond is in practice often a constant, which depends
effectively on(so, po). When this is the case and furthermarg has a natural
parameter domaifd(.#") on whichd can take both positive and negative values,
it is natural to introduce

D(A4",6) = { (S0, po) € D(:4") [ 6 >0} (2.10)
and, instead db(.4"), use this subset as the parameter domairtofin a possibly
smaller subset,#” will then be ‘dominated’ by the linear maf, namely

DA, /) =D(A)ND(A, ). (2.12)
By introducingo (s, p) =d — (s, p), it is clear thatD(A,.4") is a generalisation
of the domainD(Ay,, Q) in (1.24).

Example 2.1(The model problem)To elucidate conditions (I)—(V) above, one
may in (1.2) setA = (¢') and X5 = B} 4(Q), wherebyq €]0, ] is kept fixed.
For the operatoﬁ there is a parametrix oA belonging to the Boutet de Monvel
calculus (cf Section 6.1 below). Usirg, from (1.13), botrB, andY are taken in
accordance with

. — 20
Ly B;q2+5(5«p)(9) Bz,q (Q) ,
Byv = ( 0 > € ® C G? =Yy~ (2.12)
{0} ()
For anye €]0,1] it is possible to takeéd(s, p) as the constant function
1 forso > g,
o(s,p)=<1—¢ for so = o, (2.13)

So—pt1l forg>s>5 -1

See the below Theorem 4.7. As mentioned in Remark 4.10, this theorem avilel Cor
lary 4.8 also gives the parameter domains, for any fixedx3,

DA) =Di={(sp) s>+ (n-1)(5-1)+}, (2.14)

D(A)={(sp)[s>3+(F-3+}, (2.15)
DA, &) ={(sp)|s>3+(F—3+3[n=2]),}

—D(A,N) (2.16)

D(Bu) ={(s,p) |s>1—s0+(F+a—"+} (2.17)

Being isometric to a polygon ifD, o[ xR, the setD(A) NID(By) clearly satisfies
(IV); when (so, po) € D(A)NID(By), then condition (V) may be verified directly.

Altogether this shows that the somewhat lengthy conditions (I)—(V) areranc
plicated to verify for the basic problem in (1.2).
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2.2. The Parametrix Theorem. Using the above abstract framework, it is now
possible to formulate and prove the main result of the article in a widely applicable
version.

Theorem 2.2. Let X3, Y5 and the mappings A and/” be given such that condi-
tions(1)<V) above are satisfied.
(1) For every
ue X2 with (s, po) € D(A)NID(A) (2.18)

the parametrix PV = yN-1(AB,)¥ is for every Ne N a linear operator
RN XS — X3 (2.19)

for every(s, p) in the setD, := D(A)ND(By). And for everys, p'), (s’,p") € Dy
there exists Ne N such that the “error term"(ABu)N is a linear map

(AB)N: X5 — XS, for N>N'. (2.20)
(2) If some u fulfil2.18)and solves the equation
Au+ .4 (u) = f (2.21)
with data fe Y9 for some(t,r) € Dy, (2.22)
one has for every N N the parametrix formula
u=PN(Af+2u) + (AB,)Nu. (2.23)

And consequently @ X! too.

Proof. For arbitrary(s, p) € Dy, one can use (ll) and (2.8) to see tiais defined

on Ys_d+5(s’p), hence thafAB, is a well defined composite

X3 2, vy aroleR) A, ysrolep) (2.24)
SinceX§+5 — X5 by (1), the operatoAB, is of order 0 onX$; hence

N-1

PN — S (AB,)] (2.25)
2,

is a linear mapX$ — X5. This shows the claim oR™).

Concerning(AB,)N, there is, by (IV), a continuous mag | — Dy, with | =
[a,b], such that

k(@ =(s,p),  k(b)=(s".p"). (2.26)
Clearly & :=inf{ &(s,p) | (s,p) € k(1) } >0, and for(s, p) € k(1)
X3 2By xSTOSP) , xsta (2.27)
With the convention thaX ;) := X3 whenk(t) = (s, p), let
T={rel|INeN: (AB)N(X3) C X1 } (2.28)

andM := supT. Thena <M < b sinceAB,(X§) C X5 C X It would now
suffice to show thab € T, for then (AB,)N(X5) C Xp) = X§, for someN € N;
and since(AB,)N' = (AB,)N'"N(AB,)N for N’ > N, the full claim onAB, would
follow becausgAB,)N N is of order 0 onXs, by (2.27).
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For one thingM € T: by continuity ofk there is ar’ < M in T such that
K(T') — K(M)| < 8/2 (2.29)

and(ABy)N1(XS) C Xy for someN. But by (2.27) this entails thaB,)N(X$)
is a subset of a space with upper index at l€gdtigher than that 0¥/, so the
embeddings in (1) show thaﬁBu)N(Xf;) is contained in any space in the intersec-
tion of S and a convex polygon; cf the dashed line in Figure 1 below. It follows
that (ABU)N(X;') is contained in ever¥s lying in S and fulfilling

k(T") = (s, P)| < &/ V2, (2.30)
so in particularAB,)N(X$) C X is found from (2.29).

FIGURE 1. The ball specified by (2.30) and a polygon in the
(5,5)-plane of spaces containir@B,)(X5).

SecondlyM = b follows from k(1 )’s connectedness: evekyt) with M < 1 <
b has an open neighbourhodd} disjoint from the open%-ball aroundk(M),

denotecB(k(M), %); for if not, |k(1) —k(M)| < & < 3 would hold, so thaM € T

would imply (as above) tha(ﬁBJ)N(Xfy) C X(r), contradicting thatt ¢ T. Thus
k([M,b]) is covered by the disjoint open s&¢k(M), %) andU;-mUr, and since
the former is non-empty, no > M exists in[a, b]. B
According to (Il), (Ill) and the assumptions in the theorem, the mappifas
the same meaning on both sides of (2.21), regardless of whether ometoerfg‘d

or to Y!~9 (on the left and the right hand sides, respectively). Therefore &)
the assumptiorisy, po) € D(.4") entail

(I — %)u— AByu = Af. (2.31)
For the giveru and f, it follows from (2.25) that
PN (1 —ABy)u= (I - (AB)M)u, (2.32)
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and moreover tha®N) has the same meaning on both sides of (2.31). Hence (2.31)
and (2.32) yield (2.23).

Note that the termPN)(Af + 2u) in (2.23) is inX! in view of (2.5) and the
proved fact thaP™) has order 0 orX!. By (2.20) also(ABy)Nu is in X!, so this
holds foru too. O

Applications of Theorem 2.2 to elliptic boundary problems are developed in
Section 6 below. The condition (2.8) in (V) may seem strange for an elliptig-pro
lem, for withD(A) equal to one of the standard domaibsit is for n > 0 always
the case thats+ n, p) belongs taD(A) when (s, p) does so. But first of all there
are non-linearities that do not allow arbitrarily high valuessdh the parameter
domains, edu|® with non-integera > 0 for which D(By) cannot contairs much
higher thana (depending on the order of th&in play), so a condition like (2.8)
will be needed in these cases. Secondly, (2.8) is also relevant fordbkeprs in
the next remark.

Remark2.3. Parabolic initial-boundary problems are also covered by Theorem 2.2,
by takingA as the full parabolic systerf@; — a(x,Dx),ro, T) acting in anisotropic
spaces I(p is restriction tot = 0, andT a trace operator defining the boundary
conditions). Concerning the linear problems, the reader is referredrt®¥§B,
Sect. 4] for thelp-theory (using classical Besov and Bessel potential spaces) with
a complete set of compatibility conditions on fully inhomogeneous data. In par-
ticular Corollary 4.5 there applies because the underlying manifald xQ for
0 < b <« is bounded, so that the solution spaggsulfil () above. Because of the
stronger data norms introduced to control the compatibility of the boundady- a
initial-data for exceptional values & cf [Gru95b, (4.16)], it is here convenient
that thng-scale is not required to fulfil (2.1)—(2.3). (Of course the compatibility
conditions forces one to work with rather small parameter domains, oncatae d
are given. But even so the present results may well allow considerabtevieip
ments of the solution’s integrability.) For the non-linear terms, the product type
operators of Section 3 below should be straightforward to treat in thesywnd-
ing anisotropic spaces, since the necessary paramultiplication estimatdskave
established in this generality [Yam86a, Joh95a].

The Ly-results for the time-dependent Navier—Stokes equation of G. Grubb
[Gru95a] may also be extended by inverse regularity results using thergrthe-
ory. However, this requires some additional efforts because the lyimgehin-
ear problem is only degenerately parabolic, but one can overcome tfidsilthf
by adapting the reduction of Grubb and Solonnikov [GS91] to a truelybodita
pseudodifferential problem.

2.3. A solvability result. As an addendum to the Parametrix Theorem it is now
shown that bilinear perturbations of linear homeomorphisms always gille we
posed problems locally, that is for sufficiently small data.

A proof of this may be based on the fixed-point theorem of contractioas, th
also apply in a quasi-Banach spaXefor which | - ||* is subadditive for some
A €]0,1]. (To the experts of topological vector spaces sidl known to exist in
any case, but for Besov and Triebel-Lizorkin spaces it follows frorg) ff.)

Proposition 2.4. Let A: X — Y be a linear homeomorphism between two quasi-
Banach spaces and:BX & X — Y be a bilinear bounded map. When |X||* is
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subadditive for som@ €]0,1] and ye Y fulfills

1
AlyIX|| < ——— 2.33
then the equation
Ax+B(x) =y (2.34)

has a unique solution & X in the ball || x|X|| <
uously on such y.

W, and x depends contin-

Proof. WhenR:= A~%, the equation is equivalent to= Ry— RB(x), where also
RB=: B’ is bilinear and|B'|| < ||R||||B||. For F (x) = Ry— B/(x) bilinearity gives

IF(x) —F@I* < IBI* (IxI* + [1Z1*) I — 2] (2.35)
Sinced(x,z) = ||x—z|X|* is a complete metric 0iX, the mapF is by (2.35) a
contraction on the closed bddl, = {x € X | ||| < a} if afulfills

2|B|*a! < 1. (2.36)

In addition F is a mapK, — Ky for sufficiently largea. In fact, for x € Kg,
IF(X)[|* < [[Ryi|* +||B|*a®; andD = 1— 4||Ry||*||B'||* > 0 holds by the as-
sumptions, so
1-vD 1+vD [
2B " 2B
where the interval contaires' , when this is arbitrarily close t(2||B'||*)~1.

HenceF has a unique fixed-point in the closed bi&ll. If also AX +B(X) =y
for somex’ € K,

Ix=x|I* < IRy —y)|I* +2a|[B]|* [x—X*, (2.38)

so d(x,x) < cd(Ry.Ry) for ¢ = (1—2a*||B'||*)~ < . This gives the well-
posedness iK,, but with the leeway in the choice afthe proposition follows. [

IRy +[[B*? <t <= te ] (2.37)

The proof above is elementary (and could well be folklore), but it isryice
the reader’s convenience since the result plays a key role for Tineadebelow.

3. PRELIMINARIES ON PRODUCTS

For the reader’s sake, a brief review of results on pointwise multiplication is
given before the non-linear operators are introduced in Section 4 below

First of all, a non-linear operator gfoduct types roughly a map
U Py(D)(Py(D)u-Pi(D)u), (3.1)

where theP; (D) are partial differential operators, linear with constant coefficients
and of ordersd; € Np; cf Definition 4.1 below.

For simplicity’s sake = | is often considered, ariéh(D)u- P(D)u may then
be viewed as a homogeneous second order polynopi@l...,zy) composed
with a jetJu = (D9U)|q|<k, k= max(do,d1). But in general this jet description is
too rigid, for a given operator of product type wia = | may be the restriction of
one withP, # 1, cf Example 3.1. And converseRy(D)(Py(D)u-Pi(D)u) may be
an extension of another one of the type in (3.1).
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These differences lie not only in the various expressions such opean be
shown to have, but also in the parameter domains thattfagype given (in analogy
with maximal domains of differential operatorslin(Q)). Consider eg

U— u-diu, U %dl(uz). (3.2)

The latter coincides with the former fore C*, and in general it does so on the
on whichudyu is defined. But as it standsg,u does not make sense as a bounded
bilinear mapL4(R") — H~(R"), wherea (u?) clearly does so. Henckds (u?)
is a non-trivial extension afidu, and the natural parameter domains differ for the
two expresssions (for the latter it includesleg.

More general classifications of non-linear operators are available ilitehe-
ture; the reader may consult the set-up and examples in eg [Bon81, Saad 5]
[Yam88, § 2]. But as discussed in the introduction, the product type operators
defined above are adequate for fixing ideas and for important applisation

Example 3.1. For a useful commutation of differentiations to the left of the point-
wise product, consider as in Section 5 below the ‘von Karman bracket’:

[V, W] := D3vD3w + D3vD3w — 2D3,vD3,W. (3.3)
Introducing the expression
B(V,W) = D3,(D1vDow+ DovDyw) — D2(DovDow) — D3(D1vDiw),  (3.4)

thenB(v,w) = [v,w] whenevewn andw are regular enough to justify application of
Leibniz’ rule. ClearlyB(-,-) is a case witt?%(D) # I.

Example 3.2. It might be important to allow more general expressions; eg, using
the solution operatdR, for the homogeneous Dirickl problem forA?, a reduction

to one unknown in the von Karman problem, cf J.-L. Lions [Li0o69, Ch 1.4d¢

to the tri-linear map, with-, -] as in (3.3),

u— [u, Ro[u, ul]. (3.5)

So Ry, Py could ideally be allowed to be non-local, lik&. And Rolu, Ro[u, u]],
used in [Cia97, Th 5.8-1], ha’, = Ry non-local. Such non-linearities are only
mentioned to give a perspective on the introduced product type operator

3.1. Generalised multiplication. The non-linearities in (3.1) often involve mul-
tiplication of a non-smooth function and a distributiondi \ L'°°; as eg inudu

whenu belongs toH 2+¢ for small € > 0. Although it suffices for a mere con-
struction of weak solutions to consider an (ad hoc) extensigi,of) — u-vto a
bounded bilinear form defined on, sélf x H~° for somes > 0, the proof of the
regularity properties will in general involve extensmnsth) x Fpq for several
exponentgp andg. This clearly causes a problem of conS|stency among the vari-
ous extensions introduced during a single proof, andjferc there is, moreover,
no density of smooth functions to play on. In the present context, commutative
diagrams like (2.6) would then pose problems for the multiplication, hence con-
dition (IIl) above would be problematic to verify for the product type @pers.
Therefore a more unified approach to multiplication is desirable.

Since a paper of L. Schwartz [Sch54] it has been known that produitis
a few reasonable properties cannot be everywhere defined’ ocnZ’. Conse-
guently many notions of multiplication exist, cf the survey [Obe92], but for the
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present theory it is important to use a produgt, -) that works well together with
paramultiplication orR" and also allows a localised versian to be defined on
an open se@ c R". A product with these properties was analysed in [Joh95a],
and for the reader’s sake a brief review is given.

The productr is defined onR" by simultaneous Fourier regularisation of both
factors: whenyy (&) = @(27%&) for ¢ € C3(R") equal to 1 in a neighbourhood
of £ =0, then

(,Y) = Jim (4k(D)U) - (Yh(D)V). (36)

Hereu andv € ./(R"), and they are required to have the properties that this limit
should both exist inZ’(R") for all ¢ of the specified type and be independent of
the choice ofip. (Y (D)u:=.Z (gl etc.)

This formal definition is from [Joh95a], but consideration of the limit in (3s6)
folklore. It is a point thatrr(u, v) coincides with the usual pointwise multiplication:

LISS(R") x LES(R") — LP(R"), 3.7)
Om(R") x &' (R") — .7 (R"); (3.8)

hereby 0< % = %Jr% <1 andd&y denotes the slowly increasing smooth functions.
Cf [Joh95a, Sect. 3.1] for the proofs.

For later reference, the main tool for (3.7) and localisation to openQGéts
recalled from [Joh95a, Prop. 3.7]: if eitharor v vanishes inQ, ie rqu=0 or
rov=_0, then anyy as in (3.6) gives

0= lim ro(yk(D)u- k(D)) in '(Q). (3.9)

Whenr(u,v) is defined, (3.9) implies that supgpu, v) C suppunsuppv (for (3.7)—
(3.8) this is obvious). But the limit in (3.9) exists in any case when one of the
factors vanish im.

Using (3.9),m(u, V) is defined for an arbitrary open s@tc R" on thoseu, v
in .7/(Q) for whichU, V € .#/(R") exist such thatqU = u, rqV = v and

(U, V) 1= lim ro(Yi(D)U) - (Y(D)V))  exists in7/(Q) (3.10)

independently ofy € C3(R") with ¢ = 1 nearé = 0. Here (3.9) implies that
the limit is independent of the ‘extensio(U,V), and that they-independence
is so (cf [Joh95a, Def 7.1]). However, becaus@),V) need not be defined, it is
essential thatq is applied before passing to the limit.

3.2. Boundedness of generalised multiplicationUsing (3.10), itis clear thair,
inherits boundedness fromgn:

Proposition 3.3. Let each of the spacesyEE; and B be either a Besov space
B}q(R") or a Triebel-Lizorkin space ;(R"), chosen so that(-, ) is a bounded
bilinear operator

m. B E1 — Eo. (3.11)
For the corresponding spacek(®) := rqoEy over an arbitrary open se@ C R",
endowed with the infimum normm, is bounded

() Eo(Q) DEL(Q) — E2(Q). (3.12)
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In the result above it is a central question under which conditions (3ctdalky
holds. This was almost completely analysed in [Joh95a, Sect. 5] by means of
paramultiplication. As a preparation for the definition and analysis (furtblem)
of the exact paralinearisation, this will now be recalled.

First, by using (1.29), and by settirg; = 0 for j < 0 etc, the paramultiplica-
tion operatorsig,(-,-) with m= 1, 2, 3 (in the sense of M. Yamazaki [Yam86a,
Yam86b, Yam88]), are defined for thoseandv € .#’(R") for which the series
below converge iz’ (R"):

m(f,g) = iw,-_zm)fw,-(a)g (3.132)
o(f,9) = i(cv,-_l(mf¢j<D>g+¢j<D>f¢j<D>g

= +®;(D)fd;_1(D)g) (3.13b)

mws(f,g) = %(D )fW;_2(D)g (3.13¢c)

Secondly, this applies to (3.6) by consideration of the aase- Wy, for then the
formula Wy = @g + - - - + P and bilinearity at once give that the right hand side
of (3.6) equalsy ,—1 2 3 (U, V) provided eaclriy(u,v) exists — but this existence
is easily obtained for eaaim by standard estimates. (In famt(f,g) and r(f,Q)
both exist for allf, g € .#/(R"), as observed in [MC97, Ch. 16], so in practice
m(u,V) is defined if and only if the second serigs(u, V) is so.) Thirdly the inde-
pendence ofp is established post festum.

Whilst the boundedness aff(-,-) was analysed in depth in [Joh95a], it suffices
here to review some central conclusions on ‘multiplicability’. For converd@enc
E; o denotes a space which (for every valug®fp, q)) may be either a Besov or a
Trlebel Lizorkin space ofR".

It was proved in [Joh95a, Th 4.2], albeit with (3.15b) and (3.16b) re&sby
covered by [Fra86b], that if

119IER ¢/l < cll T IER qll 191ER g, (3.14)
holds for all Schwartz function$ andg, then

So+51> N(ps + 5 — 1), (3.15a)
so+51>0. (3.15b)

As a supplement to this, the following were also established there:

+ & > 1inBB--cases

=2+ _n implies { P ql 3.16a
0% =5 P { + & > 1in BF-cases; ( )
So+s1=0 |mpI|es + - > 1 (3.16b)

The main interest lies in thBB-- andFF--cases and the case with niaxs;) >0
(for sg = s1 = 0 Holder’s inequality applies). In this situation the sufficiency of
the above conditions was entirely confirmed by means of (3.13), cf the foljpw
version of [Joh95a, Cor 6.12] for isotropic spaces:

Theorem 3.4. Whenmax(sp,s1) > 0, then it holds in the BB and FF--cases that
EX ¢ and B3 , onR" are ‘multiplicable’ if and only if both(3.15a3.15b)and
(3 16a)—(3 16b)hold.
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The spaces that receive(ESg_qO, Ef}l’ql) were almost characterised in [Joh95a],
departing from at least 8 other necessary conditions, but the beloaréine4.7
will imply what is needed in this direction.

Remark3.5. Itis used in Section 7 below that multiplication cannot define a con-
tinuous mapNV"aW" — 2’ when 2n < n. When the range is a Besov space
this follows from (3.15a), but for the general statement an explicit pshoiuld

be in order. Ifp € Cg is real andpg(x) = $2K""Mp(2kx), it is easy to see that

| WM = €(%) \, 0. But for ¢ € C5 non-negative withg(0) = 1, 2n < n
implies

(P2, 0) =k 2202 [p2y)p (2 y)dy /e (3.17)
This arguments works for open s€s> 0 and extends to ald ¢ R" by translation.

3.3. Extension by zero. Having presented the produg-, -) formally, the oppor-
tunity is taken to make a digression that will be crucial later.

In Section 5-6 the operatos and A of Section 2 will be realised through the
Boutet de Monvel calculus of linear boundary problems, so it will be all-irgrt
to have commuting diagrams like (2.6) for this calculus. However, this is a little
delicate for the truncated pseudo-differential operators, that localgfahe form
P, =r*Pe". Here the extension by zero outside®} can be defined, via the
characteristic functiory of R}, by the formulae™u = m1(x,v) whenr*v = u; this
way e' is defined also on some spaces wsth 0.

In relation to commuting diagrams, it is an advantage that ri(x,v), by the
definition of 1, acts without reference to the spasdselongs to. For its properties
one has

Proposition 3.6. The characteristic functioxy of R} yields a bounded map
(X,-): Epq(R") — Ep4(R"), (3.18)
for Besov and Triebel-Lizorkin spaces wigh- 1+ (n—1)(§ — 1) <s< 3.

This is similar to a result of Franke [Fra86a, Cor. 3.4.6] (that extends $0\Be
spaces withp < « by real interpolation), but Franke departed from a less precise
notion of the product by: for supps compact he estimategv and extended by
continuity to all of 5, (for g = c based on his well-known Fatou property). Here
the formal space dependence is harmless because the approximanes$enrityv
(a truncated Littlewood—Paley decomposition).

As a more subtle point, the full treatmentff in By ; andF3,-spaces is based
on the paramultiplicative splitting off in (3.13), so it is important that Franke’s
product xv equalsri(x,V). This was exploited, albeit without details, in [Joh96],
so because of its role in the commuting diagrams here, it is natural to take the
opportunity to return to this point:

Proof. In view of (3.13) it suffices foB}, ; to show bounds
| (X, 1) [Bpgll <CllulBpgll form=1,2,3 (3.19)

Using well-known estimates (cf the remarks in the proof of Thm. 4.7 below) this
holds form = 1 for everys becausex € L.. Moreover, form= 2 it holds for

s> (p — )+, while form= 3 it does so fors < 0. The last two restrictions os

will be relaxed using the anisotropic structurexaf
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For brevity ug := ®(D)u, U := Wy(D)u etc. Now7s(X,U) = Jo XU 2. If
H is the Heaviside functiorny (x) = 1(X') ® H(xy) and

X =CF HD(E) ©H (&) = 1(x) @ F; L, (Pu(0.&)H).  (3.20)

n

For the second factor, note thdﬂﬁﬂ(z"én) = I£|(£n) sinceH is homogeneous of
degree zero, so

FHD1(0,27%)H) (%) = 247 H(@1(0, )H(24)) (2%,) = H1(Z%y).  (3.21)
HereHy refers to the decomposition=1y ®;(0, &) onR"1. Fork > 1 this gives
I H Lp(R) || = 27T P Hy [Lp(R) | < oo. (3.22)

Indeed,cbl(o,-)lq € 7 (R) becauseZH = *T‘ﬁ(dtH(t)) = % for T # 0; hence

Hy € Lp. Note thattd := H — Ho by (3.22) is inBFE(R) for 0 < p < oo,
To handle the factor (X') in (3.20), there is a mixed-norm estimate

XLl < [ (SUplu 2, )P [ HLp(R) [P (3:23)
S
so thats— % < 0 in view of a summation lemma (cf [Joh96, Lem. 2.5]) yields
1
_ — =)k i 4
Y 22T <c Y 2 PRACTfunLp(La) [P |y ]
k>1 k>1 0<I<k
1
< cHulF Y 2P| Lp(Le) 1 (3.24)
k>0

~ 1
< c|[H[Bpa/u[Bpgll".

Indeed, the last line follows from the NikolskPlancherel-Polya inequality, cf
Lemma 1.7, when this is used in thg-variable (for fixedx' the Paley—Wiener—
Schwartz Theorem gives thatx',-) has its spectrum in the regidéy,| < 2<1).
By the dyadic corona criterion, cf Lemma 1.5, this provesy,u) € B}, hence
the casen=3 fors< %.

Form= 2 only % —1 < s< 0 remains; this implies & p < . It can be as-
sumed thatiy = 0, for u may be replaced by — uy — u; becausey € L., implies
(X, Up + U1) belongs to i~ th_ ThenTn(x,u) is split in three contributions,
with details given fory xxux (terms with xicuc—1 and xx_1ux are treated analo-
gously). In the following it is convenient to replace the sequege temporarily
by (O,...,0,un;,...,Un+m,0,...), in which the entries are also calleg for sim-
plicity. In this way the below series trivially converge.

Note that the Nikolski-Plancherel-Polya inequality usedxnyields

|i(D) T Xawllp<c T [|®)x (X [Lpx(Lig)|[ 2. (3.25)
k>j-1 k>]-1

In this mixed-norm expression, Fubini’'s theorem giveskior 1

[ 195 (s (¢ xn) 60 < 1l ] 101 = o) | cbasuplusly D]
- (3.26)
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Reading this as a convolution @1, the usual p-estimate leads to

\ \
[1Pj# (Xieuie) [Lp(La) | < I[Hkl[2l[ P2 ]| ik Lp(Leo )] (3.27)

Combined with (3.25) this gives, sinee-1— % > 0 and supp” (xkUx) is disjoint
from suppP; unlessk > j —2 (and sincaug = 0),

251, %Xkuk\|q<c 205 IHa fluk Lp(La) )°
I N 2

k>7—1
<d202 SR H |19 uj |Lp(La) |9 (3.28)

<c|H[BLL(R)[" Z)ZS”HUJ‘ [ < co.
1=

For q < « the right hand side tends to O fbr— o, so thers-series is fundamental
in By 4. There is also convergence fgr= «, sinceu € Bs £ forall € >0. The
above estimate then also applies to the origiog), which y|elds (3.19) fom=2.

To cover theF3,-case, note the continuitgy’’ e T, By — Fpq for p<o
and sufficiently smalle > 0. If Franke’s multlpllcatlon byx is denotedMX, it

follows from his results thaBj'* M, F5q- Since.” is dense inB}'f and My
extends the pointwise product b<y it foIIows thatM,, coincides withr(, -) for
all Besov spaces witls, p,q) as in the theorem, ip < «. But then they coincide
on all theF; , spaces, sar(x, -) is bounded orf; , as claimed. O

Remark3.7. The above direct treatment of the Besov case should be of interest in
its own right, in view of the mixed-norm estimates that allow the unified proof of
all cases. (Even foBs , [Tri83, Th 2.8.7(i)] had to go through subdivisions of
the parameter region, W|th duality argumentsdat O due to the lack of a precise
definition of xu; avoided by use oft(-, ) here.)

4. PRODUCT TYPE OPERATORS

The desired class of non-linear operators and their paralinearisaaonsosy
be formally introduced:

Definition 4.1. Operators oproduct type(dp,ds;,dz) on an open se@ C R" are
(finite sums of) maps of the form

(V,w) — Py(D) 1o (Po(D)v, PL(D)w), (4.2)

where theP;j(D) are linear differential operators with constant coefficients and of
orderd;. The case withP,(D) = | is throughout indicated by designating the
operator as one of typ@ly,d;). Generallydy, d;, d2 appear in the same order as
the P;(D)’s are applied.

It is essential to uset, in this definition, for the involved product cannot in
general be reduced to any of the forms in (3.7)—(3.8) whandw in (4.1) both
are in spaces of low regularity.

Definition 4.2. For each choice of a universal extension operéggrand choice of
Y, in (1.29), theexact paralinearisation |.of an operator of product typa,d; is



PARAMETRICES OF SEMI-LINEAR PROBLEMS 25

defined as follows, cf (1.13)

Lug = —rom(RU,RG) —rom(RU,PG) —roms(RG, PLU)

with U = fqu andG = /qg. (4.2)

For P # |, the composité» (D)L, is the exact paralinearisation.

The rationale is thak,g has circa the same regularity gs Indeed, as a well-
known factr (f,g) has roughly the same regularity as its second arguigesntd
s(f,9) = (g, f) yields that therg-term mainly depends og; since in general
e(f,0) is of a matching but not lower regularity than the others, altogethgr
has regularity likeg. This inference will be corroborated in Theorem 4.7 below.

Conceptually, Definition 4.2 invokes an interchange of the migpandP; (D),
compared to (4.1), wherBy(D) and P;(D) are applied before the extensions to
R" in mg; cf (3.10). The reason for this is that,g then has the structure of a
composite mapq o R, 0 /o (g) for a certain pseudo-differential operaty of type
1,1; cf Theorem 4.13 below.

Although /o does not commute with the differential operatéy$D), Pi(D),
the convention above is justified by the fact tigpfov = (oPjv in Q, so that the
localisation property in (3.9) implies thatLyu gives back the original product
type operator:

Lemma 4.3. Let u belong to a Besov or Triebel-Lizorkin spa@aq& ) such that
the parametergs—dj, p,q)j—o,1 fulfil (3.15)«3.16)and s> min(dp,d1). Then

Mo (Py(D)u, P (D)u) = —Ly(u). (4.3)
This holds for any choice @k, and Wy (or ®y) in the definition of L.

Proof. According to Theorem 3.4, the parametéss- dj, p,q) j—o,1 belong to the
parameter domain af on R", so it holds for allv, w € ES (ﬁ) that

T (Po(D)v. PL(D)w) = o lim (yk(D)Ro(D)lav) - (Yk(D)PL(D)low)).  (4.4)

Indeed,Py(D)lqv andPy(D)lqw are not only well-defined extensions, which may
be used at) andV in (3.10), butm(Py(D)lqV, Pi(D)lqw) is defined, so the?'-
continuity ofrg gives that the limit in (4.4) can be taken before restrictio®@to

By (3.9) and bilinearity, the choice dk, is inconsequential forg (Pov, Pyw).
There is also freedom to choogg = Wy since the left hand side of (4.4) does
not depend on this; cf (3.10). Now (4.3) follows upon insertiorvef w = u, for
by (3.13) ff and the formul&’y = ®g+ - - - + Py the right hand side of (4.4) then
equals the formula for-L(u) in (4.2). O

The above introduction of paralinearisation is not the only possible, buhthe
tention here is to make the relation to the ‘pointwise’ producfoalear.

4.1. Estimates of product type operators. Considering a product type operator
B(-,-) := m(Po(D)-,PL(D)-), (4.5)

a large collection of boundedness properties now follows from the thresigwed
in Section 3.1-3.2. Indeed, using Theorem 3.4 it is clear tiB§(D)-, P, (D)-) is

bounded fronEy , ©ER  to some Besov or Triebel-Lizorkin space provided

So+s1> do+di+ (g5 + pr — N+ (4.6)
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The standarddomainD(B) of the bilinear operatoB(-,-) is the set of parameters
(sj, Pj,qj)j—o,1 satisfying this inequality; since it works equally well for tB&8B-
andFFF -cases, the notation is the same in the two cases.

When the two arguments & are identical, the resulting operator is throughout
denoted byQ, ie

Q(u) :=B(u,u). (4.7)
The parameter domaib(Q) derived from (4.6) is termed thguadraticstandard
domain ofQ (or of B). For this domain one has the next result ondectregular-

ity properties of product type operators. It is a special case of Rldh®p. 3.6.1],
where also anisotropic spaces and other co-domains are treated.

Proposition 4.4. Let B(v,w) be an operator of product typ@l, d1) with dy < d;.
The quadratic standard domaii?(Q) consists of thés, p, q) fulfilling

s> td (0 1) (48)
and for each suclgs, p,q) the non-linear operator Q is bounded
Q: By — By *PY (4.9)
wheno (s, p,q), for somee > 0, is taken equal to
U(S,p,Q):d1—|—(%—|—d0—5)++£[[%+dozs]][[q>1]] (410)
Similar results hold for §, provided[[q > 1] is replaced by[p > 1]

Analogous results for open se@&sC R" can be derived from Proposition 3.3.
Details on this are left out for simplicity, and so is the proof, for it followsirthe
below Theorem 4.7 (by application &f, to u, cf Lemma 4.3).

Remark4.5. It is noteworthy that the standard domdiQ) only depends on the
two orders through their meaf + dy)/2; cf (4.8). The correctiorf; — 5 occur-
ring for p < 2 is independent ofy andd; ; cf Figure 2.

do+d;

ols

NIS

FIGURE 2. The quadratic standard domditQ)
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4.2. Moderate linearisations of product type operators. The next notions are
introduced in order to have names for the basic properties of non-linsathigt
allow suitable parametrices.

Let 4" be a non-linear operator defined Eﬁq for (s, p,q) running in a param-
eter domairiD(.4"), like in (4.8). Alinear operatok,, will be called a linearisation
of .4 if, by convention,

A (u) = —Ly(u) (4.11)
for everyu € Ej 4 with (s, p,q) in D(.#"). HereL, should be a meaningful linear
operator parametrised by thien D(.4"), and possibly fou in larger domains (this
will be the case for the exact paralinearisation in (4.2), as seen below).

It will be required that,, for eachu € ER, ,, should be of ordet(s, p,q) on
every ES, in D(Ly), ie be a magEs, — Ex" P9 Although w is a function
w(s, p,q,So, Po,do), the argumentsy, po, go are often left out, since is fixed.

Definition 4.6. For a non-linear operatar/’, a linearisationL, with parameter
domainD(L,) D D(./") is said to bemoderatsf, for every u in an arbitrary space
EX q in D(A),
Wmax -= sup (U(S, P,d, So, panO) < 0o, (412)
D(Ly)xD(A)

In case there is someo, po, do) i D(-4") such that Sug , g cp(,) W(S, P, d) <,
thenL, is said to benoderate on B , .

When A is a linear operator of ordeia(s, p,q) and with parameter domain
D(A), thenL, is said to beA-moderateon ER . if

w(s, P, 0, So, Po;Go) < da(s, p,q) (4.13)

holds for all(s, p,q) in D(A) ND(Ly,)-
Similarly .#" is called A-moderate orEp , in D(A) ND(.4") if (4.13) holds
for (s, p,q) = (S0, Po,qo), for since—Lyu = .4"(u) holds at(so, po,go) it is trivial

that.# is a mapE® , — ES%;}((;J(So-,po,qo) - ES%;}?(SmDoQo)_

Moderate linearisations could also be described as those that, regardiless
linearisation pointu, have bounded orders on their entire parameter domains.
moderacy ofL, is not an intrinsic property of the non-linearity in the sense that in
practice it depends on the linearisation paintf the example in (2.15)-(2.16). It
is clear that /" is A-moderate or’Elf,?)’q0 if Ly is so. Without linearisations one can
define.#” to beA-moderate or; , in D(A)ND(A") if A" is a mapEy , — Ep
for someo < da.

This general framework is exemplified by the below theorem and its coralarie
The theorem relies on known estimates of paramultiplication, and it typically leads
to operators in OF8Y; (R" x R"™)); cf Theorem 4.13 below.

The fact that only product type operators are treated here allows twaweypr
ments of the usual linearisation theory in, say [Bon81] and [MC97, Th 16(8]{
of all, the Tp-terms are incorporated intg,, which is indispensable since, as ex-
plained in the introduction, they are not regularising in the present corex:
ondly, the mere existence of the operator faniily is obtained under the very
mild assumptioru € B} 4, and it is only for sufficiently regulau, namely in the
quadratic standard domain (wheré,u = Q(u) is a meaningful formula), thdt,
serves as a linearisation §f.
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Theorem 4.7 (The Exact Paralinearisation Theorenbet B(v,w) be of product
type (do,ds,dz) with dy < dj; and let/q be a universal extension fro@ to R".

Whenever & B%O&qo(ﬁ) for arbitrary parameters(so, po,do), then the exact
paralinearisation in Definition 4.2 yields a linear operatoy, with parameter do-

mainD(L,) given by

$>do+di—So+ (5 +p5 — M+ (4.14)

Ly is of constant ordew, ie Ly: B} 4(Q) — B} (*(Q), when(s, p,q) € D(Ly) and
w=dz2+di+(p —So+do)+

+€llg —So+do=0][ao > 1], any &>0.

In particular, when Qu) := B(u,u) and (so, Po,do) € D(Q), ie fulfils (4.8), then
L, is amoderate linearisatioof Q.

Corresponding results hold for Triebel-Lizorkin spaces whea Eggqo(ﬁ),
provided the factof[qo > 1]] in (4.15)is replaced by[po > 1.

The proof of this result is postponed to Section 4.3 below. It should belnote
that the order(s, p,q, S0, Po, o) not only is independent @k, p,q), but also gives
back the functioro (s, p,q) from (4.10) for (s, p,q) = (S0, Po,to), SO O is the re-
striction of w to the diagonal ifD(B).

To shed light on (4.14), one could consider an elliptic prob(@nT ), say with

A of order 2n, T of classm and a solutioru € H™(Q), with (m,2) € D(Q), of

(4.15)

Au+Qu)=f in Q (4.16)
Tu=¢ on T. (4.17)
According to (4.14)D(Ly) then consists of paramete(s p,q) with
do+d; n n do+ds1
> +(B—§)+—(m— 5 ) (4.18)

so thatD(L,) is obtained from the quadratic standard donfa{®) in (4.8) simply
by a downward shift given by the last parenthesis. Therdigte,) > D(Q), which
also holds in general whe(isg, po, do) € D(Q).

The following result is an immediate consequence of (4.15), but it is useful
to have easy-to-apply criteria fgx-moderacy: sincel; > do it is natural first to
suppres$y(D) and ask whethedp > d; + dy, cf (i) below.

Corollary 4.8. Let B= P»(D)mo(Po(D)-,Pi(D)-) be of product type @ di, dz
with dy < d1, and let A be linear, of constant order n a parameter domain
D(A). For smalle > 0, the corresponding quadratic operator Q is A-moderate on
ER ¢ in D(A) NID(Q) if the conjunction of(i) and either(ii) or (iii) holds:
(i) da>d>+dg,
(i) da>dz+di+do+ 55 — S0,
(i) dp—do>n.

The exact paralinearisation,Lis A-moderate on E . when(i) and ii) hold.
Proof. Given (i) and (ii), one hada —dz — d1 > (g5 —So+do)+ > 0. So by taking
€ €1]0,dp—dy —dy[, clearlyda > w andL, is moderate orEgquo.

SinceQ(u) = —Lyu, whenu is in any space ifd(Q) NID(A), the above applies
also toQ. If (iii) holds, it is clear for bothpg < 2 andpg > 2 that

3(do+ch)+(F -5 > F +do. (4.19)
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The borderline ofD(Q) is given by the left hand side, s > % +dgp, andw =
dz + d;1 because the other terms in (4.15) vanish. HeQds A-moderate when (i)
holds too. O

One interest of (iii) is that whed; — dp > n and (i) hold, therQ is A-moderate
on the entire domaif®(Q) NID(A). In cases withd; —dp < n, there always is a part
of the quadratic standard domdi Q) where (ii) must be imposed. Indeed, the
last two terms in (4.15) contributes to the valuewoin the slanted sliceof D(Q)
given by

3(do+di)+ (5 —5)+ <S< §+do, (4.20)
and this region is non-empty precisely i — dp < n. Hencew > d; + d; in this
slice.

In other wordsda > dy +d; is a first criterion forQ to be A-moderate. Then, if
d; —do > nthe domairD(A, Q) of A-moderacy equal®(A) ND(Q), and otherwise
it is obtained fromD(A) NID(Q) restricting to

$> 5§ —0da+do+dp 4. (4.21)
This rephrasing of (ii) is of course of great practical importance.

Remark4.9. One could compare the stationary Navier—Stokes problem (or just
(1.2)) with the von Karman problem treated in Section 5 below. They are both
fulfil di —dp < 1 < n. In the former problem (ii) is felt, and the quadratic term is
only Ay, -moderate on the part @(Q) NID; where additionallys > % —1, by (ii)

or (4.21). (For the Neumann condition, (ii) gives again % —1, that now should

be imposed on the smaller regi®{Q) N D, because the boundary condition has
class 2.) Butin the von Karman problem (ii) is not felt, for it is fulfilled on altlod
quadratic standard domain of the fofm], and even after this has been extended
to theB(-,-) of type 11,2 given in Example 3.1, #till holds thatw < 4 =d,. on

all of D(Q). But nevertheless a small portionDfQ) must be disregarded to have
A?-moderacy, simply because the boundary condition in the Detatgalisation

of A? is felt; cf Figure 3 below. In view of these observations, Corollary 4.8 is
probably the only condition foA-moderacy that is worthwhile working out in
general.

Remarkd.10 Concerning the model problem (1.2) and Example 2.1, whg#e0,

di1 =1 andda = 2, the above (4.8) leads to the quadratic standard domains in (1.21)
and (2.15). Notice that the more important doméingd,,Q) andID(A,./) in
(1.25) and (2.16) are obtained from the conjunction of (4.8) and (ii) (ttterlas
redundant fon = 2 andn = 3). Similarly (2.17) follows from (4.14).

4.3. Proof of Theorem 4.7. The following arguments reexploit tHg,-estimates
of paradifferential operators in Yamazaki's work [Yam86a]. Howevkey are
only needed in the paramultiplicative setting, where [Joh95a, Thm. 5.1]iner#a
catalogue, that is used freely below. Since the nature of the proof is nelrk,
the formulation will be brief.

In the following (s1, p1,01) is arbitrary inD(Ly), ie together with the given
(S0, Po, Qo) it belongs toD(B). Since (4.6) holds, it follows from [Joh95a, Th 5.1]
that, if% = %Jr% andq—12 = q—10+q—11,

() Blg ®BYal —Bh e '™ @ (422)
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is bounded. It is therefore seen that

15(Po(D)lq-, Pu(D)lg-): B, o (Q) @B , (Q) — B brs-d

s1—di— (p0*50+do)
- Bplﬂl :

(4.23)

Them-terminLy is straightforward to treat fag — dg < %: under the assump-
tion that the first space has strictly negative smoothness index, which irages c

. —dy—-D
may be obtained by use of the embeddBwq‘gO — Bff,w "™ there are analogous
estimates forgn, which for gg = 0 gives

s1—0h— (p0750+do)+f£o

4 (Py(D)lg-,Pi(D)lq-): Bf)% qo(Q) &) Bf)ll ql(5) — BpLau . (4.24)
In the same manner one has fgr-d; < E andée&; = 0 that
_ s1—do— (- —So+d1)+—€1
16(Po(D) o, Pu(D)lq-): BY, ,(Q) ® B, ,(Q) — Bpray z T (4.25)

Forsp—dp > % one may recall, eg from [Joh95a, Th 5.1], the estimate

( ) L“@Bf)ll oa — By,

DL (4.26)

it clearly yields the conclusion in (4.24) witky = 0. The term withrg may be
treated analogously fa&p —d; > -, leading to (4.25) once again. Fey—d; =

one can use (4.24) and (4.25) at the expense of sgme0 fulfilling 0 < & <
d1 —dp, or &g = & if dy =dp. This is unlessyy < 1 for then the embedding into
L. applies.

Comparing the three estimates (incl. thenodifications), (4.23) is the same
as (4.24), except whelf: —sp+do < 0, but in this casd® & or B 44 in
(4.24) clearly contains the space on the right hand S|de of (4. 23) Similaly th
co-domain of (4.25) equals the last space in (4.23), excep%fe%soerl <0,
but then the assumption thas < d; yields that alsog‘—o — S +dg < 0 so that there
is an embedding into the corresponding space in (4.24). Regardlessetferh
(g5 —So+dj)+ equals O for none, one or ajlin {0,1}, it follows thatLy is a
bounded linear operator

. S1 S1
Ly BP1~,Q1 Bpl Oi>

whenw is as in (4.15) ands;, p1,q1) fulfils (4.6).
In the Triebel-Lizorkin case the above argument works with minor modifica-
tions. First of all, by Lemma 1.3 boundedness of

(4.27)

() FR o RS & Fro dotsid (4.28)

Po,do P1,01

holds for all sufficiently large, when onlysy —dp + s —d1 > (% —n);. Then
FSO dotsyi—dr S1—di— (g —So+0o)

Foia yields an analogue of (4.23).
Secondly, forsp —do < 3, one has for <0
() Bhw®Ftg — Folg- (4.29)

Combining this withF5o % — Bf.f’,; o_p_O, formula (4.24) is carried over to the
Triebel-Lizorkin case. Otherwise one may proceed as in the Besov Taseeby
the theorem is proved.
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4.4. Boundedness in a borderline caseln the last cases given by (3.16) itis more
demanding to estimate,. For later reference a first result on such extensions of
D(Ly) is sketched, using techniques from a joint work with W. Farkas and WeSBick
[FIS00], where approximation spao®§q (that go back to S. M. NikolsKi were
useful for the borderline investigations.

Recall thatA} ,(R") for s> (§ —n), p,q €]0,] (with q < 1 fors= § —n),
consists of theu € 5”’(]1%”) that have an”’-convergent decompositian= ZJ 0Vj

fulfilling v; € .’ NLp, suppyj C {|&] < 2i*1} and

(3 2y Lol < e (4.30)

J:
The quasi-norm ofi in Aj ; is then the infimum over these numbers, as one runs
through the set of all such decompositions.

The idea of [FIS00] is that, while the dyadic ball criterion cannot yield epnv
gence fors= § —n (cf the remarks preceeding Lemma 1.6), one can sometimes
nevertheless show directly that such a sejies converges to somein Ly or .7”;
then the finiteness of the above number giyeg € A7 ;.

Theorem 4.11.Let B= 1y (Ry(D)-, PL(D)-) with do < dy and let ue BY , (Q) be
fixed. For(s, p,q) such that
So+s=doth+(g+5-N, Hi=gtas>l (4.31)
the operator | is continuous
Lu: B 4(Q) — BP9 (Q). (4.32)

provided, in casepl— = —0 + 5 > 1, that either p > gy or p > 1 holds.

Moreover, L: Fggq,(Q) — Bf;w(qu)(Q) is continuous if e F2 , (Q), pro-
vided[qo > 1] in (4.15)is replaced by[po > 1] (o restrictions for. p <1).

Proof. With notation as in the proof of Theorem 4.7, the assumptjora 1 gives
lg, — {1, S0 for p; > 1 insertion of 1= 2%~%+%-% into a double application
of Holder’s inequality shows that the series definmgPy(D)¢q-,Pi(D){q-) con-
verges absolutely ih,,. There is a Sobolev embedding,, — Bf)l’w for §=
S —dp — (% —S+do), sincepy > p2, so the conclusion of (4.23) holds with the
modification that the sum-exponentisin this case.

For p2 < 1 one uses the NikolskiPlancherel-Polya inequality to estimate
norms by 25 N = p%otsi—Go—th fimes correspondingp,-norms, leading to conver-
gence inL1. After this convergence has been established, the same estimates also
give the strengthened conclusion that

T[Z(PO(D)ZQ;P].(D)EQ) : poqo@Bpl g1 Ap2 q2 9 (433)
for approximation space&y , defined onR" as in [FIS00]. By [FIS00, Th 6] the
conjunction ofr > max(pz,d2) ando = = is equivalent to

Azl Bl (4.34)
ItfoIIowsthatnm( -) =rame(Po(D)lqu, Pi(D){q-) mapsBg 4 _(Q) continuously

into szw (Q) for p, > dz, hence mtoBs »(Q) as desired; fop; > 1 the same
conclusion is reached directly from tlh@ estlmate above.
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Since (4.24) and (4.25) also hold in the present context, and since this implies
weaker statements with the sum-exponents equalda the right hand sides there,
L, has the property in (4.27) except that the co-domain shoulBEbg?.

For theFS -spaces the estlmates;ué‘Q ) are derived in the same way, except
that the/q,- norms are calculated pothlser before thg-norms. Indeed, for
p2 > 1, Lemma 1.6 gives (sincg, < 1 in this case) thate(Py(D)lq-,Pi(D)lqg-)
mapstO g ®Fptg, tOLp,: for pp >1 this co-domain is embedded \Eéhql into
B}, .« While Lp, — BY, — By , for p =

For p2 <1 one finds by the vector- valued Nikol$kiPlancherel-Polya inequal-
ity in Lemma 1.7 that eg (wheffy := @ (D) f etc onR")

[ee] [oe]
k({2 — & —d —d
IS gkl < cll(Y 2% "% fug %)% ||, < ¢ | FIFD el | glFSig ]
k=0 k=0

- (4.35)
In this way 182 (u,-) is shown to magFst o, into L1(Q). Hence intoBy, .,(Q) for

p1 > 1. In general there ips € | p2, p1[ (Po < ) and theAIO3 p3 -norm of 2 (u,v)
is estimated by ah, (¢,)-norm as in the middle of (4.35), for the sum and integral
may be excanged and the estimate realised through Lemma 1.7. By (4.34)—(4.35

this means that}3 (u,-) mapsFSL, into Blosco — B}, for p2 < 1. Comparison

with the ng-results for the other terms shows trh@,t Fr?i w B%l - O

The above result suffices for the present paper, but it could ptplbe sharp-
ened in several ways, perhaps with a consistent ué pfas co-domains.

4.5. Relations to pseudo-differential operators of typel, 1. For the local regu-
larity improvements later, it is convenient to express paralinearisationsetmps
differential operators with symbols @1 Recall thata(x, &) € C*(R?") belongs

to QVI(R” x R") for d € R, if it for all multiindices a, B andx, £ € R" satisfies
IDEDZa(x,&)| < cqp (&) 1aITIAL, (4.36)

The operatom(x, D)¢ (X) = (211) " fpn€*€a(x, &) (&) dE is obviously continu-
ous$1 < — . with respect to the Freét topologies. In generdl := a(x, D)
is a linear operator in”’(R") defined on some subspaf¥A) c ./(R"); the
definition may be made by a paradifferential splitting in three terms, analogous to
(3.13). This was done implicitly in [Mey81, Th 2-3], and a detailed descriptam
be found in [Joh04b, Joh04a].

While it is yet only partially understood whd®(A) is, Hormander [Hro7,
Ch 9.3] determined (up to a limit point) thefor which A extends to a contin-
uous mapH§er — H3. Eg continuity for alls € R is proved there for(x, &)
satisfying the twisted diagonal condition. However, recently it was préyeithe
author [Joh04b, Joh04a] that there always are bounded extenfEipas< p < oo,

FOLRM X2 L®n), B RY L LLRY,  (437)
and that, without further knowledge abaa(x, ), this is optimal within theBj ,
andF;, scales forp < e. Fors > (% —n) there is continuity
a(x,D)
_

a(x,D) .
By (R") —— B54(R"),  Fyg(R") FS.(R") (r asin (1.39))

(4.38)
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This extends to ab€ R under the twisted diagonal condition; cf[Joh0O4a, Cor. 6.2].
The reader may consult p97] for a broader account of t@‘l—theory.

The just mentioned extension results will not be directly used here, buskiezly
light on the difficulties met in connection with tipseudo-locaproperty:

singsuppu C singsupp, ue D(A). (4.39)

For type 11 operators, this question seems to be unsettled (eg beD@A%és not
fully determined). But for now it suffices to have (4.39) for certaiwith compact
support, so the next quasi-general result will do.

To formulate it,D(A) will be considered with the graph topology &f ie the
unique topology that makes the map- (u,Au) a homeomorphisrd(A) — G(A)
whereG(A) is the graph ofA (topologised as a subspace.&f x .#").

Proposition 4.12. A pseudo-differential operator(& D) in OP(S];(R" x R"))
fulfils (4.39)for every ue D(A) having the two properties: u is in the graph topol-
ogy closure of”(R") and xux — xu in D(A) for every x € C3'(R") and every
sequencewin .(R") converging to u in DA).

The pointis that irD(A) suchu are not too far away fronv’(R") (While egv=
lisin Bf,’ol C D(A), cf (4.37), without being a limit point of” in BY 1)- Usually
the rules of calculus fog! .5 0 < p, 6 < 1, enter the proof of pseudo-locality, cf
[Hor85, Ch. 18.1], but thls can be avoided under the present assumptions

Proof. The distribution kerneK,(x,y) is C* for x #y. Indeed, by integration
Ka(x,y) = (2m)~"Z¢_a(x &) |Z:y7x, sinceS™” C %1 is dense; because the func-

tion |Z22NDEDY.Z; _a(x, &) = ﬁgﬂz(A’g‘(E”DEa(x,E))) is continuous foN so
large thatd + |3| + |a| — 2N < —n, any derivative oK, is so forx #y.

Let ¢, x € C3(R") have supports disjoint from singsupguch thaty = 1 on
a neighbourhood of supfp. Thenxu € C3(R") so that bothxu, (1— x)u are in
D(A), and

YAu= JA(xu)+ PA(1l— x)u. (4.40)
Here A(xu) € C*(R") sinceA: .¥ — .; the last term has distribution kernel
K(Xy) = y(x)Ka(x,y)(1-x(y)), (4.41)

which isC> sinceKj, is so forx #y. Moreover,K ¢ .7 (R?") since
L+ V)™ < @+ |y —x) ™ (14 [x)™ (4.42)

so the formula withjz|?N yields rapid decay with respect yo(x € suppy € R").
Now YA(1— x)u € C*(R") will follow in a standard way, by combining that
uec . (R") andK € .7(R?") with the formula

Y)AL = X)u(x) = (U, K(X,-)). (4.43)

But even though both sides make sense, this identity needs justificationup¥ith
. such thatuy — uin D(A), the assumption givesux — xuin .’ andA(xux) —
A(xu) in .’. Combining thisA((1— x)u) = limcA((1— x)uk), whence

WAL= x)u=lim [ udy)K(xy)dy=(u K(x.)). (4.44)
Rn

All in all this shows thatyAuis C* on R"\ sing suppu. O
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The above results give the relation of paralinearisations to pseudoediifia!
operators of type .11 and that they are pseudo-local. The last property is obtained
only when the universal extension maps igtgRR"), but one can always multiply
{q by a cut-off functiong € C3'(R") equal to 1 on a neighbourhood Of

Theorem 4.13.Let B(v,w) be of product type and @B}, , (Q) for some arbitrary
(S0, Po, o) and supposéq has range ins”(R"). Then the exact paralinearisation
in (4.2)factors through a Pe OP(S?; (R" x R")) with w as in(4.15) That s, for
every(s, p,q) in D(Ly) there is a commutative diagram

E5q(Q) — Ejq(R)
Lul lpu . (4.45)

Era’(Q) I Epqg (R

Moreover, L,g is pseudo-local on everygEg (Q) when(s, p,q) is in D(Ly).

Proof. By linearity, it suffices to treaPy(D) = D' for |ny| = dm, anddy < d;.
Givenu € BRQO, let 0= lqu. Thenl, is a composite, = rqa(x,D)lq for a
symbola(x, &) satisfying (4.36) fod = w with w as in (4.15), namely

00

ax, &) =— %(WHl(DX)DQOG(X)E”l +Wj_o(Dx)DFU(X) ET) D (&)  (4.46)
i=

Indeed, ifL, is applied tog € . the formula fora(x, & ) follows directly from Def-
inition 4.2. To prove that one may talk = a(x,D), note thata(x, ) is C* since
eaché is in suppd; for at most two values of, and for these 2% < |&| < 211,
so that|D% (EMmd;(&))| < c(&)dm~1al holds for alla. Concerning the estimates
for x € R", note that wherk = j +1 ande > 0 is fixed, the convenient short hand
€' 1= €[5 — o+ do= 0] [do > 1] fulfils &’ > 0 and gives

IDEW,(D)DG(X)| < c(&)IFI* (6 ~Sotdo) e (4.47)
Indeed, forgg < 1 the Nikolski—Plancherel-Polya inequality yields,

k
‘qu(D)DBH%G(X)’ < C%ZI(SO*‘BJFWOD | Py (D)Dﬁ+’7°U|LpOH
= o 2 (1BI+ (g5 —sodo)+) (4.48)
<c| u‘B?)JOﬂqOH<E>(p£073)+d0)++‘p|;

for go > 1 one can apply Blder’s inequality to the first line in (4.48), after the
factor (7o —td)++KBl has peen taken out in front of the summation (unless
¢ > 0, in which case|B| should haves added and subtracted). Terms with
|W;_2(D)DP+M{i(x)| are estimated analogously, in the first line of (4.48) the fac-
tor 2(S~1Bl-d) may be estimated by @ ~IF+m) (which is absorbed by the Besov
norm onuy) times 2(%-%); the latter, together with the estimatedf (E1d;(&)),
gives the estimates in (4.36).

To prove (4.45) also for non-smooth functions, it is noted that the prbtifeo
Paralinearisation Theorem, 4.7, yields tRat EJ ,(R") — EF (*(R") is bounded
for (s,p,q) € D(Ly). This is seen as in (4.27) by keeping one entry in the bilinear
expressions equal to\while the other entry runs throudh (D) (Eg (R")), and by
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invoking the definition of?, given after (4.36). From the definition &f; it is then
evident thatL, = rq o P,0/q, hence (4.45) holds.

Finally, wheng is given as in the theorem, there sing sup@og implies that
x € singsupgUR"\ Q. One can assunt< o, for s can be replaced by a slightly
smaIIer value. Then the distributioing is in the closure ofCy in the norm of

q (Sinceq < o, the truncated Littlewood—Paley decompositions converge to
in qu, and they areC™ so multiplication by a cut-off function gives the claim.)
By the continuity ofR,, this implies that/g is a limit point of . inside D(R,),
and since multiplication by a test function is continuousERy,, it is also so in
D(R,). Therefore Proposition 4.12 gives that sing stgpgis not enlarged by,
sorqP,lagis C” in the part ofQ whereg is so. O

Remarlk4.14 Asindicated above, the definition, domain and basic continuity prop-
erties of type 11 operators still need a further clarification. To avoid any ambigu-
ity, the exact paralinearisations have been defined here withoutmeéete these
operators, and the Paralinearisation Theorem was for the same reased di-
rectly, before the factorisation through typglloperators was established.

Remark4.15 One way to attempt a symbolic calculus would be to replacéy

€q, ie by extension by zero outside @f The resulting linearisatiobh, would have
the formL, = roPeq whereP is in OP(S‘l*’l (R"xR™)) by Theorem 4.13. Fdr, to

be moderate it would suffice to show that it has oraein spaces withs > 0, so it
would for a start be necessary to introduce further conditions in ordethk two
applications ofep make sense, and secondly it is envisaged that the transmission
property would be needed fd?. However, transmissiononditionshave been
worked out forS?m with é < 1, cf [GH91], and there is fod = 1 a fundamental
difficulty because OFS};) in general, cf (4.37), is defined o for s> w>0—
whereas the usual induction proof of the continuity of truncated psdifftwential
operators with transmission property effectively requires applicatiorstoespwith
s< 0 (in the induction stem,qP is applied to distributions supported byc R").
Furthermore, also composites IiKRDLu)N should be covered, hence the general
rules of composition with the operators in the Boutet de Monvel calculuddheu
established. All in all this is better investigated elsewhere; it would undolybted
be useful, say in reductions where traces or solution operators of miblelems
are applied to the parametrix formula.

5. THE VON KARMAN EQUATIONS OF NON-LINEAR VIBRATION

The preceding sections apply to the equations for a thin, buckling plate, initially
filling an open domairQ c R?. The following is inspired by [Lio69, Ch. 1.4]
and by the thourough treatise of P. G. Ciarlet [Cia97, Ch. 5]. An exa#rpon
Karman's work [vK10] is conveniently found in [Cia97, p. Ixiii].

In the stationary case the problem is to find two real-valued functigrsdu,
(displacement and stress) definedidrand fulfilling

A%up—[u,u]=f inQ (5.1a)
AUy +[ug,ug] =0 inQ (5.1b)
wur=0 onl fork=0,1 (5.1¢)

WU, =t onl fork=0,1 (5.1d)
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HerebyA? denotes the biharmonic operator, whilst] as in Example 3.1 stands
for the bilinear operator

[v,w] = D2vD3w + D3vD3w — 2D2,vD?,w. (5.2)

For the real-valued case withy = Y1 = 0, it is well known that Brouwer’s fixed
point theorem implies the existence of solutions withe F22,2(Q) for given data

fe F22( Q); cf[Lio69, Thm. 4.3]. Foryy € F 2*"*1/2( I) solutions are established
by non-linear minimisation in [Cia97, Th 5.8-3]. Concerning the regularity & wa
eg shown in [Lio69, Thm. 4.4] that if € Lp(Q) for somep > 1, then any of the
above solutions of (5.1) fulfils that; € F,j,(Q) while u; belongs toF;',(Q) for
any g < o. It was also noted in [Lio69] that reiteration would give more eg that
the problem is hypoelliptic. Corresponding results for non-triigland ¢ may

be found in Theorem 5.8-4 (and its proof) in [Cia97].

These results are generalised in three ways in the present paperoasea ¢
guence of the general investigations: firstly the assumptions on the datanand
the solution(uy, uz) are considerably weaker, including fully inhomogeneous data;
secondly the weak solutions are carried over to a wide range of sp#tbep w 2.
Thirdly the non-linear terms are shown to have no influence on the solutemy's
ularity (within the Besov and Triebel-Lizorkin scales).

In the discussion of the von Karman equation, the coupling of the two noarline
equations is a little inconvenient, since the Exact Paralinearisation Theorgm, 4
needs a modification to this situation. But this can be done easily whandu,
are given in the same space, for in the proof of Theorem 4.7 the mappipgrties
will then remain the same regardless of whetheor u; is inserted in the various
-expressions. For brevity, it is left for the reader to substantiate thisnesipn of
the theorem. (More general methods will be developed in Section 6 below.)

Because|v,w| is of type 22, the quadratic standard domain in (4.8) is for
Qo(u) := [u,u] given bys > 2+ (% —1)4, and clearly(s, p,q) = (2,2,2) is at
the boundary of and therefore outsideldfQp); cf Figure 3. Hence Theorem 4.7
does barely not apply as it stands (cf the formulation below (4.15)).

In order to carry over the weak solutions to other spaces, one caneis®tie
refined paraproduct estimates for the borderlines in Theorem 4.1actthie co-
domain of typeBy ., is embedded int&; ¢ for € > 0, so this gives that ,, )
has orderw = 3+ &€ when both(sp, po,qo) and (s, p,q) equal(2,2,2). For other
choices of(s, p,q) the continuity properties df ,, ,,,) are given by Theorem 4.7.
In addition, the considerations in Lemma 4.3 show that, linearises the non-
linear terms, since (3.16) is fulfilled &2, 2,2). In this way Theorem 2.2 can be
used for the von Karman problem, whix. /") is taken a$(Qo) U{ (2,2,2) } and
D(By) likewise consists of the union db(Ly, ,)) and(2,2,2). (The parameter
domains were not required to be open in Theorem 2.2.)

One could envisage other problems in which the weak solutions belong tesspac
at the borderline of the quadratic standard domain, so that results likeerhdol 1
would be the only manageable way to apply Theorem 2.2.

For the von Karman problem, however, the symmetry propertig¢g wf make
it possible to avoid the rather specialised estimates in Theorem 4.11. Irateed,
recalled in Example 3.1;, ] is a restriction of

B(V,w) = D?,(D1vDo,w+ DovDyw) — D2(DovDow) — D3(DivDiw).  (5.3)
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oln

FIGURE 3. The quadratic standard domaing<pandQg (in dots)
in relation toD»>.

Since B is of type 11,2, the domainD(Q) is now given bys > 1+ (% 1),
according to (4.8). But by (1.36) the appropriate parameter domain fomeer
partisD,, and, cf Figure 3,

D(Q)NDy = Ds. (5.4)

On the resulting domain,, the operatoiQ is A>-moderate in view of Corol-
lary 4.8 ((i) and (iii) hold withda = 4, d» = 2 anddy = d; = 1). It is moreover
easy to infer from (4.15) thaw = 4 holds on the borderline wits = 2/p (for
p < 1) of Dy.

This leads to the following result on the fully inhomogeneous problem:

Theorem 5.1. Let two functions y, u; € B} 4(Q) with (s, p,q) in D, solve

A%up—B(ug,up) =1 inQ (5.5a)
A?up+B(ug,u) =, inQ (5.5b)
Wui=¢x onfl fork=0,1 (5.5¢)
WU = onl fork=0, 1, (5.5d)

_ !
for data f € 8}54(9), with k=1, 2, together with¢g, Yo € Btr’or (I and ¢4,
1
VRS Btr;,l_T (T') whereby(t,r,0) € Do ND(Ly, 4y,)), thatis
t> 141+ (f - 1),

5.6
t>2-s+(¢+5-2);. (5:6)

Then y, w belong to B,(Q).

_ 1 g1
If instead f{ € Frfg“(Q), ®o, Yo € Bt” (M) and ¢1, Y € Btm1 "(I") for some
(t,r,0) fulfilling (5.6), then it follows that u, U, € F',(Q).

SincelD; is open, it is not a loss of generality here to assume for the Triebel—
Lizorkin case thati; andu, are given in a Besov space.
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One can prove the theorem directly, as indicated above, but it will follom fr
the general considerations in Section 6. So instead we note the followiisg-con
guence on existence of solutions in Besov and Triebel-Lizorkin splcparticu-
lar it is noteworthy that solutions despite the general function spacesanmago
exist for data with arbitrarily large norms:

_ k1
Corollary 5.2. Let there be given data € Bf)jq“(Q) and y € B‘;qk P(r), for

k=0, 1, for some(s, p,q) fulfilling
s>2+(5-1);, or (5.7a)
s=2+(2-1), and g<2 (5.7b)

P
Then there exists a solutic(lml,uz) |n By, (_) of the equations iif5.1).
If f e Fga“(ﬁ) and yx € Bpp '“(I‘) for k=0, 1, and (s, p,q) fulfils either
(5.7a)or
s=2+(5-1);, andg<2ifp>2, (5.8)

then(5.1) has a solution(us, uz) in F54(Q)2.

Proof. Under the assumptions @8 p,q), the dataf andyy belong tonjzz(ﬁ) and

k-1
Bizk 2(I'), as seen by the usual embeddings. So by [Cia97, Th 5.8-3] there is a
solution (uy, Uz) € F£,(Q)?; according to Theorem 5.1 it also belongsB),(Q)?
or Fs,(Q)?, respectively. O

Corollary 5.2 clearly gives a solvability theory for the sector bounded by th
dotted lines in Figure 3.

Example 5.3. Equation (5.1) may be considered with force tefiix;,x2) equal

to 1(x1) ® dp(x2) and Oc Q. Such singular data could model displacements and
stresses generated by a heavy rod lying alongxihaxis on a table, obtained by
clamping a wooden plate along its edges to a sturdy metal frame.

1 _
This f € Bg;l(Q) for everyp € [1, ], for f may be seen a% (¢ (x1) @ do(X2))
for some test functiog equal to 1 on a large ball, arigh, &) — ¢ ® & is bounded
1

1 1
Lp(R) ® Bpool( R) — Bpml(RZ) for p> 1. (This follows from the dyadic corona
criterion, eg by an easy varlant of [Joh96, Prop. 2.6], where {00 the continuity

Bpq(R)® B 'R) - BS+ 5 (R?) was proved for @ &.)
By Corollary 5.2, there is for every set gf € B3 X(I"), k= 0,1, with fixed

1
p € [1,], a solution inBﬁLp (Q)? of (5.1). Foryp = Y1 =0 it belongs to this
space for every € [1, |, according to Theorem 5.1.

Remark5.4. Although the coupling of the two non-linear equations in (5.1), as
described, could be handled using thaaindu, are sought after in the same space,

it seems more flexible to stick with the general set-up in Section 2 by developing a
theory in which the paifus, uy) is regarded as the unknown, entering the bilinear
form twice. This only requires some projections onkoand uy, cf the details
around (6.19) below. For this purpose it is convenient to generalisiuptaype
operators to a framework of vector bundles, as done in the next section.
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6. SYSTEMS OF SEMtLINEAR BOUNDARY PROBLEMS

In this section the abstract results of Section 2 and those on paralinearisatio
of product type operators in Section 3 will be carried over to a generaldwork
for semi-linear elliptic boundary problems. This is formulated in a vector bundle
set-up, not just because this may be useful for the handling of norritiesaas
mentioned in Remark 5.4 above, but also because vector bundles aral fatur
linear elliptic systems of multi-order.

6.1. General linear elliptic systems. Because the parametrix construction relies
on a linear theory with the properties in (I)—(I) of Section 2, it is naturalttlise
the Boutet de Monvel calculus [BdM71]. THs,-results for this are reviewed
briefly below (building on [Joh96], that extendls-results of G. Grubb [Gru90]
and J. Franke [Fra85, Fra86a]). Introductions to the calculus maypunedfin
[Gru97, Gru91l] or [JR97, Sect. 4.1], and a thourough accountiing&.

Recall thatQ ¢ R" denotes a smooth, open, bounded set with=T. The
main object is then a multiorder Green operator, designates biye.,

Po+G K
42%:<QT s) (6.1)

whereP = (Rj) andG = (Gjj), K= (Kjj), T = (Tij) andS= (Sj). Herei € I :=
{1,2,...,ix1} andi € 12 :={i1+1,...,i2 }, respectively, in the two rows of the
block matrix.e. Similarly j € J;:={1,2,....ji} andje b :={j1+1,...,j2},
respectively, hold in the two columns of ; that is,<7 is aniz x j2 matrix operator
with indices belonging td x J, whenl =1, Ul, andJ = J; U J,.

EachR;j, Gjj, Kjj, Tij and §; belongs to the poly-homogeneous calculus of
pseudo-differential boundary problems. More precisklis a pseudo-differential
operator satisfying the uniform two-sided transmission conditior jatG is a
singular Green operatdf a Poisson and a trace operator, whil8 is an ordinary
pseudo-differential operator dn. (The exact requirements on the symbols and
symbol kernels may be found in the above references.) The operatae ih“@h
entry of o/ is taken to be of orded + bj +a;, whered € Z, a= (gj) € 712 and
b=(b) e Z'z; for eachj, both Rj.o+ Gij andT; is supposed to be of clagst-a;
for some fixedk € Z. For shorte? is then said to be of ordet and class< (or to
be of orderd and clasx relatively to(a,b), more precisely).

Recall that the transmission condition ensures fat= roPen has the same
order on all spaces on which itis defined. More explicitly this means thatieas
has orded +a; +b;j on everyBj , andF; , with arbitrarily highs > k +aj +1— %;
implying, say thaC*(Q) is mapped intaC*(Q), without blow-up at™. (ThusPq
has the transmissiqoroperty)

The operators are supposed to act on spaces of sections of veotihesi;
over Q andF; overI", with j running inJ; and J, respectively, and to map into
sections of other such bundIgs andF/. The fibres ofgj, F; have dimensioi;,
N;j, while dimE/ = M/ and dimF/ = N;/. Letting

V:(El@"'@Ejl)U(Fjl+1@“'@sz) (6-2)
Vi=(E e --oF)UFR 10 -0F), (6.3)

o/ isamapC®(V) — C*(V'). For these spaces of sections, one may reGa\ )
as an abbreviation f&€”(E1) @ - - - ©C*(Fj,) or, alternativelyV as a vector bundle
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with base manifoldQ U T in the sense of [Lan72]. The dimension of the base
manifold as well as of the fibres over its pointkdepends on whethere Q or
x € . Similar remarks apply t¥’.

The following spaces are adapted to the orders and class€s of

BSa(V) = (DB (E) @ (DB *(F) (6.4)
i<ia ja<j

BEO(V) = (DBLP(E)) & (PBag *(F)). (6.5)
i<ip i1<i

The space$$;3(V) and Fﬁb(v’) are defined analogously (with < ), except
thatq = p in the summands ovdr; as usuaF; ,(Fj) = B} ,(F;) etc. For conve-
nience

S+a; 1
VBRIl = (lIveIBEg* (B |9+ + Vi, [Bpg * "(sz)Hq)“ (6.6)
S+a; i
IvIFse?l = (lvalFog™ (Bl +-+ + [ v, [Fop * ”(FJ)H'O)p (6.7)

with similar conventions foBS P andFs°.
With respect to the defined spacas |s contlnuous

o BYR(V) — B-;qd bV, o Fag?(V) — Fgqu*b(v'), (6.8)

for each(s, p,q) € D, whenp < « in the Triebel-Lizorkin spaces.

Ellipticity for multi-order Green operators is similar to this notion for single-
order operators, except that the principal symgitfk, &) is a matrix with pﬂ- equal
to the principal symbol of; relativelyto the orderd +b; + a; of Rj; invertibil-
ity of p°(x,&) should hold for allx € Q and || > 1. The principal boundary
operatora’(x', &’,Dy) is similarly defined and should be invertible as an operator
from .7 (R )M x CN to (R )M x CV with M := My +--- +M;, and analogous
definitions ofN, M" andN’.

For the mapping properties of elliptic system¥sand their parametrices one has
the next theorem, which is an anbridged version of [Joh96, Thm 5.2].

Theorem 6.1.Let.«# denote a multi-order Green operator going from V tQ &ind
of order d and clasx relatively to (a,b) as described above. I is injectively
or surjectively elliptic, thensZ has, respectively, a left- or right-parametri¥’
in the calculus. &/ can be taken of order-d and classk — d, and thens is
bounded in the opposite direction {6.8) for all the parametergs, p,q) € Dy.
The corresponding is true for§52(V) and 542 (V').
In the elliptic case, all these propertles hoId far, and the parametrices are

two-sided.

The above theorem deliberately focuses on the necessary mappiregt@sp
so it may provide a false impression of what is known about elliptic systenrs. Fo
one thing, (6.8) is sharp with respect (& p,q) ((6.8) can only hold outsid®;
if the class is effectively lower thar). Secondly the Fredholm properties have
not been mentioned at all; the kernel.sf is a finite-dimensional space €f°(V),
which is independent dfs, p, q) and of the choice of function space, and the range
is closed with complements that can be chosen to have similar properties. The
reader is referred to [Gru90, Joh96] for this. In particular tae,q)-invariance
of the range complements implies that the compatibility conditions on the data are
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fulfilled for all (s, p,q), if they are so for one parameter. Hence these conditions
can be ignored in the following regularity investigations.

For the inverse regularity properties of a, say injectively elliptic systémote
that, by the above theorem, the left-parametrixmay be chosen so that

Ro=|— o of (6.9)
has clask and order—c, hence is continuous
Z: Byif(V) —C*(V) forevery (s p,q)cDy. (6.10)

Soif #/u= f for someu € B} '2(V) and dataf € BY 3-°(v’), and if (s, pj, q;)
belongs toD, for j = 0 and 1, then the identity (6 9) applied tgu = f yields
that

U=/ f+Ruc BY o (V). (6.11)

Cf the detailed argument given fer = (&) in (1.8)—(1.10) ff.
Moreover, it may now be explicated how this elliptic framework fits with the
conditions (I)—(Il) of Section 2: for each fixegle |0, «] let

S={(s;p)|seR, 0<p<oo} (6.12)
XS=Bya(V), Ys=B3 (V) (6.13)
and note that (I) holds. Moreover, concerning (I1) it is possible,rw%is chosen
of classk —d, to take
Asp) = @lggav), DA =Dy, A=d. (6.14)
For corresponding space§ = FSt3(V) andY§ = FS‘ (V'), however, one needs
a little precaution because the sum and mtegral exponents in (6.7) alarethea

spaces over the boundary bundigsindeed, (2.3) is then not a direct consequence
of (1.33) ff, but forp > r,

1
FSoa P (F) e B9 () — BT (R, (6.15)
In this way (1) and (1) holds also for these spaces.

Example 6.2. For the biharmonic Dirictdt problem, which enters the von Karman
equations, it is natural to let

A% 0
0 A?
of = ))2 8 , (6.16)
0 w
0 wn

wherebyd =4, k =2, a=(0,0) andb = (0,0,—4,—3,—4,—3). The choice in
(6.13) amounts to

XS = B3 4(Q)? (6.17)
Y4 = BSAQ)2 (Byd (M) @ Bhg 7(1) (6.18)

this is clear since one can use the trivial bundles Q x C? andV’ = (Q x C?)uU
(T x C)* for this problem.
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6.2. General product type operators. Together with the Green operater in
(6.16) above, a treatment of the von Karman equation may conveniently eise th
bilinear operatoB given onv = (v1,V2) andw = (W, Wy) by

B(v,w) = (—[vi,ws] [vi,wi] 0 0 0 0. (6.19)

Indeed, in the set-up of the previous section, a solutiaf (5.1) is a section of

the trivial bundleQ x C?, of which the two canonical projectiong andu, enter
directly into the expressions in (5.1). The same projections enter fow = u

in (6.19) above, and this is taken as the guiding principle in a generalisation of
product type operators to vector bundles.

To this end, lety LYo andV’ Lo} be vector bundles oveR. WhenV is
covered by a system of local trivialisations

T: LU — U xCN (6.20)
there are associated projectiong, ptJ; x CN — C mapping(x,t) to ty, the k"
canonical coordinate iEN. In addition, whenr;: B/~%(U;) — U, x CN' is a triv-
ialisation ofV’, then the projection fyr onto thek™ coordinate ofCN is defined
analogously.

Definition 6.3. WhenB maps pairgVv,w) of sections oW bilinearly to sections of
V', thenB is said to be oproduct typef for eachl the composite

Pk T (B(V, W) (6.21)

is a map only depending on two projectiong,pr (v) and pfi 7 (w) and if, as
such, itis of product type ob, (in the sense of Definition 4.1).
Finite sums of such operators are also said to be of product type.

In (6.19) above one clearly has this structure sinceiegv, may be read as the
projections ontdC x {0} and {0} x C of two sectionsv, w of the bundleQ x C2.

In relation to a given elliptic system of orderd and class< with respect to a
fixed set of numberga, b), it is useful to introduce a set of product type operators
with compatible mapping properties.

Since the non-linearities typically send sections aeto other such sections
(and do not involve sections oveél), the following framework should suffice for
most applications:

Given bundles ovef as in (6.2)—(6.3), there are bundles

W=E; & - ®Ej, W=E &  -OF (6.22)

117

BJ . EJ — Q, Bi/: Ei/ — Q (623)

in which sectionsw and w/, respectively, may naturally be regarded jas and
i1-tuples of sections (by means of projections @nd pf)

W= (W, ...,Wj,), W= (Wp,..., W, ). (6.24)

There is also a coverin@ = (JU, of local coordinate systemy — k; (U, ), having

associated trivialisations; and ri’l , for eachj, i andl, together with associated

projections pj and pf onto thek!™ coordinate ofCMi andCM, respectively:
Priik

4 / pr
e, BINU) L ux e PR el (6.25)

BHU) 5 Uy x W
For short,Tj := prjj o o pr; in the following. 7, will be similarly defined.
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Definition 6.4. Given integerga,b) as in (6.4)—(6.5) ff, an operat® of product
type fromW to W’ is said to be of product typ@dy,d;) compatiblewith (a,b) if
the following holds:

(i) Foreachi € {1,...,i1} and each, , the map
(v, W) — Tj, Bi (v, w) (6.26)

depends only on two projectiongix,(v) and Tj; i (W), where 1< ko <
Mj, and 1< kg < M}—O, so that for soméjy,

Tii Bi (V, W) = Bik (Tjolko (V) Tjgli, (W))- (6.27)

(i) Each Bk is a product type operator on the open ggtJ;) of R" with
linear operator$y(D), P1(D) andL, as in (3.1), of orders

do + aj,, d1+aj7J and b, (6.28)
respectively.

The definition is extended to tho8for which each map in (6.26) is a finite sum of
terms, that each have the properties in (i) and (ii). So, by introducing ttesads,
(6.27) could have had a sum over @j, |, ko) and(jo,l,ko) on the right hand side.

Finally, such operator8(-,-) may be lifted to operators frodd &V to V' by
sending sections ovér to zero and by having trivial values ovEf ., ©--- G F..
Such liftings will also be denoted ¥ (and are tacitly understood).

In the next result pseudo-local operators are defined as usualttobe that
decrease or preserve singular supports; the singular supporecfesgionv of W
is the complement if2 of the x for which 7 ov is C* from a neighbourhood of
xto C, forallU, > x and all j andk.

Theorem 6.5. Let B(-,-) be of product typddy,d;) compatible with(a,b) and
with dy < dp; and let Besov and Triebel-Lizorkin spaces be defined 46.4)-
(6.5)ff above, with the unified notationg&*(V) and Ef,jqb(v’). Then u— Q(v) :=
B(v,v) is bounded

ESHA(V) — Epg”®PY (V) for every(s, p,q) € D(Q), (6.29)

wherebyD(Q) and o (s, p,q) are given by(4.8)and (4.10) respectively.
Moreover, for each « E;%%(V) there is a moderate linearisation,L(that is,
—Lyu= Q(u) if (S0, pPo,qo) € D(Q)), which withw as in(4.15)is bounded

u ERA(V) — Egll;f*b(v’) (6.30)

whenever(s, p1,01) belongs to the parameter domain given(dyl4) Moreover,
L, is pseudo-local on every suctjE (V).

Proof. Let (s, po,do) and (s1, p1,01) be given such that (4.6) holds. Whéh
andi, k are fixed, there is for each pair of projectiongy,(u) and 7y, (v), by
Theorem 4.7, a linear operatbﬁ(Iko such that

jolk jolko, jol ke
Ll (T (V) = B (Tt (1), Tigig (W), (6.31)
and such that_ijlj’lko sendsBleEE’ (U)) into B[S)lqu‘f*bi (Uy) with w as in (4.15); the

last fact is due to (6.28) and to cancellation of the numigrs
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Summation over aljg, Ko andj_o ko, by including possible zero-terms, gives

1Ko, jol _
|IkBI u,v) z BIJI(I)< olo ko TlolkO(u)’ Tio|ko(v))

ilk Jolko
Omitting pr, from the left hand side gives a linear operatgr, such that
T Bi(u,v) = Lit u(V) (6.33)

holds as sections aflj x CM . By construction,L; ,(v) belongs to the space
Bia b (U)™ whenv € B 3(V). .
It is now possible to define a linear operatqr between the spacegy. 'S (V)

andBS ©-P py the formula

P1,01
Lu(v)i:Z(rﬁ)’loLiLu(wv), for iely, (6.34)

when 1= ¥, ¢ is a partition of unity subordinate to the patcHgs Because
the class of pseudo-local operators is closed under addition, it follons the
construction ofL; , and Proposition 4.12 that eath , is pseudo-local; and so is
Ly.

When (so, po,qo) belongs to the domaiid(Q) given by (4.8), therv = u is
possible and

Lu(u)i = Z(Tn) o T Bi(u, Y4 u) = Bi(u ZQM = Bi(u,u). (6.35)

Because(so, po, o) = (S1, P1,01) rendersw(s, p,q) equal toa(s,p,q), the first
part of the theorem is also proved.
Finally the Triebel-Lizorkin spaces can be treated analogously. O

Remarks.6. Definition 6.4 is inevitably lengthy, because of the non-linearities one
meets in practice. Indeed, for the von Karman bracket in (6.19) the ckeickin
(i) of Definition 6.4 leads tdkg = 1, kg = 2, whilek = 2 giveskg = kg = 1 # k.

In addition the extension to finite sums is natural in connection with the Navier—
Stokes equation, whek =W’ = (Q x C") & (Q x C) and fori = 1 eachk gives
rise to the sunfy _; Vi, Ok, Wk, Where anyko € {1,...,n} occurs andg = k. (For
i = 2 the zero-operator appears.)

6.3. Semi-linear elliptic systems.It is now easy to establish the below Theo-
rem 6.7, which is an adaptation of Theorem 2.2 to the framework of Section 6.
For generality's sake it is observed that it suffices, by (Il), to takelitrear
part .o/ injectively elliptic, ie with a left parametrixs’ and regularising operator

Z =1 — o/ of/. Recall that for a product type operat®r the linearisatiorL, of
Q(u) := B(u,u) furnished by Theorem 6.5 enters the parametrix

p(N) — | +JZ/{T_U+...+($Z/{T_U)N*1, (6.36)
As previously, the domain wheR is <7 -moderate is written

D(e7,Q) ={(s,p,q) € DxND(Q) | o(s, p,q) < d}. (6.37)

Using these ingredients, one has the following main result for semi-linetsygs
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Theorem 6.7.Let .« be an injectively elliptic Green operator of order d and class
K relatively to(a,b), and assume that(B -) is an operator of product typ@p, di)
with dy < d; and compatible witl{a, b) so that Q has order functioa (s, p,q) on
D(Q) and moderate linearisationsyl-according to Theorem 6.5.

For a section u of B'2(V) with (so, po,do) € D(«7,Q), and any choices/
of a left parametrix of«/ of classk — d, the parametrices ® in (6.36) are
bounded endomorphisms orff(V) for every (s, p,q) in Dy ND(Ly). And for

all (s1, pr,01) and (s, P2, 02) in D ND(Ly) the linear operator(«/L,)N maps
BSL12(V) to BX2(V) for all sufficiently large N.

plIf(hsuch a section u solves the equation
Fu+Q(u) = f (6.38)
for data f € B} 9 °(V’) with (t,r,0) € D(«) ND(Ly), then
u=PN(f +2u)+ (L,)Nu. (6.39)

and it also holds that & B[1?(V).
The analogous results are valid for the scaleg®V) and Fs‘b(V’).

Proof. As observed in (6.12)—(6.14), the choig = B}'#(V) andYs = B5 (V')
makes conditions (I) and (Il) satisfied.

As the B, in (Ill) one can takel, for its construction via paramultiplication
implies that it is unambigously defined on intersections of the fgim Xg. Sim-

ilarly there is commutative diagrams for and.e# by the general constructions in
the Boutet de Monvel calculus and the results in Section 3.3.
Moreover,D(<7,Q) is connected and = d — w(s, p,q) is constant with respect
to (s, p) and positive; hence (IV) and (V) hold. The claims BfY) may now
be read off from Theorem 2.2. Fgr7L,)N the sum exponents should also be
handled, but one can assume= gy, for Dy ND(Ly) is open, hence contains
(s1— &, p1,0) for € >0, so that the larger spa&, £"4(V) is mapped intdB¥ '3
for all suff|C|entIy largeN, according to Theorem 2 2
Finally, since(sp — €, po,do) also belongs td, ND(L,) for sufficiently small
€ > 0, one can assuntp = 0. So according to Theorem 2.2 the sectiobelongs
to X = BiH2(V) as stated. O

It should be mentioned that while the abstract framework in Theorem 2.2 was
formulated with onlys and p as parameters, for convenience, the third parameter
g was easily handled in the proof above by simple embeddings.

From the given examplesi itis clear that Theorem 5.1 on the von Karmaleprob
is just a special case of the above result. One also has

Corollary 6.8. For operators< and B as in Theorem 6.7, the equation
Fu+Q(u) = f (6.40)
is hypoelliptic, ie for f in C (V') any solution u belongs toQV).
Finally it is shown that this corollary has a much sharpeasl version. This is
derived directly from the parametrix formula (6.39) and from the obviagsthat

the class of pseudo-local maps is stable under composition. In parﬂé@aris

pseudo-local. (This really only involves tiig + G-part of o, sincel, goes from
W to W’. And the pseudo-differential part clearly inherits pseudo-locality ftioen
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operators oR", sincePy = roPey. For the singular Green part one can extend
[Gru96, Cor. 2.4.7] by means of Rem. 2.4.9 there(mny,)-dependent singular
Green operators to get the pseudo-local property.)

For this purpose, leE C Q be a subregion open relatively @ (ie = =QnNO
for an open seO C R"), so that=NQ possibly adheres to a pdry C I of the
boundary. Then, iff in (6.38) in addition fulfilsf € Bl &1 ~°(V_;loc) the idea is
to show for a solutionu in (6 38) thatu € BR'2(V|_,loc).

More precisely,f € Brl o (V" loc) means that f is in Brlol b(v’) for every
¢ in C*(Q) with compact support contained #n Hereby¢ f is calculated fibre-
wisely for the components off, both in the bundle&/ over Q, fori <is, and in
the R overrl, fori; <i <i,. Thatue Btrllt)i‘(\/‘:,loc) is defined similarly.

Theorem 6.9. Under hypothesis as in Theorem 6.7, supposeBtl1 0‘1 by "_ loc)
holds in addition to(6.38) for some(ty,r1,01) in D, ND(Ly). Then u is also a
section of B72(V_;loc).

The corresponding result holds for the Fscale too.

Proof. Let ¢, xo and x1 € C*(Q) be chosen so that sugp C = and
Xo+Xx1=1, Xj = ] on a neighbourhood of sugp (6.41)
By the parametrix formula (6.39),

pu= PN (o (x1f) +220) + YPN o/ (xof ) + (/L) Nu (6.42)
and here the last term belongs B{:ﬁa ) for a sufficiently largeN, according

to the first part of Theorem 6.7. SII’]CZE(LU is pseudo-local so |§’( ), and the
inclusion smgsupp%()(of) C suppxo therefore implies thatyPN) (Xof) is in
C*(V). And because (x: f)+Zuisin BL'2(V), the fact thaP™) has order zero
gives that also the first term on the right hand side of (6.42) BHRE(V). O

7. FINAL REMARKS

The theory above establishes Theorem 6.7 on parametrices of systeemsiof s
linear elliptic boundary problems. This gives satisfactory and generaigawegu-
larity properties, including hypoellipticity and local properties in subregi®asQ
possibly adhering to the boundary; cf Theorem 6.9.

To elucidate advantages of the present methods, one could note thattamot-
procedures applied to general semi-linear problems create troublesdinigitét
(for general data) at least when the number of normal derivativesibdahndary
condition exceeds the mean ordel + d;)/2 associated with the product type
operatorB(v,w) (more precisely whenevéb(.«7) 5 D(.4",d)). Eg this would be
the case if (1.2) were considered with the Neumann condition instead;83Jo
Thm. 5.5.3] or [Joh95b]. Using Theorem 6.7, or Theorem 2.2, thesaitzdlies
do not show up at all.

The parametrix formulae also give structural information about solutioxs (e
ploited here in the regularity analysis in subregichs: Q), and for regularity
guestions they imply that improved a priori knowledge of the solutions will allow
weaker assumptions on the data.

Furthermore one could wonder whether this more flexible framework may giv
moreregularity properties than boot-strap methods. And in high dimensions, eg
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n> 5, it is indeed possible to find affirmative examples, like the polyharmonic
operator with the Dirictét condition, perturbed by the squa@éu) = u?:

(-A™u+uw?=f InQcR" (7.1)
ymu=0 onTl. (7.2)

Since (—A)™: HNQ) — H™™(Q) is a bijection by Lax—Milgram’s lemma, the
semilinear problem is by Proposition 2.4 solvable for small dataH ™(Q),
when Q(u) is of order < 2m om H™, ie for m> n/6 by Proposition 4.4. But
if f also belongs ta@! ., (Q) for somet > 1—m, it would be an improvement to
conclude thati € Btltfm, for via standard embeddings sucyield Bt+2m wm,
whereas the a priori information only givess H™ C W

In order that this Besov regularity cannot be obtained by boot-strap o&tho
(t+2m,1) should be outside of the domai((—A)™, Q), which by Corollary 4.8
or (4.21) is the case if +2m < § — 2m (provided f ¢ B”S for € > 0). This
amounts tan< (n—t)/4.

For the purpose of the example, it is assumed thatbc R" for n > 2. With
x= (X,X") for X = (x1,%2), data are conveniently taken as

f(x) =X |32 =c(x¢+x5) %4, (7.3)

Thenf e B, l/Z(Q) N Bl/z(Q) This follows from Example 1.2 by tensor product
techniques as in Example 5.3; one has in analogy with [Fra86a, Lem. 2.7t1] tha

B} q(R™) ® B} 4(R™) C B} 4(R™*™) for s> 0. Hencef ¢ Bl/2 andt =1/2.
Theorem 7.1. Let Q C R" be smooth open and boundé€ds Q. Then

(—0)™u(x) +u(x)2 = ¢|x|~3/2 (7.4)
has a solution & HJ'(Q) for sufficiently small ¢ 0 when m> n/6. If moreover
n 2n 1

me|g, [ every solution in H'(Q) also belongs to §” Q) CcW2M(Q), so
that D"u( X) is an integrable function fofa| < 2m. Specmcally thls entails:

e For n=5and m= 1, every solution & H(Q) also lies in é/z C W2

e For 9<n<1land m= 2, every solution & H%(Q) is in B; /2 o CWH

In general for n> 13 there is always some 3 in ]2, 21

[ such that solutions
existin H"NW2™. In all the cases ﬁsz cannot be reached by reiteration.
Proof. In the following (n,m) should be chosen witm < (2n—1)/8, so that

mi
W2M 5 Bl_oo 2 s outside ofD((—A)™, Q), cf the above.

To apply the parametricad™(Q) must lie inD((—A)™ Q). By (i) and (ii) of
Corollary 4.8 the square operator(isA)™-moderate orH™ if 5 —m-dy >0 and
2m> 5 —m+ydj, ieif § <m< 3. Clearly (2m,2) belongs to the parameter
domain Dy, of ((—A)™,ym); cf (1.36). In addition(2m+ 1,1) lies there, so it
remains to check that it is id(L,). By (4.14) this is the case ifrﬂ+% > do+
di —m+ (549 —n),, thatis if In> § — 1, orm> (n—1)/6; this is redundant
in view of the above conditiom > n/6.

It suffices to pick(n,m) such thaime |5, [. This interval has length greater
than 1, and a fortiori contains an mteger imrz 14. It also containsn=1, 2

n2n1
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and 3 in the mentioned dimensions. In all these cases Theorem 6.7 yields that
1

oma ,
ue BlTZ(Q) as desired. O

Post festum, the theorem is somewhat more striking than stated, because for
m< % the mapu— u? does not even make sense\W&™ in general (cf the coun-
terexample in Remark 3.5, that actually deals with squares of functionsjidin a
tion to the technical condition thﬁff{,‘j‘ should be outside of a certain parameter

domain, this observation gives a more fundamental reason that the relmwﬁm
cannot be shown via reiteration. It is by use of exact paralinearisatiavhich u
enters once and in a suitable (ie moderate) way, ut@¥V?™ is obtained.

In the opposite direction, such additional regularity properties cannatbbe
tained for every semi-linear boundary problem, for it would clearly becssary
that the linear domair(«/) would contain parameters outside of the domain
D(Q,d) associated wittQ(u). (If D(</)\ D(Q,d) = 0, it holds thatD(.</) N
D(Ly) = D(«7,Q), whence the extended boot-strap method of [Joh95b] applies.)
As an example of this, the von Karman equations give a problem in vihie) \
D(Q,d) is empty; cf Figure 3. Moreover, in a wider context with non-smooth
coefficients, S. I. Pohozaev [Poh93] has given explicit example®slatisns to
semi-linear problems in which boot-strap methods give optimal regularity results

All in all there are legion examples of regularity properties beyond those ob
tainable by bootstrap methods. These are of importance for the genesgy the
of partial differential equations, albeit at some distance from the most commo
boundary problems of mathematical physics. The general theory is applibd
stationary von Karman problem in Section 5 and 6, with consequencesdyoth f
the solvability of this problem and for the regularity of its solutions. This applica
tion also illustrates that operators of product typg, di,d2) should preferably be
written with d, as high as possible in order to enlarge the parameter domains.

Perhaps it also deserves to be emphasised that the consistent useacé@thetpr
domains, as a notion, has paved the way for the qualitative, but consisissiizn
of boundary problems, not least in this final section.
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