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The Faraday effect revisited: General theory

14th of June 2005

Horia D. Cornean1, Gheorghe Nenciu2 3, Thomas G. Pedersen 4

Abstract

This paper is the first in a series revisiting the Faraday effect, or more
generally, the theory of electronic quantum transport/optical response
in bulk media in the presence of a constant magnetic field. The indepen-
dent electron approximation is assumed. For free electrons, the transverse
conductivity can be explicitly computed and coincides with the classical
result. In the general case, using magnetic perturbation theory, the con-
ductivity tensor is expanded in powers of the strength of the magnetic
field B. Then the linear term in B of this expansion is written down in
terms of the zero magnetic field Green function and the zero field current
operator. In the periodic case, the linear term in B of the conductivity
tensor is expressed in terms of zero magnetic field Bloch functions and
energies. No derivatives with respect to the quasimomentum appear and
thereby all ambiguities are removed, in contrast to earlier work.

1 Introduction

In sharp contrast with the zero magnetic field case, the analysis of properties of
electrons in periodic or random potentials subjected to external magnetic fields
is a very challenging problem. The difficulty is rooted in the singular nature
of the magnetic interaction: due to a linear increase of the magnetic vector
potential, the naive perturbation theory breaks down even at arbitrarily small
fields.

To our best knowledge, only the periodic case has been considered in con-
nection with the Faraday effect for bulk systems. The first full scale quantum
computation was done by Laura M. Roth [1] (for a review of earlier attempts
we direct the reader to this paper). The physical experiment starts by sending
a monochromatic light wave, parallel to the 0z direction and linearly polarized
in the plane x0z. When the light enters the material, the polarisation plane can
change; in fact, there exists a linear relation between the angle θ of rotation of
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the plane of polarisation per unit length and the transverse component of the
conductivity tensor σxy (see formula (1) in [1]). The material is chosen in such
a way that when the magnetic field is zero, this transverse component vanishes.
When the magnetic field B is turned on, the transverse component is no longer
zero. For weak fields one expands the conductivity tensor to first order in B
and obtains a formula for the Verdet constant.

Therefore the central object is σxy(B), which depends among other things on
temperature, density of the material, and frequency of light. Using a modified
Bloch representation, Roth was able to obtain a formula for

dσxy

dB
(0), and studied

how this first order term behaves as a function of frequency, both for metals
and semiconductors.

However, the theory in [1] is not free of difficulties. First, it seems almost
hopeless to estimate errors or to push the computation to higher orders in B.
Second, even the first order formula contains terms which are singular at the
crossings of the Bloch bands. Accordingly, at the practical level this theory
only met a moderate success and alternative formalisms have been used, as for
example the celebrated Kohn-Luttinger effective many band Hamiltonian (see
[2, 3, 4] and references therein), or tight-binding models [5]. Since all these
methods have limited applicability, a more flexible approach was still needed.

In the zero magnetic field case, a very successful formalism (see e.g. [6, 7, 8, 9]
and references therein) is to use the Green function method. This is based on
the fact that the traces involved in computing various physical quantities can
be written as integrals involving Green functions. The main aim of our paper
is to develop a Green function approach to the Faraday effect, i.e. for the con-
ductivity tensor when a magnetic field is present. Let us point out that the
use of Green functions (albeit different from the ones used below) goes back at
least to Sondheimer and Wilson [10] in their theory of diamagnetism of Bloch
electrons. Aside from the fact that the Green function (i.e. the integral kernel
of the resolvent or the semigroup) is easier to compute and control, the main
point is that by factorizing out the so called ”nonintegrable phase factor” (or
”magnetic holonomy”) from the Green function, one can cope with the singular-
ities introduced by the increase at infinity of the magnetic vector potentials. In
addition, (as it has already been observed by Schwinger [11] in a QED context)
after factorizing out the magnetic holonomy one remains with a gauge invariant
quantity which makes the problem of gauge fixing irrelevant. The observation
(going back at least to Peierls [12]) that one can use these magnetic phases
in order to control the singularity of the magnetic perturbation has been used
many times in various contexts (see e.g. [10, 13]). We highlight here the re-
sults of Nedoluha [14] where a Green function approach for the magneto-optical
phenomena at zero temperature and with the Fermi level in a gap has been
investigated.

But the power of this method has only recently been fully exploited in
[15, 16], and developed as a general gauge invariant magnetic perturbation the-
ory in [17]. Applied to the case at hand, this theory gives an expansion of the
conductivity tensor in terms of the zero magnetic field Green functions. More-
over, it is free of any divergencies. A key ingredient in controlling divergencies is
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the exponential decrease of the Green functions with the distance between the
arguments, for energies outside the spectrum [18, 19]. We stress the fact that
since no basis is involved, periodicity is not needed and the theory can also be
applied to random systems. Finite systems and/or special geometries (layers)
are also allowed.

The content of the paper is as follows. In Section 2 we give a derivation
of the conductivity tensor from first principles. We include it for two reasons.
The first reason is to point out that this coincides with various formulas used
before, and in addition to show that in the low frequency limit it coincides
(as it should) with a formula of Streda [20] for the Integral Quantum Hall
Effect (IQHE). In particular, if we consider the transverse component of the
conductivity tensor at low magnetic field, zero temperature, zero frequency, with
the Fermi level in a spectral gap of the system without magnetic field, then
for periodic systems (under the proviso that exponentially localized Wannier
function exist), this component vanishes (see also [21], [22] for related results).
We stress that this result holds for the whole σxy(B) as long as the magnetic field

is not too large, not just for
dσxy

dB
(0). The vanishing of its first order correction

was in fact claimed in formula (50) in [1]. The second reason is that for further
mathematical developments we need a form involving a contour integral over
complex energies.
Section 3 contains the exact quantum computation of σxy(B) for free electrons;
in spite of the fact that such a result might be known (and it is known at
zero frequency), we were not able to find it in the literature. Interestingly
enough, the quantum computation gives the same result as the well known
classical computation (when the relaxation time is infinite). Section 4 contains
the argument that the use of magnetic phases allows one to take the limit of
large systems. The core of the paper is contained in Section 5 which includes
the derivation of

dσxy

dB
(0). As in the zero magnetic field case, its formula only

contains zero magnetic field Green functions and current operators. Section 6
deals with periodic systems, and the result of the previous section is written
down in terms of zero magnetic field Bloch functions and bands. At the end we
have some conclusions.

The main goal of this paper is to present the strategy, state the results
concerning the Verdet constant, and to outline future theoretical and practical
problems. Detailed proofs will be given elsewhere.

2 Preliminaries. The conductivity tensor in the

linear response regime

We begin by fixing the notation used in the description of independent electrons
subjected to a constant magnetic field. The units are chosen so that ~ = 1. Since
we consider spin 1/2 particles, the one particle Hilbert space for a non-confined
particle is

H∞ = L2(R3)⊕ L2(R3)
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with the standard scalar product. Accordingly, all operators below and their
integral kernels are 2× 2 matrices in the spin variable. We choose the constant
magnetic field of strength B to be oriented along the z-axis. Then the one
particle Hamiltonian with the spin-orbit coupling included is (see e.g. [1])

H∞(B) =
1

2m
P(B)2 + V + gµbBσ3, (2.1)

with

P(B) = −i∇− ba +
1

2mc2
s ∧ (∇V ) = P(0)− ba (2.2)

where
b = −

e

c
B

and a(x) is an arbitrary smooth magnetic vector potential which generates a
magnetic field of intensity B = 1 i.e. ∇∧ a(x) = (0, 0, 1). The most frequently
used magnetic vector potential is the symmetric gauge:

a0(x) =
1

2
n3 ∧ x. (2.3)

where n3 is the unit vector along z axis.
In the periodic case we denote by L the underlying Bravais lattice, by Ω its

elementary cell and by Ω∗ the corresponding Brillouin zone. |Ω| and |Ω∗| stand
for the volumes of the elementary cell and Brillouin zone respectively. In the
absence of the magnetic field one has the well known Bloch representation in
terms of Bloch functions:

Ψj(x,k) =
1

√

|Ω∗|
eik·xuj(x,k), x ∈ R

3 (2.4)

where uj(x,k) are the normalised to one eigenfunctions of the operator

h(k)uj(x,k) = λj(k)uj(x,k) (2.5)

h(k) =
1

2m

(

−i∇p +
1

2mc2
s ∧ (∇V ) + k

)2

+ V,

=
1

2m
(p + k)2 + V, k ∈ Ω∗, (2.6)

p = −i∇p +
1

2mc2
s ∧ (∇V ),

defined in L2(Ω) ⊕ L2(Ω) with periodic boundary conditions. We label λj(k)
in increasing order. We have to remember that, as functions of k, λj(k) and
uj(x,k) are not differentiable at the crossing points. Since the Ψj(x,k)’s form
a basis of generalized eigenfunctions, the Green function (i.e. the integral kernel
of the resolvent) writes as:

G(0)
∞ (x,y; z) =

∫

Ω∗

∑

j≥1

|Ψj(x,k)〉〈Ψj(y,k)|

λj(k)− z
dk, (2.7)
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and it is seen as a matrix in the spin variables. The above formula has to be
understood in the formal sense since the series in the right hand side is typically
not absolutely convergent, and care is to be taken when interchanging the sum

with the integral. Notice however that G
(0)
∞ (x,x′; z) is a well behaved matrix

valued function.
We consider a system of noninteracting electrons in the grandcanonical en-

semble. More precisely, we consider a box Λ1 ⊂ R
3, which contains the origin,

and a family of scaled boxes

ΛL = {x ∈ R
3 : x/L ∈ Λ1}.

The thermodynamic limit will mean L → ∞, that is when ΛL fills the whole
space. The one particle Hilbert space is HL := L2(ΛL) ⊕ L2(ΛL). The one
particle Hamiltonian is denoted by HL(B) and is given by (2.1) with Dirichlet
boundary conditions (i.e. the wavefunction in the domain of HL(B) vanishes
on the surface ∂ΛL). We assume that the temperature T = 1/(kβ) and the
chemical potential µ are fixed by a reservoir of energy and particles. We work
in a second quantized setting with an antisymmetric Fock space denoted by FL.
Denote the operators in the Fock space with a hat and borrow some notation
from the book of Bratelli and Robinson [23]: if A is an operator defined in
HL, we denote by Â = dΓ(A) its second quantization in the Fock space. At
t = −∞ the system is supposed to be in the grandcanonical equilibrium state
of temperature T and chemical potential µ, i.e. the density matrix is

ρ̂e =
1

Tr(e−βK̂µ)
e−βK̂µ , (2.8)

where
K̂µ = dΓ(HL(B)− µ · Id) (2.9)

is the “grandcanonical Hamiltonian”.
The interaction with a classical electromagnetic field is described by a time

dependent electric potential

V (x, t) := (eiωt + e−iωt)eE · x, t ≤ 0, x ∈ ΛL. (2.10)

so the total time dependent one-particle Hamiltonian is

H(t) = HL(B) + V (t). (2.11)

Notice that e near E is the positive elementary charge. Here we take Im ω < 0
which plays the role of an adiabatic parameter, and insures that there is no
interaction in the remote past. Finally, the one-particle current operator is as
usual

J = −ei[HL(B),X] = −
e

m
P(B), (2.12)

where X is the multiplication by x. We assume that the state of our system is
now described by a time-dependent density matrix, ρ̂(t), obtained by evolving
ρ̂e from −∞ up to the given time, i.e.

i∂tρ̂(t) = [Ĥ(t), ρ̂(t)], ρ̂(−∞) = ρ̂e. (2.13)
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Going to the interaction picture and using the Dyson expansion up to the first
order, one gets

ρ̂(t = 0) = ρ̂e − i

∫ 0

−∞

[dΓ(Ṽ (s), ρ̂e]ds +O(E2), (2.14)

where
Ṽ (s) := eisHL(B)V (s)e−isHL(B). (2.15)

The current density flowing through our system at t = 0 is given by (see (2.14)):

j =
1

|ΛL|
TrFL

(

ρ̂(0)Ĵ
)

=
1

|ΛL|
TrFL

(

ρ̂eĴ
)

−
i

|ΛL|
TrFL

(
∫ 0

−∞

[dΓ(Ṽ (s)), ρ̂e]Ĵds

)

+O(E2). (2.16)

In evaluating the r.h.s. of (2.16) we use the well known fact that traces over the
Fock space can be computed in the one-particle space (see Proposition 5.2.23 in
[23]):

TrFL
{ρ̂edΓ(A)} = TrHL

{fFD(HL(B))A} , (2.17)

where fFD is the Fermi-Dirac one-particle distribution function:

fFD(x) :=
1

eβ(x−µ) + 1
, x ∈ R, β > 0, µ ∈ R. (2.18)

Plugging (2.17) into (2.16), the identity [dΓ(A), dΓ(B)] = dΓ([A, B]), the invari-
ance of trace under cyclic permutations and ignoring the quadratic correction
in E one arrives at

j =
1

|ΛL|
TrHL

{fFD(HL(B))J}

−
i

|ΛL|

e

m
TrHL

(
∫ 0

−∞

[Ṽ (s),P(B)]fFD(HL(B))ds

)

. (2.19)

The first term in (2.19) is always zero because of the identity (trace cyclicity
again)

TrHL
{fFD(HL(B))[HL(B),X]} = TrHL

{[fFD(HL(B)), HL(B)]X} = 0.
(2.20)

which is nothing but the fact that the current vanishes on an equilibrium state.
Using (2.10) and (2.15) one can write

jα =
3

∑

β=1

{σαβ(ω) + σαβ(−ω)}Eβ, α ∈ {1, 2, 3}, ℑ(ω) < 0, (2.21)

where the conductivity tensor is given by

σαβ(B, ω) = (2.22)

−
i

|ΛL|

e2

m
TrHL

∫ 0

−∞

[eisHL(B)xβe−isHL(B), Pα(B)]fFD(HL(B))eisωds.
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Performing an integration by parts, using the formulas i[HL(B), xβ] = Pβ(B)/m
and i[Pα(B), xβ] = δαβ one arrives at

σαβ(B, ω) =
1

|ΛL|

e2

imω
{δαβTr(fFD(HL(B))) (2.23)

+
i

m
Tr

∫ 0

−∞

eis(ω+HL(B))Pβ(B)e−isHL(B)[Pα(B), fFD(HL(B))]ds},

and this coincides (at least at the formal level) with formula (5) in [1]. Notice
that from now on, we write just Tr when we perform the trace, since we only
work in the one-particle space.

Since we are interested in the Faraday effect, and we assume that the mag-
netic field B is parallel with the z axis, we will only consider the transverse
conductivity σ12(B, ω). Hence the first term vanishes. We now perform the
integral over s with the help of Stone’s formula followed by a deformation of the
contour (paying attention not to hit the singularities of fFD(z) or to make the
integral over s divergent

fFD(HL(B))eis(HL(B)+η) =
i

2π

∫

Γω

fFD(z)eis(z+η)(HL(B)− z)−1dz. (2.24)

where η is either 0 or ω, the contour is counter-clockwise oriented and given by

Γω = {x± id : a ≤ x < ∞}
⋃

{a + iy : −d ≤ y ≤ d} (2.25)

with

d = min

{

π

2β
,
|Im ω|

2

}

, (2.26)

and a + 1 lies below the spectrum of HL(B). As a final result one gets

σ12(B, ω) = −
e2

2πm2ω|ΛL|
(2.27)

· Tr

∫

Γω

fFD(z)
{

P1(B)(HL(B)− z)−1P2(B)(HL(B)− z − ω)−1

+ z → z − ω} dz =:
e2

m2ω
aL(B, ω)

where “z → z − ω” means a similar term where we exchange z with z − ω.
Now one can see that by inserting the eigenbasis of HL(B) one obtains the well
known formula derived from semi-classical radiation theory (see e.g. formula
(4) in [1]).

2.1 The zero frequency limit and IQHE

We end this section with a few important remarks about (2.27).
First, one can show that in the limit ω → 0 it coincides with a formula used

in the theory of the integer quantum Hall effect (see formula (6) in [20]).
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Second, in the limit of an infinitely large domain, zero frequency, zero tem-
perature and for the Fermi energy in a spectral gap, we can show (see also [20])
that we get the Widom-Streda formula:

σ12(B, 0) = ec
∂N(B, E)

∂B

∣

∣

∣

∣

E=EF

(2.28)

where N(B, E) is the integrated density of states up to energy E. The above
derivative has to be understood in a somehow special sense. If we denote by B1

the B multiplying the spin matrix σ3 in our Hamiltonian (2.1), and with B2 the
B near a, then in fact we have

σ12(B, 0) = ec
∂N(B1, B2, E)

∂B2

∣

∣

∣

∣

E=EF , B1=B2=B

. (2.29)

Note that Streda did not consider spin in his work [20].
Now consider the periodic case, and assume that at B = 0 all the bands

below the Fermi level have exponentially localized Wannier functions. Then
according to [19], exponentially localized magnetic Wannier functions still exist
for B not too large. Since they are labelled by the same set of indices as in the
zero magnetic field case (i.e. the lattice L), it follows that N(B1, B2, E) does
NOT vary with B1 and B2 if these two parameters lie in a not too large interval
around zero. Thus the partial derivative with respect to B2 of N(B1, B2, E)
must be identically zero on a whole interval. Hence σ12(B, 0) equals zero, and
so does its Taylor expansion at zero in any order in B.

In particular, this explains Roth’s result (formula (50) in [1]) for the first
order correction in B at zero frequency.

3 Gauge invariance and existence of the ther-

modynamic limit

Up to now the system was confined in a box ΛL. As is well known (see e.g.
[1]) a direct evaluation of (2.27) (or previous formulas equivalent to it including
formula (4) in Roth’s paper) is out of reach: the eigenvalues and eigenstates
of H(B) are rather complicated (even in the thermodynamic limit ΛL → R

3)
and at the same time the Bloch representation is plagued by singular matrix
elements of the magnetic vector potential. Roth used a modified magnetic Bloch
representation in [24] and derived a formula for the linear term in B of (2.27) in
terms of the zero magnetic field Bloch representation. Still, her procedure is not
free of difficulties since it involves ∇kuj(x,k) which might not exist at crossing
points. In addition, it seems almost hopeless to control the errors or to push
computations to the second order in B which would describe the Cotton-Mouton
effect for example.

In what follows, we shall outline another route of evaluating (2.27) which is
mathematically correct, systematic, and completely free of the above difficul-
ties. There are two basic ideas involved. The first one (going back at least to
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Sondheimer and Wilson [10] in their theory of diamagnetism) consists in writing
the trace in (2.27) as integrals over ΛL of corresponding integral kernels. This
is nothing but the well known Green function approach (see e.g. [25]) which
has been very successful in computing optical and magneto-optical properties
of solids (see e.g. [6], [7], [8]) in the absence of an external magnetic field. The
point is that the integral kernels are on one hand easier to control and compute,
and on the other hand they do not require periodicity. Moreover, this approach
proved to be essential in deriving rigorous results concerning the diamagnetism
of free electrons [16, 26] and actually we expect the methods of the present
paper to simplify the theory of diamagnetism of Bloch electrons as well.

However, when applying Green function approach in the presence of an exter-
nal magnetic field one hits again the divergencies caused by the linear increase of
the magnetic vector potential: naively, at the first sight aL(B, ω) is not bounded
in the thermodynamic limit L →∞ but instead grows like the second power of
L. It was already observed in [26] that these divergent terms vanish identically
due to some identities coming from gauge invariance.

This is indeed the case and the main point of this paper is to show, following
the developements in [15], [16], [17], that factorizing the so called “ nonintegrable
phase factor” from the Green function (the integral kernel of (HL(B) − ζ)−1)
allows, at the same time, to eliminate the divergencies coming from the increase
of the magnetic vector potential and to obtain a controlled expansion in powers
of B. In addition, this leads to expressions of aL(B, ω) which are manifestly
gauge invariant.

For an arbitrary pair of points x, y ∈ ΛL consider the “magnetic phase”
associated with the magnetic vector potential a(u) defined as the path integral
on the line linking y and x:

φa(x,y) =

∫ x

y

a(u) · du. (3.1)

The magnetic phase satisfies the following crucial identity: for every fixed c

e−ibφa(x,c)P(B)eibφa(x,c) = P(0)− bA(x− c). (3.2)

where A(x) = 1
2n3 ∧ x, i.e. irrespective of the choice of a(x),

A(x− c) =
1

2
n3 ∧ (x− c) (3.3)

is the symmetric (transverse, Poincaré) gauge with respect to c.
Write now the Green function (as a 2× 2 matrix in the spin space)

GL(x,y; ζ) = (HL − ζ)−1(x,y) (3.4)

in the factorized form

GL(x,y; ζ) = eibφa(x,y)KL(x,y; ζ). (3.5)
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It is easy to check that while GL(x,y; ζ) is gauge dependent, KL(x,y; ζ) is
gauge independent i.e. the whole gauge dependence of GL(x,y; ζ) is contained
in the phase factor eibφa(x,y). Plugging the factorisation (3.5) into the integrand
of the r.h.s. of (2.27), using (3.2) and (3.3), one obtains that its integral kernel
writes as

AL
s,s′(x,x′) = eibφa(x,x′) (3.6)

·

∫

Γω

dzfFD(z)

2
∑

σ=1

∫

ΛL

dyeibΦ(x,y,x′){[(P1,x(0)− bA1(x− y))KL(x,y; z)]s,σ

· [(P2,y(0)− bA2(x− y))KL(y,x′; z + ω)]σ,s′ + z → z − ω},

where
Φ(x,y,x′) = φa(x,y) + φa(y,x′) + φa(x

′,x)

is the flux of the magnetic field (0, 0, 1) through the triangle ∆(x,y,x′). Now
the fact that there are no long range divergencies in the formula for As,s′(x,x′)
follows from the exponential decay of Green functions [18] (see also [19]): for ζ
outside the spectrum of H there exists m(ζ) > 0 such that as |x− y| → ∞

|KL(x,y; ζ)| = |GL(x,y; ζ)| ∼ e−m(ζ)|x−y|.

It can be proved (the technical details which are far from being simple will
be given elsewhere) that AL

s,s′(x,x′) is jointly continuous and moreover outside
a thin region near the surface of ΛL one can replace it by the integral kernel
A∞

s,s′(x,x′) of the corresponding operator on the whole R
3. Accordingly, up to

surface corrections:

aL(B, ω) ≈ −
1

2π|ΛL|

2
∑

s=1

∫

ΛL

A∞
s,s(x,x)dx. (3.7)

Notice that due to the fact that Φ(x,y,x) = φa(x,x) = 0 the phase factors
appearing in (3.6) reduce to unity in (3.7).

In the periodic case, from the fact that in the symmetric gauge the Hamilto-
nian H∞(B) commutes with the magnetic translations (actually one can define
magnetic translations for an arbitrary gauge, just first make the gauge trans-
formation relating a(x) to A(x)) generated by L, it follows that for ~γ ∈ L we
have:

K∞(x + ~γ,y + ~γ; ζ) = K∞(x,y; ζ),

which implies that
A∞

s,s(x + ~γ,x + ~γ) = A∞
s,s(x,x)

is periodic with respect to L, hence up to surface corrections:

aL(B, ω) ≈ a(B, ω) = −
1

2π|Ω|

2
∑

s=1

∫

Ω

A∞
s,s(x,x)dx. (3.8)
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Therefore, the transverse conductivity writes as

σ12(B, ω) =
e2

m2ω
a(B, ω) (3.9)

with a(B, ω) given by the r.h.s. of (3.8).

4 A closed formula for free electrons

If V = 0 it turns out that the conductivity tensor can be explicitely computed
for all values of B and ω. The formula does not depend on whether we work in
two or three dimensions. More precisely, we will show in this section that

σ12(B, ω) =
e3n

m2c

B

ω2 − B2e2

m2c2

, (4.1)

where n = n(T, µ, B) is the grandcanonical density. The formula (4.1) is well
known in classical physics and goes back at least to Drude but we are not
aware of a full quantum derivation. The coincidence of classical and quantum
formulas can be understood taking into account that the Hamiltonians involved
(choose the symmetric gauge) are quadratic and it is known that for this class
of operators classical and quantum computations coincide in many instances.
While it is possible to derive (4.1) by using the explicit form of the Green
function or alternatively of eigenvalues and eigenprojections for the Landau
Hamiltonian (see e.g. [27]) we shall obtain it below only using resolvent and
commutation identities.

Let us only notice that when ω = 0 we reobtain formula (18) in [20], while
for a fixed frequency we get

∂σ12

∂B
(0, ω) =

e3n

m2cω2

which is “the high frequency limit” or what Roth also calls “the free electron
Faraday effect” in formula (51) from [1].

We begin by listing a few identities which are valid for a free electron on the
entire space.

i[P1(B), P2(B)] =
B e

c

i[H∞(B), P1(B)] = −
B e

m c
P2(B),

i[H∞(B), P2(B)] =
B e

m c
P1(B),

[H∞(B), [H∞(B), P1(B)]] =
B2e2

m2c2
P1(B), (4.2)

[H∞(B), [H∞(B), P2(B)]] =
B2e2

m2c2
P2(B).
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Next, since in this case A∞
s,s(x,x) does not depend upon x one has

a(B, ω) = −
1

2π

2
∑

s=1

(4.3)

{
∫

Γω

dzfFD(z)
[

P1(B)(H∞(B)− z)−1P2(B)(H∞(B)− z − ω)−1

+ z → z − ω]
}

(~0, s;~0, s).

Commuting (H∞(B)− z − ω)−1 with P2(B) in the first term, and P1(B) with
(H∞(B)− z + ω)−1 in the second one, we obtain

a(B, ω) = −
1

2π|Ω|

2
∑

s=1
{

∫

Γω

dzfFD(z)
[

P1(B)(H∞(B)− z)−1(H∞(B)− z − ω)−1P2(B)

+ P1(B)(H∞(B)− z)−1(H∞(B)− z − ω)−1

· [H∞(B), P2(B)](H∞(B)− z − ω)−1

+ (H∞(B)− z + ω)−1P1(B)P2(B)(H∞(B)− z)−1

+ (H∞(B)− z + ω)−1[H∞(B), P1(B)]

· (H∞(B)− z + ω)−1P2(B)(H∞(B)− z)−1
]}

(~0, s;~0, s)

= I + II + III + IV. (4.4)

Now I + III can easily be computed. Indeed, by cyclic permutations one can
cluster the two resolvents and then by the resolvent identity

(A− z1)
−1(A− z2)

−1 = (z1 − z2)
−1[(A− z1)

−1 − (A− z2)
−1], (4.5)

one obtains four terms. Two of them vanish after the integration over z due to
the analyticity of the integrand while the other two give

I + III =
1

2π

2
∑

s=1

(4.6)

{
∫

Γω

dzfFD(z)
1

ω
[P2(B), P1(B)](H∞(B)− z)−1

}

(~0, s;~0, s)

=
B e

ω

2
∑

s=1

{fFD(H∞(B))}(~0, s;~0, s) =:
B e

ω
n(T, µ, B). (4.7)
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In an analogous manner

III + IV =
1

2πω

2
∑

s=1

{
∫

Γω

dzfFD(z) (4.8)

·
{

(H∞(B)− z)−1[H∞(B), P2(B)](H∞(B)− z − ω)−1P1(B)

− (H∞(B)− z)−1[H∞(B), P1(B)](H∞(B)− z + ω)−1P2(B)
}

}

(~0, s;~0, s).

At this point we commute [H∞(B), P2(B)] with (H∞(B)− z−ω)−1 in the first
term, and [H∞(B), P1(B)] with (H∞(B)− z +ω)−1 in the second term and use
(3.3) again. Some of the terms vanish after performing the integration over z
and the remaining ones write as:

−
1

ω
(H∞(B)− z)−1[H∞(B), P2(B)]P1(B) (4.9)

−
1

ω
(H∞(B)− z)−1[H∞(B), [H∞(B), P2(B)]](H∞(B)− z − ω)−1P1(B)

−
1

ω
(H∞(B)− z)−1[H∞(B), P1(B)]P2(B)

−
1

ω
(H∞(B)− z)−1[H∞(B), [H∞(B), P1(B)]](H∞(B)− z + ω)−1P2(B).

Taking into account (4.2) the first and the third terms in (4.9) combine to

−
1

ω
(H∞(B)− z)−1[H∞(B), P1(B)P2(B)]

which after integration over z is proportional to

fFD(H∞(B))[H∞(B), P1(B)P2(B)],

and vanish by the argument leading to (2.20). It follows that we only remain
with the second and fourth terms in (4.9). Using (4.2), they become:

−
B2e2

m2c2ω
(H∞(B)− z)−1P2(B)(H∞(B)− z − ω)−1P1(B)

−
B2e2

m2c2ω
(H∞(B)− z)−1P1(B)(H∞(B)− z + ω)−1P2(B). (4.10)

Using once more the cyclicity of the trace and comparing with the starting point
(4.3), we obtain the remarkable identity

II + IV =
B2e2

m2c2ω2
a(B, ω). (4.11)

Putting together (4.4), (4.6), and (4.11), we obtain the equation:

a(B, ω) =
B e

cω
n +

B2e2

m2c2ω2
a(B, ω),

which gives (4.1) (see (3.9)).
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5 Magnetic perturbation theory and the linear

term in B

When V 6= 0 it is no longer possible to obtain a closed formula for σ12(B, ω).
Since in most physical applications the external magnetic field can be considered
weak, an expansion in B up to the first or second order would be sufficient. In
this section we show that aL(B, ω) has an expansion in B to any order and write
down the expressions of the first two terms. The first one gives the transverse
conductivity at zero magnetic field and the second which is linear in B provides
the Verdet constant. From (3.6) and (3.7) (in what follows by tr we mean the
trace over the spin variable):

aL(B, ω) = −
1

2π|ΛL|

∫

ΛL

dx

{

tr

∫

Γω

dzfFD(z) (5.1)

·

∫

ΛL

du {[(Px,1(0)− bA1(x− u))KL(x,u; z)]

· [(Pu,2(0)− bA2(u− x′))KL(u,x′; z + ω)]

+ [(Px,1(0)− bA1(x− u))KL(x,u; z − ω)]

· [(Pu,2(0)− bA2(u− x′))KL(u,x′; z)]}
}∣

∣

∣

x=x′

Let us mention here that one cannot interchange the order of the above
integrals. First one performs the integral with respect to u, then the integral in
z, then we can put x = x′ since the resulting kernel is smooth, and finally one
integrates with respect to x over ΛL.

When considering the expansion in b of aL(B, ω) we are left with the problem
of the expansion of KΛL

(x,y; ζ) . This expansion is provided by the magnetic
perturbation theory as developed in [19]. Following the steps in [19] in the case
at hand one obtains:

KL(x,y; z) = G
(0)
L (x,y; z) (5.2)

+
b

m

∫

ΛL

G
(0)
L (x,u; z)

[

Pu(0) ·A(u− y)G
(0)
L (u,y; z)

]

du

+ b
gcµb

e

∫

ΛL

G
(0)
L (x,u; z)σ3G

(0)
L (u,y; z)du +O(b2)

= G
(0)
L (x,y; z) + bG

(orbit)
L (x,y; z) + bG

(spin)
L (x,y; z) +O(b2).

The above integrands are matrices in the spin variable, that is why the spin does
not appear explicitly. The error term O(b2) can also be fully controlled with the
magnetic perturbation theory (actually arbitrary order terms can be computed;
see [19] for details). Plugging the expansion (5.2) into (5.2) and collecting the
terms of zero and first order one obtains

aL(B, ω) = aL(0, ω) + baL,1(ω) +O(b2), (5.3)
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where the zeroth order term is:

aL(0, ω) = −
1

2π|ΛL|

∫

ΛL

dx

{

tr

∫

Γω

dzfFD(z) (5.4)

· {P1(0)(HL(0)− z)−1P2(0)(HL(0)− z + ω)−1 + (z → z − ω)}
}

∣

∣

∣

x=x′

,

while the first order correction reads as:

aL,1(ω) = aorbit
L,1 (ω) + aspin

L,1 (ω), (5.5)

where

aorbit
L,1 (ω) = −

1

2π|ΛL|

∫

ΛL

dx

{

tr

∫

Γω

dzfFD(z) (5.6)

·

∫

ΛL

du
{

−
[

A1(x− u)G
(0)
L (x,u; z)

] [

Pu,2(0)G
(0)
L (u,x′; z + ω)

]

−
[

Px,1(0)G
(0)
L (x,u; z)

] [

A2(u− x′)G
(0)
L (u,x′; z + ω)

]

+
[

Px,1(0)G
(orbit)
L (x,u; z)

] [

Pu,2(0)G
(0)
L (u,x′; z + ω)

]

+
[

Px,1(0)G
(0)
L (x,u; z)

] [

Pu,2(0)G
(orbit)
L (u,x′; z + ω)

]

+ (z → z − ω)
}}∣

∣

∣

x=x′

,

aspin
L,1 (ω) = −

1

2π|ΛL|

∫

ΛL

dx

{

tr

∫

Γω

dzfFD(z) (5.7)

·

∫

ΛL

du
{[

Px,1(0)G
(spin)
L (x,u; z)

] [

Pu,2(0)G
(0)
L (u,x′; z + ω)

]

+
[

Px,1(0)G
(0)
L (x,u; z)

] [

Pu,2(0)G
(spin)
L (u,x′; z + ω)

]

+ (z → z − ω)
}}

∣

∣

∣

x=x′

.

Now consider the expression A(x−y)G
(0)
L (x,y; z) appearing in the formula for

aL,1(ω). Observing that it represents a commutator (see (3.3)) one has the
identity

A(x− y)G
(0)
L (x,y; z) =

(

1

2
n3 ∧ (x− y)

)

G
(0)
L (x,y; z)

=

(

1

2
n3 ∧

[

X, (HL(0)− z)−1
]

)

(x,y)

= −
i

2m
{(HL(0)− z)−1(n3 ∧ P )(HL(0)− z)−1}(x,y), (5.8)

where X denotes the multiplication operator with x. By a straightforward (but
somewhat tedious) computation one arrives at:

aL,1(ω) = aorbit,1
L,1 (ω) + aorbit,2

L,1 (ω) + aspin
L,1 (ω) (5.9)
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where

aorbit,1
L,1 (ω) =

i

4mπω|ΛL|

∫

ΛL

dx

{

tr

∫

Γω

dzfFD(z) (5.10)

·

[

2
∑

α=1

Pα(0)(HL(0)− z)−1Pα(0)(HL(0)− z − ω)−1

+

2
∑

α=1

Pα(0)(HL(0)− z)−1Pα(0)(HL(0)− z + ω)−1

−

2
∑

α=1

Pα(0)(HL(0)− z)−1Pα(0)(HL(0)− z)−1

]}

(x,x),

aorbit,2
L,1 (ω) =

i

4πm2|ΛL|

∫

ΛL

dx

{

tr

∫

Γω

dzfFD(z) (5.11)

·
{

−P1(0)(HL(0)− z)−1P1(0)(HL(0)− z)−1

· P2(0)(HL(0)− z)−1P2(0)(HL(0)− z − ω)−1

+ P1(0)(HL(0)− z)−1P2(0)(HL(0)− z)−1

· P1(0)(HL(0)− z)−1P2(0)(HL(0)− z − ω)−1

− P1(0)(HL(0)− z + ω)−1P1(0)(HL(0)− z + ω)−1

· P2(0)(HL(0)− z + ω)−1P2(0)(HL(0)− z)−1

+ P1(0)(HL(0)− z + ω)−1P2(0)(HL(0)− z + ω)−1

· P1(0)(HL(0)− z + ω)−1P2(0)(HL(0)− z)−1

− P1(0)(HL(0)− z)−1P2(0)(HL(0)− z − ω)−1

· P1(0)(HL(0)− z − ω)−1P2(0)(HL(0)− z − ω)−1

+ P1(0)(HL(0)− z)−1P2(0)(HL(0)− z − ω)−1

· P2(0)(HL(0)− z − ω)−1P1(0)(HL(0)− z − ω)−1

− P1(0)(HL(0)− z + ω)−1P2(0)(HL(0)− z)−1

· P1(0)(HL(0)− z)−1P2(0)(HL(0)− z)−1

+ P1(0)(HL(0)− z + ω)−1P2(0)(HL(0)− z)−1

·P2(0)(HL(0)− z)−1P1(0)(HL(0)− z)−1
}

}

(x,x),
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and

aspin
L,1 (ω) = −

gcµb

2eπ|ΛL|

∫

ΛL

dx

{

tr

∫

Γω

dzfFD(z) (5.12)

·
{[

P1(0)(HL(0)− z)−1σ3(HL(0)− z)−1P2(0)(HL(0)− z − ω)−1
]

+
[

P1(0)(HL(0)− z)−1P2(0)(HL(0)− z − ω)−1σ3(HL(0)− z − ω)−1
]

+
[

P1(0)(HL(0)− z + ω)−1σ3(HL(0)− z + ω)−1P2(0)(HL(0)− z)−1
]

+
[

P1(0)(HL(0)− z + ω)−1P2(0)(HL(0)− z)−1σ3(HL(0)− z)−1
]

}
}

(x,x).

6 The periodic case

Now consider the case when V is periodic. In this case, after taking the ther-
modynamic limit one can replace (see (3.8)) 1

|ΛL|

∫

ΛL
with 1

|Ω|

∫

Ω
and rewrite

(5.10)-(5.12) as integrals over the Brillouin zone

aorbit,1
∞,1 (ω) =

i

4mπω|Ω|

∫

Ω∗

dk

∫

Ω

dx

{

tr

∫

Γω

dzfFD(z) (6.1)

·

2
∑

α=1

(pα + kα)(h(k)− z)−1(pα + kα)(h(k)− z − ω)−1

+

2
∑

α=1

(pα + kα)(h(k)− z)−1(pα + kα)(h(k)− z + ω)−1

−

2
∑

α=1

(pα + kα)(h(k)− z)−1Pα(0)(h(k)− z)−1
}

(x,x),
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aorbit,2
∞,1 (ω) =

i

4πm2|Ω|

∫

Ω∗

dk

∫

Ω

dx

{

tr

∫

Γω

dzfFD(z) (6.2)

· {−(p1 + k1)(h(k)− z)−1(p1 + k1)(h(k)− z)−1

· (p2 + k2)(h(k)− z)−1(p2 + k2)(h(k)− z − ω)−1

+ (p1 + k1)(h(k)− z)−1(p2 + k2)(h(k)− z)−1

· (p1 + k1)(h(k)− z)−1(p2 + k2)(h(k)− z − ω)−1

− (p1 + k1)(h(k)− z + ω)−1(p1 + k1)(h(k)− z + ω)−1

· (p2 + k2)(h(k)− z + ω)−1(p2 + k2)(h(k)− z)−1

+ (p1 + k1)(h(k)− z + ω)−1(p2 + k2)(h(k)− z + ω)−1

· (p1 + k1)(h(k)− z + ω)−1(p2 + k2)(h(k)− z)−1

− (p1 + k1)(h(k)− z)−1(p2 + k2)(h(k)− z − ω)−1

· (p1 + k1)(h(k)− z − ω)−1(p2 + k2)(h(k)− z − ω)−1

+ (p1 + k1)(h(k)− z)−1(p2 + k2)(h(k)− z − ω)−1

· (p2 + k2)(h(k)− z − ω)−1(p1 + k1)(h(k)− z − ω)−1

− (p1 + k1)(h(k)− z + ω)−1(p2 + k2)(h(k)− z)−1

· (p1 + k1)(h(k)− z)−1(p2 + k2)(h(k)− z)−1

+ (p1 + k1)(h(k)− z + ω)−1(p2 + k2)(h(k)− z)−1

· (p2 + k2)(h(k)− z)−1(p1 + k1)(h(k)− z)−1}
}

(x,x),

and

aspin
∞,1 (ω) = −

gcµb

2eπ|Ω|

∫

Ω∗

dk

∫

Ω

dx

{

tr

∫

Γω

dzfFD(z) (6.3)

·
{[

(p1 + k1)(h(k)− z)−1σ3(h(k)− z)−1(p2 + k2)(h(k)− z − ω)−1
]

+
[

(p1 + k1)(h(k)− z)−1(p2 + k2)(h(k)− z − ω)−1σ3(h(k)− z − ω)−1
]

+
[

(p1 + k1)(h(k)− z + ω)−1σ3(h(k)− z + ω)−1(p2 + k2)(h(k)− z)−1
]

+
[

(p1 + k1)(h(k)− z + ω)−1(p2 + k2)(h(k)− z)−1σ3(h(k)− z)−1
]

}
}

(x,x).

Finally, for the convenience of the reader only interested in applying the
theory to the case when one assumes that the Bloch bands and functions are
known (as for example from Kohn-Luttinger type models), we write (6.1)-(6.3)
in terms of Bloch functions and energies. The important thing here is that no
derivatives with respect to the quasimomentum appear. With the usual notation
(here 〈, 〉 denotes the scalar product over the spin variables):

π̂ij(α,k) =

∫

Ω

〈ui(x,k), (pα + kα)uj(x,k)〉dx, (6.4)
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and after some rearrangements, the terms coming from the orbital magnetism
are:

aorbit,1
∞,1 (ω) =

1

2mω(2π)3

2
∑

α=1

∫

Ω∗

dk







∑

j≥1

|π̂jj(α,k)|2f ′FD(λj(k)) (6.5)

− ω2
∑

j 6=l

|π̂lj(α,k)|2
fFD(λj(k))− fFD(λl(k))

[(λj(k)− λl(k))2 − ω2](λj(k)− λl(k))







,

aorbit,2
∞,1 (ω) =

1

2m2(2π)3

∫

Ω∗

dk
∑

n1,n2,n3,n4≥1

1

2πi

∫

Γω

dzfFD(z) (6.6)

{

π̂n4n1
(1,k)π̂n1n2

(1,k)π̂n2n3
(2,k)π̂n3n4

(2,k)

(z − λn1
(k))(z − λn2

(k))(z − λn3
(k))(z + ω − λn4

(k))

−
π̂n4n1

(1,k)π̂n1n2
(2,k)π̂n2n3

(1,k)π̂n3n4
(2,k)

(z − λn1
(k))(z − λn2

(k))(z − λn3
(k))(z + ω − λn4

(k))

+
π̂n4n1

(1,k)π̂n1n2
(1,k)π̂n2n3

(2,k)π̂n3n4
(2,k)

(z − ω − λn1
(k))(z − ω − λn2

(k))(z − ω − λn3
(k))(z − λn4

(k))

−
π̂n4n1

(1,k)π̂n1n2
(2,k)π̂n2n3

(1,k)π̂n3n4
(2,k)

(z − ω − λn1
(k))(z − ω − λn2

(k))(z − ω − λn3
(k))(z − λn4

(k))

+
π̂n4n1

(1,k)π̂n1n2
(2,k)π̂n2n3

(1,k)π̂n3n4
(2,k)

(z − λn1
(k))(z + ω − λn2

(k))(z + ω − λn3
(k))(z + ω − λn4

(k))

−
π̂n4n1

(1,k)π̂n1n2
(2,k)π̂n2n3

(2,k)π̂n3n4
(1,k)

(z − λn1
(k))(z + ω − λn2

(k))(z + ω − λn3
(k))(z + ω − λn4

(k))

+
π̂n4n1

(1,k)π̂n1n2
(2,k)π̂n2n3

(1,k)π̂n3n4
(2,k)

(z − ω − λn1
(k))(z − λn2

(k))(z − λn3
(k))(z − λn4

(k))

−
π̂n4n1

(1,k)π̂n1n2
(2,k)π̂n2n3

(2,k)π̂n3n4
(1,k)

(z − ω − λn1
(k))(z − λn2

(k))(z − λn3
(k))(z − λn4

(k))

}

.

As for the spin contribution, with the notation

ŝij(k) :=

∫

Ω

〈ui(x,k), σ3uj(x,k)〉dx, (6.7)
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one has:

aspin
∞,1 (ω) = −

gcµb

(2π)4e

∫

Ω∗

dk
∑

n1,n2,n3≥1

1

2πi

∫

Γω

dzfFD(z) (6.8)

{

π̂n1n2
(1,k)ŝn2n3

(k)π̂n3n1
(2,k)

(λn2
(k)− z)(λn3

(k)− z)(λn1
(k)− z − ω)

+
π̂n1n2

(1,k)π̂n2n3
(2,k)ŝn3n1

(k)

(λn2
(k)− z)(λn3

(k)− z − ω)(λn1
(k)− z − ω)

+
π̂n1n2

(1,k)ŝn2n3
(k)π̂n3n1

(2,k)

(λn2
(k)− z + ω)(λn3

(k)− z + ω)(λn1
(k)− z)

+
π̂n1n2

(1,k)π̂n2n3
(2,k)ŝn3n1

(k)

(λn2
(k)− z + ω)(λn3

(k)− z)(λn1
(k)− z)

}

.

7 Conclusions

We presented in the present paper a method which shed new light on the quan-
tum dynamics/optical response in bulk media in the presence of a constant
magnetic field. We applied the gauge invariant magnetic perturbation theory
and gave a clear and very general way of dealing with long range magnetic
perturbations.

Equations (5.9)-(5.12) and (6.4)-(6.8) contain our main result concerning
the Verdet constant and the Faraday effect: it gives the linear term in B of the
transverse conductivity in terms of the zero magnetic field Green function. They
open the way of using the recently developed Green function techniques for the
calculation of optical and magneto-optical properties of solids, to the case when
an external magnetic field is present. Our method can be applied to ordered, as
well as to random systems (with the appropriate average over configurations).
Of course, in the last case one has to assume ergodicity properties in order
to insure convergence of results in the thermodynamic limit. Layers or other
geometries can also be considered.

There are many subtle and difficult mathematical questions left aside in this
paper, as those related to the thermodynamic limit, the convergence of infinite
series over Bloch bands, the low frequency limit and the connection with the
integer quantum Hall effect. Another open problem is to consider self-interacting
electrons and investigate excitonic effects on the Faraday effect. These questions
will be addressed elsewhere.

Our results are not only theoretical. In a future publication we will use the
residue theorem in equations (6.4)-(6.8) to calculate the Verdet constant for
various finite band models, and compare our results with the existing experi-
mental data. Moreover, our results will be shown to imply those of Roth [1] and
Nedoluha [14].
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