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Abstract

We derive summary statistics for stationary spatial Hawkes processes which can

be considered as spatial versions of classical Hawkes processes. Particularly, we

derive the intensity, the pair correlation function and the Bartlett spectrum.

Our results for Gaussian fertility rates and the extension to marked Hawkes

processes are discussed.

Keywords: Bartlett spectrum; Hawkes process; pair correlation function; spatial

point processes; summary statistics; unpredictable marks.
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1. Introduction

Classical Hawkes processes [4, 6, 7, 8, 9] and their extensions to marked Hawkes

processes [2, 4, 11, 12, 17, 18] play a fundamental role in the theory of point processes

and its applications. In this paper we consider a spatial Hawkes processX ⊂ Rd (d ≥ 1)

defined as follows.

(a) The points in X arrive at different times, and each point η ∈ X is of one of two

types: an immigrant or an offspring.

(b) The immigrants constitutes a spatial point process G0 ⊂ Rd. Throughout

this paper we assume that G0 is stationary with intensity µ0 ∈ (0,∞) (where
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2 J. Møller and G. L. Torrisi

“stationarity” and “intensity” are defined in Section 2.1).

(c) If we condition on a point η from X, then independently of the previous history,

η generates a Poisson process Φ(η) ⊂ X of offspring with intensity function

ξ 7→ γ(ξ − η), where γ is a non-negative locally integrable function called the

fertility rate.

We can view X as a cluster process with cluster centres at the immigrants and where

the cluster associated by an immigrant ξ is the point process consisting of ξ and all

offspring generated after some steps by ξ. Figure 1 illustrates the construction of a

planar Hawkes process; four clusters are shown, consisting of 1, 1, 2, and 6 points.

Figure 1: Illustration of how a spatial Hawkes process might be generated. Black points are

the immigrants and the arrows indicate the offspring produced by each point of the process.

A classical Hawkes process on the line is the special case where d = 1, the arrival

times are equal to X, G0 is a Poisson process, and γ(ξ) = 0 for ξ < 0. For d ≥ 1,

we can view our process as a marked Hawkes process, where the points are given by

the arrival times in (a) and X defines the marks. However, the arrival times play no

important role in this paper and are therefore mostly ignored; they are only used in

(c) when describing the independence of the previous history.

It is useful to consider a spatial Hawkes process as a superposition X = ∪∞0 Gn

where the (n + 1)-th generation Gn+1 given the previous generations G0, . . . , Gn is a

Poisson process on Rd with intensity function

λn+1(ξ) =
∑

η∈Gn

γ(ξ − η). (1)

Note that each Gn is a generalised shot noise Cox process [13], and (1) is a particular

case of a model for reproducing individuals studied by Kingman [10] (see also Section
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5.5 in [5]). We shall later compare spatial Hawkes processes with a Neyman-Scott

process [16]; in a Neyman-Scott process only the immigrants generate offspring (more

precisely, G1 is a Neyman-Scott process if G0 is a homogeneous Poisson process).

Spatial Hawkes processes may provide natural models for e.g. a population of re-

producing individuals or the development of an epidemic. Nevertheless, to the best

of our knowledge, spatial Hawkes processes have so far been studied very little in the

literature. Brémaud, Massoulié, and Ridolfi [1] consider stationary spatial Hawkes

processes with unpredictable marks, and they obtain the Bartlett spectrum (for the

point process without the marks), assuming the existence of the Bartlett spectrum of

the immigrant process. As explained in Section 3.3, our results easily extend to the case

with unpredictable marks, but for ease of presentation we have chosen to concentrate

on the unmarked case. Moreover, we are currently preparing a paper on simulation

procedures, including perfect simulation, of spatial Hawkes processes.

In this paper we study the first and second order properties of spatial Hawkes

processes in line with textbooks in spatial statistics [3, 5, 14] and stochastic geometry

[20, 21]. Exploiting (1) we derive the intensity (Section 2.1) and, as our main result, the

pair correlation function (Section 2.2). As a corollary, and in a simpler way compared

to the exposition in [1], we obtain the Bartlett spectrum (Section 2.3). Our results for

the pair correlation function are exemplified in Section 3.1 for Gaussian fertility rates.

Other summary statistics such as the F , G, J , and K functions are briefly considered

in Section 3.2. In Section 3.3 we discuss how our results easily extends to the case with

unpredictable marks. All proofs are deferred to Appendix A–C.

2. Results

Throughout this paper we assume that the mean number of points in an offspring

process Φ(ξ) is strictly less than one, i.e.

ν =

∫
γ(η) dη < 1. (2)

This condition is equivalent to assume that X has finite intensity, cf. Proposition 1

below.
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2.1. First order properties

Recall that a point process Y ⊂ Rd is stationary if the distribution of Y is invariant

under translations in Rd, and its intensity is then given by the mean number of points

of Y per unit volume (the intensity may be infinite).

Proposition 1. Each Gn is stationary with intensity ρn = µ0ν
n, and X is stationary

with intensity

ρ = µ0/(1− ν). (3)

Proof. See Appendix A.

2.2. Second order properties

In this section we find the pair correlation function g(ξ, η) for a Hawkes process.

Loosely speaking, ρ2g(ξ, η) dξ dη is the probability for observing a pair of points from

X occurring jointly in each of two infinitesimally small balls with centres ξ, η and

volumes dξ, dη. The function ρ(2)(ξ, η) = ρ2g(ξ, η) is known as the product density of

the second order factorial moment measure, and g is a kind of normalization of ρ(2).

For further details, see Appendix B and [14, 20, 21].

2.2.1. Set up We need the following terminology and notation.

Consider any Lebesgue integrable functions f and h defined on Rd. Let f ∗h denote

convolution, i.e. the Lebesgue integrable function

f ∗ h(ξ) =

∫
f(ξ − η)h(η) dη, ξ ∈ Rd.

Define f̃ by f̃(ξ) = f(−ξ). Let f∗n denote convolution of f with itself n ≥ 1 times,

and set f∗0 = δ, where δ denotes the Dirac delta function on Rd: δ(ξ) = ∞ if ξ = 0,

δ(ξ) = 0 if ξ ∈ Rd \ {0}, and for any Lebesgue integrable or constant function f ,

f(ξ) =

∫
δ(ξ − η)f(η) dη.

Accordingly we set δ ∗ f = f ∗ δ = f and δ ∗ δ = δ. The normalized fertility rate

is the density φ (with respect to the Lebesgue measure) of an offspring (in the first

generation) generated by a point at 0:

φ(ξ) = γ(ξ)/ν, ξ ∈ Rd.
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Furthermore, let χ denote the mixture density of the densities φ∗n with geometric

weights (1− ν)νn,

χ(ξ) = (1− ν)

∞∑

n=0

νnφ∗n(ξ), ξ ∈ Rd,

where in the trivial case ν = 0 we set χ = δ. Finally, we abuse notation and write e.g.

g0(ξ, η) = g0(ξ − η) (which simply means that g0(ξ, η) depends only on (ξ, η) through

ξ − η) for two different functions, however, it will always be clear from the context

which function is used.

2.2.2. Pair correlation function In the sequel we assume that G0 has pair correlation

function g0 such that g0(ξ, η) = g0(ξ − η) = g0(η − ξ) for all ξ, η ∈ Rd.

Theorem 1. We have that

g(ξ, η) = g(κ) = g(−κ), g(κ) = χ ∗ χ̃ ∗

[
g0 +

1

µ0(1− ν)
δ

]
(κ) (4)

whenever κ = ξ − η 6= 0.

Proof. See Appendix B.

Since {(ξ, ξ) : ξ ∈ Rd} is a nullset with respect to Lebesgue measure, we define

arbitrary the value of g(0). The term g0 in (4) corresponds to the case where ξ and η

are not in the same cluster, while the other term δ/(µ0(1− ν)) corresponds to the case

where ξ and η are in the same cluster.

From (4) we obtain immediately the following result.

Corollary 1. If g0 = 1 then

g(κ) = 1 +
1

µ0(1− ν)
χ ∗ χ̃(κ) (5)

for all κ ∈ Rd\{0}.

Recall that the pair correlation function for a Poisson process is equal to one. By

(5), g > 1, which is in agreement with the usual interpretation that this indicates

aggregation of the points in X, cf. [14, 20, 21].

2.3. Bartlett spectrum

In this section we derive the Bartlett spectrum of the spatial Hawkes process X.
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2.3.1. Preliminaries First, recall the notion of the classical Fourier transform: For

Lebesgue integrable functions f : Rd 7→ R, define the Fourier transform of f by

Ff(ω) := f̂(ω) =

∫
exp(i ω · ξ)f(ξ) dξ, ω ∈ Rd,

where · is the usual inner product on Rd. The inverse Fourier transform is defined by

F−1f(ξ) :=
1

(2π)d

∫
exp(−i ω · ξ)f(ω) dω, ξ ∈ Rd.

We define the Fourier transform of a real constant c as (2π)dcδ(·), and the inverse

Fourier transform of this expression as c. Thus, if f is either Lebesgue integrable or

constant, F−1f̂ = f , ̂̃f =
¯̂
f , and for any constant or Lebesgue integrable functions f1

and f2, we have that f̂1 ∗ f2 = f̂1f̂2. Here z̄ denotes the complex conjugate of z ∈ C;

for later use, let |z| denote the modulus of z.

Next, recall the notion of Fourier transform of a tempered distribution: For a Borel

measure m on Rd, let

< m,ψ >=

∫
ψ(ξ)m(dξ), ψ ∈ S,

where S is the set of the rapid decreasing functions, see e.g. [4]. By definition, the

Fourier transform of the tempered distribution < m, · > is the tempered distribution

< m̂, · > such that

< m̂, ψ >=< m, ψ̂ >, ψ ∈ S.

Third, recall that

c(κ) = ρ2(g(κ)− 1) + ρδ(κ) (6)

is the reduced covariance function of X, since by definition, for Borel sets A,B ⊆ Rd,

cov(X(A), X(B)) =

∫ ∫
1[(ξ, η) ∈ A×B]c(ξ − η) dξ dη

where X(A) is the number of points in X ∩A (see e.g. [4]). Denote by C(dξ) = c(ξ) dξ

the reduced covariance measure of X. Now, the Bartlett spectrum of X is the Borel

measure Ĉ on Rd defined by the tempered distribution < Ĉ, · >, see e.g. [4]. Thus Ĉ

is closely related to g.
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Fourth, as the reduced covariance function of G0 is c0(κ) = µ2
0(g0(κ)− 1) + µ0δ(κ),

for all ψ ∈ S,

< C0, ψ̂ > =

∫
c0(ξ)ψ̂(ξ) dξ

= µ2
0

∫
g0(ξ)ψ̂(ξ) dξ − µ2

0

∫
ψ̂(ξ) dξ + µ0ψ̂(0). (7)

Notice that in the sense of [4], µ2
0g0(κ) + µ0δ(κ) is the density of the reduced second

moment measure of G0. Therefore, by Proposition 8.1.II in [4], it is the density of a

positive and positive-definite measure, and so by Theorem 8.6.III in [4], there exists a

locally finite Borel measure α0 on Rd such that
∫
g0(ξ)ψ̂(ξ) dξ =

∫
ψ(ξ)α0(dξ), ψ ∈ S. (8)

Consequently, by (7) and (8),

< C0, ψ̂ >= µ2
0

∫
ψ(ξ)α0(dξ)− µ2

0

∫
ψ̂(ξ) dξ + µ0ψ̂(0). (9)

A straightforward computation shows that the right side in (9) is equal to
∫
ψ(ξ)

[
µ2

0(α0(dξ)− (2π)dδ(ξ) dξ) + µ0 dξ
]

and so the Bartlett spectrum of G0 is

Ĉ0(dξ) = µ2
0

[
α0(dξ)− (2π)dδ(ξ) dξ

]
+ µ0 dξ. (10)

In many applications, g0 is of the form g0 = 1+ f0, where f0 is Lebesgue integrable, in

which case Ĉ0 is absolutely continuous with respect to Lebesgue measure, with density

ĉ0(ξ) = µ0

(
µ0f̂0(ξ) + 1

)
. (11)

We refer to ĉ0 as the spectral density of G0.

2.3.2. The Bartlett spectrum as a corollary to the result for the pair correlation function

The proof in Appendix C of the following corollary shows how the expression of the

Bartlett spectrum follows from Theorem 1 for the pair correlation function.

Corollary 2. We have that

Ĉ(dξ) =
1

|1− γ̂(ξ)|2

[
Ĉ0(dξ) + (µ0ν/(1− ν)) dξ

]
(12)

where Ĉ0 is given by (10).
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Corollary 2 is in accordance with the result in [1] (see Theorem 5.1 therein). When

G0 has spectral density (11), the spatial Hawkes process has spectral density

ĉ(ξ) =
µ0

|1− γ̂(ξ)|2

[
µ0f̂0(ξ) +

1

1− ν

]
(13)

(that is Ĉ(B) =
∫

B
ĉ(ξ) dξ for Borel sets B ⊆ Rd).

3. Examples and discussion

3.1. Gaussian fertility rates

Consider a two-dimensional radially symmetric Gaussian fertility rate, i.e. φ is the

density of N2(0, σ
2I) where σ2 > 0 is the variance. Then φ∗n(ξ) = φ∗n(r) depends

only on r = ‖ξ‖ and is the density of N2(0, nσ
2I), n ≥ 1. Further, χ = χ̃ and a

straightforward calculation shows that

χ ∗ χ̃(r) = (1− ν)2
∞∑

n=0

(n+ 1)νnφ∗n(r).

Let first g0 = 1 and consider (g(r) − 1)µ0 which by (5) does not depend on the

parameter µ0:

(g(r)− 1)µ0 = (1− ν)
∞∑

n=1

(n+ 1)νnφ∗n(r), r > 0,

which we can calculate by numerical methods using e.g. Maple. The left plot in Figure 2

shows (g(r)−1)µ0. The effect of increasing σ2 from 1 to 4 and ν from 0.5 to 0.9 is clearly

visible. For comparison we have also shown (g(r)− 1)µ0 = φ∗2(r) for a Neyman-Scott

(or modified Thomas) process when (σ2, ν) = (1, 0.9) (i.e. when g is the pair correlation

function for offspring of the first generation). This curve has to some extent a similar

shape as for a spatial Hawkes process, though it is much below the curve for the spatial

Hawkes process with (σ2, ν) = (1, 0.9).

Next, the upper curve in Figure 2 is (g(r)−1)µ0 when the immigrant pair correlation

function is that of the Thomas process above, i.e. when g0 = 1 + φ∗2/µ0 and

(g(r)− 1)µ0 = (1− ν)

∞∑

n=1

(n+ 1)νn
[
φ∗n(r) + (1− ν)φ∗(n+2)(r)

]
, r > 0,

and where again (σ2, ν) = (1, 0.9). This curve is only slightly above the corresponding

curve where g0 = 1.
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The right plot in Figure 2 shows spectral densities (13) on a logarithmic scale when

still (σ2, ν) = (1, 0.9) and µ0 = 1 or µ0 = 10 and g0 = 1 or g0 = 1 + φ∗2/µ0. For

a low immigrant intensity, it is hard to distinguish between the two cases of spectral

densities.
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Figure 2: Left: Transformed pair correlation functions (g(r)−1)µ0 with d = 2 and a radially

symmetric Gaussian density φ with variance σ2. Full lines: for spatial Hawkes processes with

(σ2, ν) = (1, 0.9), (1, 0.5), (4, 0.9), (4, 0.5) (from top to bottom at r = 0) and g0 = 1. Dotted

lines: for a modified Thomas process (bottom) and for a spatial Hawkes process when g0

is the pair correlation of the modified Thomas process (top), with (σ2, ν) = (1, 0.9) in both

cases. Right: Log spectral densities when (σ2, ν) = (1, 0.9) and µ0 = 1 (bottom) or µ0 = 10

(top) and g0 = 1 (full lines) or g0 = 1 + φ∗2/µ0 (dotted lines).

3.2. Summary statistics

The pair correlation function is frequently used in spatial statistics as a characteristic

of the second order properties of a spatial point process, and from g we obtain Ripley’s

K-function [3, 5, 14, 19, 20, 21]. The use of the Bartlett spectrum has played a minor

role in spatial statistics [15], possibly because g is easier to interpret. However, in light

of the much simpler expression (13) compared to (4), using the spectral density as a

second order characteristic for spatial Hawkes processes seems appealing. The empty

space function F , the nearest-neighbour distribution function G, and the related J
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function, which are all widely used summary statistics (see [14] and the references

therein), seem intractable for spatial Hawkes processes. If G0 is Poisson, then by [20],

since X is a Poisson cluster process, J ≤ 1.

3.3. Unpredictable marks

The definition in Section 1 extends immediately to a marked Hawkes process with

points ξ which are still either immigrants or offspring and unpredictable marks Zξ:

The immigrant process is as before and offspring are generated in a similar way except

that the fertility rate ξ → γ(ξ−η, Zη) associated to a marked point (η, Zη) may depend

on the mark. Furthermore, the marks are unpredictable in the sense that each mark

Zξ follows the same probability distribution, which is independent of the point ξ and

the previous history of the marked point process. It is easily seen that this property

of the marks implies that the results in Section 2 are still valid for the spatial point

process given by the points of the marked Hawkes process, provided we replace γ(·)

by Eγ(·, Z) where the expectation is with respect to a generic mark Z. The Bartlett

spectrum so obtained agrees with Theorem 5.1 in [1].

Appendix A

Proof of Proposition 1: It follows immediately from the definition of a spatial Hawkes

process that stationarity of G0 implies stationarity of (G0, G1, . . .) and hence also

stationarity of X = ∪∞0 Gn. We show by induction that, for any n ≥ 0, Gn has

intensity ρn = µ0ν
n. The case n = 0 is satisfied by assumption. Using first (1), next

Campbell’s theorem (see e.g. [20]), and third the induction hypothesis, we obtain for

n ≥ 1,

ρn = Eλn(ξ) = ρn−1

∫
γ(ξ − η) dη = µ0ν

n−1ν = µ0ν
n.

Hence X = ∪∞0 Gn has intensity ρ =
∑

n≥0 ρn = µ0/(1− ν).

Appendix B

For integers m,n ≥ 0 and Borel sets C ⊆ Rd × Rd, define the measure

αm,n(C) = E
∑

ξ∈Gm,η∈Gn: ξ 6=η

1[(ξ, η) ∈ C]
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where 1[·] is the indicator function. In the terminology of [14], αm,n is the cross moment

measure of (Gm, Gn) if m 6= n, and αn,n is the second order factorial moment measure

of Gn. Since the point processes G0, G1, . . . are almost surely pairwise disjoint, the

second order factorial moment measure of X = ∪∞0 Gn is given by

α(2)(C) =
∑

m,n≥0

αm,n(C). (14)

If α(2) is absolutely continuous with respect to Lebesgue measure on Rd × Rd with

density ρ(2), then ρ(2) is called the second order product density, and the pair corre-

lation function of X is given by g(ξ, η) = ρ(2)(ξ, η)/ρ2. By (14), if αm,n is absolutely

continuous with respect to Lebesgue measure on Rd × Rd with density ρm,n, we can

take ρ(2) =
∑

m,n ρm,n. As in Theorem 1 we assume that G0 has pair correlation

function g0(ξ, η) = g0(ξ − η) = g0(η − ξ), and write ρ
(2)
0 (ξ) = g0(ξ)µ

2
0 for its second

order product density. We show in Lemma 1 below that ρm,n exists. In particular,

gn = ρn,n/ρ
2
n is the pair correlation function of Gn, where ρn = µ0ν

n, cf. Proposition 1.

Lemma 1. We have that αm,n is absolutely continuous with respect to Lebesgue mea-

sure on Rd × Rd, and for all m,n ≥ 0 and ξ 6= η,

ρm,n(ξ, η) = ρm,n(ξ−η) = γ∗m∗γ̃∗n∗ρ
(2)
0 (ξ−η)+

min{m,n}∑

k=0

µ0ν
kγ∗(m−k)∗γ̃∗(n−k)(ξ−η).

(15)

Proof. The result is trivially true when m = n = 0.

Let m < n, and note that (Gm, Gn) is determined by the marked point process

obtained by attaching to each point ξ ∈ Gm a mark Mξ given by the point process of

all those points η − ξ such that η ∈ Gn and η is an offspring generated by ξ in n−m

steps. The point processes Mξ, ξ ∈ Gm, are i.i.d. and independent of G0, . . . , Gm.

Furthermore, if m > 0, conditional on G0, . . . , Gm−1, we have that Gm has intensity

function λm. Hence by Campbell’s theorem,

E


 ∑

ξ∈Gm

f(ξ,Mξ)

∣∣∣∣G0, . . . , Gm−1


 = E

[∫
λm(ξ)f(ξ,Mξ) dξ

∣∣∣∣G0, . . . , Gm−1

]
(16)

for non-negative measurable functions f , where we set λ0 = µ0 and condition on

nothing if m = 0. Thereby, since with probability one the translated point processes
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Mξ + ξ, ξ ∈ Gm, are pairwise disjoint and their union is equal to Gn,

αm,n(C) = E

∫
λm(ξ)

∑

η∈Gn

1[(ξ, η) ∈ C] dξ = E

∫
λn(η)

∫
λm(ξ)1[(ξ, η) ∈ C] dξ dη

(17)

where to obtain the first equality we consider E[· · · ] = EE[· · · |G0, . . . , Gm−1] and to

obtain the second equality we consider E[· · · ] = EE[· · · |G0, . . . , Gn−1].

Similarly, for m > n, we obtain (17). For m = n > 0, since Gn conditional on

G0, . . . , Gn−1 is a Poisson process with intensity function λn, Slivnyak-Mecke’s theorem

(see e.g. [14]) and considering again E[· · · ] = EE[· · · |G0, . . . , Gn−1] imply that

αn,n(C) = E

∫
λn(ξ) E


∑

η∈Gn

1[(ξ, η) ∈ C]

∣∣∣∣G0, . . . , Gn−1


 dξ,

and so by Campbell’s theorem we obtain (17) with m = n.

Therefore, by (17) and Fubini’s theorem, for all m,n ≥ 0, αm,n is absolutely

continuous with respect to Lebesgue measure on Rd × Rd, with density

ρm,n(ξ, η) = E[λm(ξ)λn(η)]. (18)

Consequently,

ρm,n(ξ, η) = ρn,m(η, ξ) (19)

for all ξ, η ∈ Rd and m,n ≥ 0.

In the remainder of this proof, let ξ 6= η.

We now prove by induction that (15) is satisfied when m = n. For m = n = 0, this

is trivially satisfied. Assume that it is satisfied for a fixed m = n ≥ 0. By (1) and (18),

ρn+1,n+1(ξ, η) = E
∑

x1,x2∈Gn: x1 6=x2

γ(ξ − x1)γ(η − x2) + E
∑

x∈Gn

γ(ξ − x)γ(η − x).

Applying the definition of ρn,n in the first term and Campbell’s theorem in the second

term above,

ρn+1,n+1(ξ, η) =

∫ ∫
γ(ξ−x1)γ(η−x2)ρn,n(x1, x2) dx1 dx2 +

∫
γ(ξ−x)γ(η−x)ρn dx

which after a straightforward computation reduces to

ρn+1,n+1(ξ, η) = γ ∗ γ̃ ∗ (ρnδ + ρn,n)(ξ − η).
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Therefore, by the induction hypothesis,

ρn+1,n+1(ξ, η) = µ0ν
nγ ∗ γ̃(ξ − η) + γ∗(n+1) ∗ γ̃∗(n+1) ∗ ρ

(2)
0 (ξ − η)

+

n−1∑

k=0

µ0ν
kγ∗(n+1−k) ∗ γ̃∗(n+1−k)(ξ − η)

whereby the induction proof is completed, since δ(ξ− η) = 0. Note that from this and

(18) we obtain that

ρn,n(ξ, η) = ρn,n(ξ − η) = ρn,n(η − ξ). (20)

Next, let m < n. Then

ρm,n(ξ, η) = E[λm(ξ)λn(η)]

= E
∑

x1∈Gn−1

γ(η − x1)λm(ξ)

= EE


 ∑

x1∈Gn−1

γ(η − x1)λm(ξ)

∣∣∣∣G0, . . . , Gn−2




= E

∫
γ(η − x1)λm(ξ)λn−1(x1) dx1

=

∫
γ(η − x1)ρm,n−1(ξ, x1) dx1

where we have used (18) in the first and last equalities, (1) in the second equality, and

Campbell’s theorem in the fourth equality. Iterating this calculation we obtain

ρm,n(ξ, η) =

∫
γ(η − x1)

∫
γ(x1 − x2) · · ·

∫
γ(xn−m−1 − xn−m)ρm,m(ξ, xn−m)

dxn−m · · · dx2 dx1

= γ̃∗(n−m) ∗ ρm,m(ξ − η)

using (20). Since ρm,m satisfies (15), we obtain that ρm,n satisfies (15).

Third, let m > n. Observe that if h = f1 ∗ f2 then h̃ = f̃1 ∗ f̃2. Combining this

with (15) (for the case so far verified), (19), and the fact that ρ
(2)
0 (·) is symmetric, we

obtain that

ρm,n(ξ, η) = γ∗n ∗ γ̃∗m ∗ ρ
(2)
0 (η − ξ) +

n∑

k=0

µ0ν
kγ∗(n−k) ∗ γ̃∗(m−k)(η − ξ)

= γ∗m ∗ γ̃∗n ∗ ρ
(2)
0 (ξ − η) +

n∑

k=0

µ0ν
kγ∗(m−k) ∗ γ̃∗(n−k)(ξ − η).

Thereby (15) is verified for all m,n ≥ 0.
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Proof of Theorem 1: By (15), ρ(2)(ξ, η) = ρ(2)(ξ − η) whenever ξ 6= η, where for

κ 6= 0,

ρ(2)(κ) =
∑

m≥0, n≥0

ρm,n(κ)

=


∑

m≥0

γ∗m


 ∗


∑

n≥0

γ̃∗n


 ∗ ρ

(2)
0 (κ)

+
∑

k,m,n: m≥k, n≥k, k≥0

µ0ν
kγ∗(m−k) ∗ γ̃∗(n−k)(κ)

=


∑

m≥0

γ∗m


 ∗


∑

n≥0

γ̃∗n


 ∗

(
ρ
(2)
0 + ρδ

)
(κ) (21)

using (3). By (3) and (21), g(ξ, η) = g(ξ−η) = ρ(2)(ξ−η)/ρ2 is easily seen to be given

by the last expression in (4). Finally, it follows that g(·) is symmetric.

Appendix C

Proof of Corollary 2: Consider the Borel measure on Rd G(dξ) = g(ξ) dξ. The linear

functional

< G,ψ >=

∫
g(ξ)ψ(ξ) dξ, ψ ∈ S

is a tempered distribution. Indeed, by (4),

< G,ψ >=

∫
χ ∗ χ̃ ∗ g0(ξ)ψ(ξ) dξ +

1

µ0(1− ν)

∫
χ ∗ χ̃(ξ)ψ(ξ) dξ, ψ ∈ S

and both the functions χ ∗ χ̃ ∗ g0 and χ ∗ χ̃ are locally integrable (the first one is the

density of a p.p.d. measure, the second one is a probability density).

Define the function

β = (1− ν)
∞∑

n=1

νnφ∗n

and note that χ = (1− ν)δ + β. From (4), for all ξ ∈ Rd\{0},

g(ξ) = χ ∗ χ̃ ∗ g0(ξ) +
1

µ0
[β̃(ξ) + β(ξ) + (1− ν)−1β ∗ β̃(ξ)].

Therefore,

< G, ψ̂ > =

∫
χ ∗ χ̃ ∗ g0(ξ)ψ̂(ξ) dξ +

1

µ0

∫
(β̃(ξ) + β(ξ))ψ̂(ξ) dξ

+
1

µ0(1− ν)

∫
(β ∗ β̃)(ξ)ψ̂(ξ) dξ, ψ ∈ S. (22)
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Since the functions β̃ and β are Lebesgue integrable,

∫
(β̃(ξ) + β(ξ))ψ̂(ξ) dξ =

∫
ψ(ξ)( ˆ̃β(ξ) + β̂(ξ)) dξ

= (1− ν)

∫
ψ(ξ)

(
1

1− γ̂(ξ)
+

1

1− γ̂(ξ)
− 2

)
dξ (23)

and

∫
β ∗ β̃(ξ)ψ̂(ξ) dξ =

∫
ψ(ξ)β̂(ξ) ˆ̃β(ξ)) dξ

= (1− ν)2
∫
ψ(ξ)

(
1

1− γ̂(ξ)
− 1

)(
1

1− γ̂(ξ)
− 1

)
dξ. (24)

We notice that

∫
χ ∗ χ̃ ∗ g0(ξ)ψ̂(ξ) dξ =

∫ ∫
χ ∗ χ̃(ξ − η)g0(η)ψ̂(ξ) dη dξ

=

∫
g0(η) dη

∫
χ ∗ χ̃(ξ − η)ψ̂(ξ) dξ (25)

=

∫
χ ∗ χ̃ ∗ ˆ̃ψ(−η)g0(η) dη. (26)

In (25) we can exchange the order of integration, since the function (ξ, η) 7→ χ ∗ χ̃(ξ −

η)g0(η)ψ̂(ξ) is Lebesgue integrable. Indeed, since g0 is the density of a p.p.d. measure,

g0 ≤ g0(0), and the function (ξ, η) 7→ χ ∗ χ̃(ξ − η)ψ̂(ξ) is Lebesgue integrable, since

χ∗ χ̃ is a probability density and ψ̂ is a rapid decreasing function. Notice also that the

function ξ 7→ χ ∗ χ̃ ∗ ̂̃ψ(−ξ) is Lebesgue integrable and

F−1χ ∗ χ̃ ∗ ̂̃ψ(−ξ) =
1

(2π)d
Fχ ∗ χ̃ ∗ ̂̃ψ(ξ)

= χ̂(ξ) ˆ̃χ(ξ)ψ(ξ) =
(1− ν)2ψ(ξ)

|1− γ̂(ξ)|2
. (27)

By (27), the function ξ 7→ F−1χ ∗ χ̃ ∗ ̂̃ψ(−ξ) is Lebesgue integrable. Indeed,

|F−1χ ∗ χ̃ ∗ ̂̃ψ(−ξ)| =
(1− ν)2|ψ(ξ)|

|1− γ̂(ξ)|2
≤

(1− ν)2|ψ(ξ)|

(1− |γ̂(ξ)|)2
≤ |ψ(ξ)|

and ψ is Lebesgue integrable as it is rapid decreasing. Therefore, the Fourier transform

of ξ 7→ F−1χ ∗ χ̃ ∗ ̂̃ψ(−ξ) is well-defined, and by taking the Fourier transform in (27),

we obtain that

χ ∗ χ̃ ∗ ̂̃ψ(−ξ) = (1− ν)2F
ψ(ξ)

|1− γ̂(ξ)|2
. (28)
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Thus, by (26) and (28),

∫
χ ∗ χ̃ ∗ g0(ξ)ψ̂(ξ) dξ = (1− ν)2

∫
g0(ξ)F

ψ(ξ)

|1− γ̂(ξ)|2
dξ. (29)

By applying the extended Parseval relation, see equation 8.6.10 in [4], it follows that

∫
g0(ξ)F

ψ(ξ)

|1− γ̂(ξ)|2
dξ =

∫
ψ(ξ)

|1− γ̂(ξ)|2
α0(dξ), (30)

where α0 is the Borel measure defined by (8). Therefore, by (29) and (30),

∫
χ ∗ χ̃ ∗ g0(ξ)ψ̂(ξ) dξ = (1− ν)2

∫
ψ(ξ)

|1− γ̂(ξ)|2
α0(dξ). (31)

Combining (22), (23), (24) and (31), we obtain that

< G, ψ̂ >=

∫
ψ(ξ)

[
(1− ν)2

|1− γ̂(ξ)|2
α0(dξ) +

1− ν

µ0|1− γ̂(ξ)|2
dξ −

1− ν

µ0
dξ

]
(32)

Arguing as for (7) we have, for all ψ ∈ S,

< C, ψ̂ >= ρ2

∫
g(ξ)ψ̂(ξ) dξ − ρ2

∫
ψ̂(ξ) dξ + ρψ̂(0). (33)

Therefore, by (32) and (33)

< C, ψ̂ > = ρ2

∫
ψ(ξ)

[
(1− ν)2

|1− γ̂(ξ)|2
α0(dξ) +

1− ν

µ0|1− γ̂(ξ)|2
dξ −

1− ν

µ0
dξ

]

− ρ2

∫
ψ̂(ξ) dξ + ρψ̂(0)

=

∫
ψ(ξ)

[
µ2

0

|1− γ̂(ξ)|2
α0(dξ) +

ρ

|1− γ̂(ξ)|2
dξ − (2π)dρ2δ(ξ) dξ

]

=

∫
ψ(ξ)

[
µ2

0

|1− γ̂(ξ)|2
α0(dξ) +

ρ

|1− γ̂(ξ)|2
dξ −

(2π)dµ2
0

|1− γ̂(ξ)|2
δ(ξ) dξ

]

=

∫
ψ(ξ)

[
µ2

0

|1− γ̂(ξ)|2
[α0(dξ)− (2π)dδ(ξ) dξ] +

µ0

|1− γ̂(ξ)|2
dξ

]

+

∫
ψ(ξ)

νµ0/(1− ν)

|1− γ̂(ξ)|2
dξ

=

∫
ψ(ξ)

Ĉ0(dξ)

|1− γ̂(ξ)|2
+

∫
ψ(ξ)

νµ0/(1− ν)

|1− γ̂(ξ)|2
dξ, (34)

=< Ĉ, ψ >

where the equality in (34) follows by (10).
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