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ABSTRACT 
 
This paper explores the idea of estimating the spectral densities as the Fourier transform of the random 
decrement functions for the application of frequency domain output-only modal identification methods. The gains 
in relation to the usual procedure of computing the spectral densities directly from the time series, are due to the 
noise reduction that results from the time averaging procedure of the random decrement technique, and from 
avoiding leakage in the spectral densities, as long as the random decrement functions are evaluated with 
sufficient time length to have a complete decay within that length. The idea is applied in the analysis of ambient 
vibration data collected in a ¼ scale model of a 4-story building. The results show that a considerable 
improvement is achieved, in terms of noise reduction in the spectral density functions and corresponding quality of 
the frequency domain modal identification results. 
 
 
1. Introduction 
 
Frequency domain output-only modal identification methods, like the frequency domain decomposition method 
(FDD) [1], are commonly applied to the structural response spectral densities, estimated, with the use of the FFT, 
by averaging the spectra of several windowed response segments. The spectral densities estimated with this 
procedure, hold the effects of leakage, although, by the use of windows and by using sufficiently long data 
segments, those effects are reduced. 
 
In a different approach, the random decrement (RD) [2] technique has been generally used in association with 
time domain modal identification methods, like the Ibrahim time domain method (ITD) [3] or the eigensystem 
realization algorithm (ERA) [4]. This is a natural consequence of the fact that the RD technique is in itself a time 
domain procedure, where structural responses to ambient loads are transformed into RD functions. Under the 
assumption that the responses are a realization of a zero mean stationary gaussian stochastic process, the RD 
functions are proportional to the correlation functions of the responses and/or to their first derivatives in relation to 
time [5]. Equivalently, the RD functions can also be considered as free vibration responses. 
 
The idea of applying the RD technique for spectral estimation has already been proposed [6], it is however further 
explored in this paper, with the specific purpose of applying frequency domain output-only modal identification 



methods to the Fourier transform of the RD functions. The advantages in relation to the usual procedure of 
spectral density functions estimation, are due to noise reduction from the RD process of averaging time segments 
of the response, with a common triggering condition, and from avoiding leakage in the spectral densities, as long 
as the RD functions are evaluated with sufficient time length to have a complete decay within that length. 
 
The concepts discussed in this paper will be illustrated in parallel with their presentation, considering the ambient 
vibration data collected in a ¼ scale model of a 4-story building, which was used in a study conducted at the 
LNEC triaxial shaking table [7]. The model is presented in figures 1 and 2, as well as some samples of the 
recorded longitudinal acceleration responses. Just for the sake of simplicity in the exemplification of the concepts, 
only the longitudinal acceleration records will be considered. 
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 Fig. 1 – Dimensions of the model and samples of the acceleration records. Fig. 2 – View of the model. 
 
The ambient vibration tests of the model presented in figures 1 and 2 were performed with 12 Kinemetrics ES-U 
force balance accelerometers, signal conditioning equipment constructed at LNEC and data acquisition hardware 
and software from National Instruments. The equipment was configured for a sensitivity of 4 Volt/mg, and the 
ambient vibration data was acquired during about 30 minutes using a sampling frequency of 1000 Hz; the records 
obtained in this way were later pre-processed, with low-pass digital filtering at 25 Hz with a 8 poles Butterworth 
filter and decimation to a sampling frequency of 62.5 Hz. 
 
The results obtained in the example, show that by considering the Fourier transform of the RD functions, a 
considerable improvement can be achieved, in terms of noise reduction in the spectral density functions with the 
corresponding quality of the frequency domain output-only modal identification results. 
 
 
2. Frequency domain output-only modal identification methods 
 
There are basically three frequency domain output-only modal identification methods: the basic frequency domain 
method (BFD) or peak picking method (PP); the frequency domain decomposition method (FDD); and the 
enhanced frequency domain decomposition method (EFDD). 
 
The systematic formulation and implementation of the BFD method can be attributed to Felber [8] although its 
fundamental ideas had already been used before. Andersen [9] presented some of the basic concepts of the FDD 
method, but Brincker et al. [1] presented it in a more complete way for output-only modal analysis applications. 
Brincker et. al. [10] proposed an improvement of the FDD approach, which resulted in the EFDD method. Both 
FDD and EFDD methods are recently having a widespread use due to their availability in the software Artemis. 
 
The common data for the three frequency domain output-only modal identification methods are the estimates of 
the spectral density functions of the response of a structural system. Usually, those estimates are obtained using 
a procedure that can be attributed to Welch [11] and consists in: division of the response records in several, 
eventually overlapped, segments, whose size determines the frequency resolution of the spectral estimates; 
application of a signal processing window to the data segments in order to reduce the effects of leakage (for 



ambient vibration tests signals, the Hanning window is appropriate); computation of the DFT of the windowed data 
segments trough the use of the FFT algorithm; computation of averaged auto and cross spectra considering the 
DFT’s of the data segments. 
 
Since for identification of the mode shapes of a system, its response has to be measured along several 
experimental degrees of freedom, one can speak about a matrix of spectral density functions, with auto-spectra in 
the main diagonal and cross-spectra in the other positions. This matrix can be evaluated completely or a 
reference-based approach can be adopted, where only the columns (or lines) corresponding to the reference 
degrees of freedom, are computed. 
 
Once the estimates of the spectral density functions are evaluated, the procedures to analyse them, in order to 
extract the modal properties of a system, are slightly different in each of the methods BFD, FDD and EFDD. 
 
In the BFD method the auto-spectra are normalized and averaged in order to obtain an averaged normalized 
power spectral density function (ANPSD) that, in principle, shows all the resonance peaks corresponding to the 
vibration modes of a system. Identification of the frequencies of those peaks gives a first idea about the 
frequencies of the vibration modes of a system. Further analysis is needed of the coherence function and also of 
the amplitude and phase relations between the records obtained along the different experimental degrees of 
freedom. Both the coherence function and the amplitude and phase relations are evaluated with the elements of 
the spectral density functions matrix. At the frequencies of the natural vibration modes of a system, the coherence 
function should present values close to 1. The amplitude and phase relations between the different degrees of 
freedom are evaluated with the H1 estimate of the transmissibility frequency response function and can be 
considered as an estimate of the modal components, from which the mode shapes of a system can be 
constructed (in fact these are not mode shapes but operational deflection shapes, however the difference 
between them is insignificant if the system has modes with well separated frequencies and low damping). 
 
The BFD method doesn’t have in itself a procedure for estimation of the damping coefficients; however, the half-
power bandwidth method has been widely used in association with it. Another option is to use curve-fitting 
procedures to adjust SDOF system response auto-spectra to the isolated peaks of the spectral density functions. 
Especially the first procedure is known to result in rough estimates of the damping. 
 
To illustrate the frequency domain output-only modal identification methods, the spectral density functions of the 
longitudinal accelerations recorded in the tests of the 4-story building model, were evaluated using the above 
described procedure and considering data segments with 2048 values, which correspond to a frequency 
resolution of ∆f = 0.031 Hz. Figure 3 shows the ANPSD of the longitudinal accelerations. Table 1 resumes the 
modal characteristics identified with the BFD method. 
 

 

Table 1 – Modal characteristics identified 
with the BFD method. 

mode 1st 2nd 3rd 4th 
f (Hz) 2.96 8.03 11.69 18.16 
floor i Φ1i Φ2i Φ3i Φ4i 

1 +0.189 +0.662 -0.410 +1.000 
2 +0.385 +1.000 -0.351 -0.750 
3 +0.811 +0.230 +1.000 +0.149 

 4 +1.000 -0.708 -0.587 -0.034 
Fig. 3 – ANPSD of the longitudinal accelerations. 

 

 
 
In the FDD method [1] the spectral density functions matrix is, at each discrete frequency, decomposed in singular 
values and vectors using the SVD algorithm. By doing so, the spectral densities are decomposed in the 
contributions of the different modes of a system that, at each frequency, contribute to its response. In each 
frequency, the dominant mode shows up at the 1st singular value spectrum and the other modes at the other 
singular values spectra. From the analysis of the singular values spectra it is therefore possible to identify the auto 
power spectral density functions corresponding to each mode of a system, which may include parts of several 



singular values spectra, depending on which mode is dominant at each frequency. In the FDD method, the mode 
shapes are estimated as the singular vectors at the peak of each auto power spectral density function 
corresponding to each mode. 
 
The singular values spectra of the longitudinal accelerations are shown in Figure 4. Table 2 resumes the results of 
the modal identification performed with the FDD method. 
 

 

Table 2 – Modal characteristics identified 
with the FDD method. 

mode 1st 2nd 3rd 4th 
f (Hz) 2.96 8.03 11.69 18.16 
floor i Φ1i Φ2i Φ3i Φ4i 

1 +0.190 +0.662 -0.410 +1.000 
2 +0.385 +1.000 -0.352 -0.750 
3 +0.811 +0.230 +1.000 +0.150 

 4 +1.000 -0.708 -0.587 -0.034 
Fig. 4 – Singular values spectra of the longitudinal accelerations. 

 

 
 
The EFDD method [10] is closely related with the FDD technique, with only some additional procedures to 
evaluate the damping and to get enhanced estimates of the frequencies and mode shapes of a system. In the 
EFDD method, the analysis of the singular values spectra, takes a further step forward. The selection of the auto-
spectra corresponding to each mode of a system is performed based on the values of the MAC coefficient 
between the singular vectors at the resonance peaks and at their neighbouring frequency lines. Those SDOF 
auto-spectral density functions are then transformed back into the time domain by inverse FFT, resulting in auto-
correlation functions for each mode of a system. Enhanced estimates of the frequencies of the modes of a system 
are obtained from the zero crossing times of those auto-correlation functions (notice that with this procedure the 
evaluation of the frequencies isn’t restrained to the frequency resolution of the discrete Fourier transform). The 
damping coefficients are estimated from the logarithmic decrement of those auto-correlation functions. Finally, the 
estimate of the mode shapes is also enhanced, considering all the singular vectors within each SDOF auto-
spectral density function, weighted with the corresponding singular values. 
 
Figure 5 shows the spectrum of the 1st singular value of the spectral density functions of the longitudinal 
accelerations, with the selected regions corresponding to each mode. Table 3 resumes the results of the modal 
identification performed with the EFDD method. 
 

 
Table 3 – Modal characteristics identified 

with the EFDD method. 
mode 1st 2nd 3rd 4th 
f (Hz) 2.98 8.04 11.66 18.18 
ξ (%) 0.80 0.63 0.73 0.40 
floor i Φ1i Φ2i Φ3i Φ4i 

1 +0.184 +0.659 -0.410 +1.000 
2 +0.380 +1.000 -0.372 -0.748 
3 +0.812 +0.234 +1.000 +0.145 

 4 +1.000 -0.708 -0.588 -0.029 
Fig. 5 – Selected spectra for the four vibration modes. 

 

 
 
For the simple example of the longitudinal modes of the 4-story building model, the results obtained with the three 
frequency domain output-only modal identification methods, are in good agreement with each other, as it can be 
seen in tables 1, 2 and 3. It must be mentioned that apart from the peaks corresponding to the longitudinal 
modes, the spectra shown in figures 3, 4 and 5, also have some smaller peaks, which correspond to torsional 



modes of the model, but due to the fact that the model was damaged (it had been used in shaking table tests [7]), 
those modes are also reflected in the longitudinal accelerations recorded at the geometric centre of each floor. 
 
 
3. The random decrement technique 
 
With the random decrement (RD) technique [2], the structural responses to ambient loads are converted into RD 
functions. The process of evaluation of the RD functions is a rather simple technique of averaging time segments 
of the measured structural responses, with a common initial or triggering condition. Initially [1] the RD functions 
were interpreted as free vibration responses of a system, but latter [12, 13, 5] it has been proved that, under the 
assumption that the analysed responses are a realization of a zero mean stationary gaussian stochastic process, 
the RD functions are proportional to the correlation functions of the responses and/or to their first derivatives in 
relation to time. 
 
The interpretation of the RD functions as free vibration responses is almost intuitive, if one thinks that the 
response of a system to random input loads is, in each time instant t, composed by three parts: the response to 
an initial displacement; the response to an initial velocity; and the response to the random input loads between the 
initial state ant the time instant t. By averaging time segments of the response with the same initial condition, the 
random part of the response will have a tendency to disappear from the average, and what remains is the 
response of the system to the initial conditions. Since the experimentally measured structural responses always 
have some noise content, the time segments averaging of the RD technique, also has an effect of reducing the 
noise in the resulting RD functions. 
 
Additionally to auto RD functions, where the triggering condition and the time segments to be averaged are 
defined in the same response signal, it is also possible to evaluate cross RD functions, where the triggering 
condition is defined in one response signal and the time segments to be averaged are taken from the other 
simultaneous response signals. One can therefore evaluate a complete matrix of RD functions, or like in the 
spectral density functions matrix, a reference-based approach can be adopted, where only a few reference 
response measurements are considered to apply the triggering conditions. 
 
The RD technique is also computationally efficient. For instance, in terms of evaluation of correlation functions, 
comparisons [12] have been made of different techniques, including the direct method, the FFT based method 
and the RD technique, showing that the RD technique is faster than the direct method and in many situations 
faster than the FFT based one (eventually for long estimates of the correlation functions the FFT based method is 
more competitive [12]). 
 
For the evaluation of the RD functions it is possible to consider different triggering conditions [5, 14], namely: level 
crossing triggering condition; positive points triggering condition; zero crossing with positive slope triggering 
condition; and local extremum triggering condition. All these can also be interpreted as special cases of a 
generalized triggering condition [5]. 
 
Although there have been some works devoted to spectral estimation [6] and frequency response function 
estimation [15] using the RD technique, most of its developments [5] have been made in association with time 
domain modal identification methods, like the Ibrahim time domain method (ITD) [3] or the eigensystem realization 
algorithm (ERA) [4] which is equivalent to the covariance driven stochastic subspace method (SSI-COV) [16]. This 
is understandable, since the RD technique is in itself a time domain procedure and therefore it is natural to 
consider it in association with the time domain identification methods. 
 
Using the RD technique, the RD functions were evaluated for the longitudinal accelerations measured in the 4-
story building model. For that purpose, a level crossing triggering condition was considered, with the optimal value 
of the triggering level as defined in [5]. In the evaluation of the RD functions, the acceleration records were initially 
kept at the sampling frequency of 1000 Hz, low-pass filtered at 25 Hz with a 8 poles Butterworth filter, and only 
the final RD functions were decimated to 62.5 Hz. The RD functions matrix thus obtained is presented in figure 6. 
 
The RD functions shown in figure 6 were computed considering time segments with a length of 256 values at 
62.5 Hz (about 4 seconds). 
 



 
Fig. 6 – RD functions matrix of the longitudinal accelerations (length of 256 values). 

 
 
4. Using the Fourier transform of the RD functions in the frequency domain methods 
 
As it has been referred above, the RD functions can be interpreted as free vibrations of a system, therefore a 
matrix of RD functions, like the one presented in figure 6, can be looked as a set of records from free vibration 
tests of a system; each column or line of the matrix corresponding to a different test where initial conditions are 
imposed at the corresponding degree of freedom and the response is measured in all the degrees of freedom. 
Thus, it seems reasonable to evaluate the spectra of the RD functions, using the FFT algorithm, and to apply the 
frequency domain output-only modal identification methods to the spectral density functions obtained in such way. 
It is however necessary to take into account the problems associated with the discrete Fourier transform, namely 
the effects of leakage. To avoid the effects of leakage, the RD functions must be computed with a total length that 
allows them to have a complete decay within that length. If this condition is fulfilled then the FFT algorithm can be 
applied directly to the RD functions, without the need to use signal-processing windows. 
 
For the example of the 4-story building model, the RD functions must therefore be computed with a longer length 
than the one presented in figure 6; it is thus better to use the RD functions presented in figure 7. 
 

 
Fig. 7 – RD functions matrix of the longitudinal accelerations (length of 2048 values). 

 
Notice that the requirement of having RD functions with a complete decay within their length is not an important 
condition for the time domain methods, but it is an indispensable one for the estimation of the spectral densities 
as the Fourier transform of the RD functions. 



An averaged spectral density functions matrix can be evaluated as the mean of the spectral matrices computed 
from each column or line of the RD functions matrix. The three frequency domain output-only modal identification 
methods can then be applied to that averaged spectral density functions matrix, in a similar manner as they are 
applied to the spectral densities estimated by the more usual Welch’s procedure [11]. The resulting identification 
methods can be named as RD-BFD, RD-FDD and RD-EFDD since they correspond to a combination of the RD 
technique with the methods BFD, FDD and EFDD. The advantage in doing this combination is clearly visible in 
the results that will be presented bellow, and is a consequence of the noise reduction from the averaging of time 
segments that is performed in the RD technique, and also from avoiding the effects of leakage (if the RD functions 
are evaluated with enough length to have a complete decay within that length). 
 
Figure 8 shows the ANPSD obtained using the RD-BFD method and Table 4 resumes the modal characteristics 
identified with that method. 
 

 

Table 4 – Modal characteristics identified 
with the RD-BFD method. 

mode 1st 2nd 3rd 4th 
f (Hz) 2.96 8.03 11.69 18.13 
floor i Φ1i Φ2i Φ3i Φ4i 

1 +0.187 +0.662 -0.403 +1.000 
2 +0.383 +1.000 -0.343 -0.756 
3 +0.811 +0.230 +1.000 +0.152 

 4 +1.000 -0.709 -0.586 -0.037 
Fig. 8 – ANPSD of the longitudinal accelerations. 

 

 
 
Comparing the ANPSD of figure 3 with the ANPSD of figure 8 it is evident that this last one is much more clear; 
the peaks are quite evident and especially the valleys have a much more rounded shape, showing that the level of 
noise is very low. There is therefore an advantage in using the RD technique before the estimation of the spectral 
density functions. 
 
The singular values spectra of the longitudinal accelerations, obtained with the RD-FDD method are shown in 
Figure 4. Table 5 resumes the results of the modal identification performed with that method. 
 

 

Table 5 – Modal characteristics identified 
with the RD-FDD method. 

mode 1st 2nd 3rd 4th 
f (Hz) 2.96 8.03 11.69 18.13 
floor i Φ1i Φ2i Φ3i Φ4i 

1 +0.187 +0.662 -0.404 +1.000 
2 +0.383 +1.000 -0.344 -0.756 
3 +0.811 +0.230 +1.000 +0.152 

 4 +1.000 -0.709 -0.586 -0.037 
Fig. 9 – Singular values spectra of the longitudinal accelerations. 

 

 
 
If the advantage in using the RD technique was already visible in the ANPSD of the RD-BFD method, then it 
becomes even more clear in the singular values spectra. Comparing figure 4 with figure 9 it is quite evident that 
while in figure 4 (FDD) there is not much information to be taken from the 2nd, 3rd and 4th singular values spectra, 
in figure 9 (RD-FDD) those spectra also have important information about the modal characteristics of the 4-story 
building model. In fact, the spectra of figure 9 are a good example to illustrate the basic idea of the frequency 
domain decomposition method – the spectral density functions matrix is decomposed in the contributions of the 
different modes of a system; those modes appear in the singular values spectra in the order of the weight of their 



contribution to the total response. In fact, in figure 9 it is very clear that by joining parts of the singular values 
spectra, one can form the auto-spectra corresponding to the different modes of the 4-story building model. 
 
Figure 10 shows the singular values spectra with the selected regions corresponding to each mode (notice that in 
this case, much wider regions could have been selected, joining parts of the different singular values spectra, but 
it was decided to select the same frequency lines that were chosen in the EFDD method). Table 6 resumes the 
results of the modal identification performed with the RD-EFDD method. 
 

 
Table 6 – Modal characteristics identified 

with the RD-EFDD method. 
mode 1st 2nd 3rd 4th 
f (Hz) 2.98 8.03 11.69 18.17 
ξ (%) 0.83 0.56 0.60 0.30 
floor i Φ1i Φ2i Φ3i Φ4i 

1 +0.187 +0.662 -0.402 +1.000 
2 +0.383 +1.000 -0.339 -0.755 
3 +0.811 +0.230 +1.000 +0.153 

 4 +1.000 -0.709 -0.592 -0.038 
Fig. 10 – Selected spectra for the four vibration modes. 

 

 
 
The modal characteristics identified with the different frequency domain output-only modal identification methods 
that were used in this paper, are in good agreement with each other. Actually, the quality of the data measured in 
the 4-story building model is quite good and therefore the application of the methods BFD, FDD and EFDD with 
the spectral density functions computed in the usual way, gives already good results. However, by using the 
spectral densities estimated from the RD functions, the identification of the modal characteristics becomes much 
more clear (and consequently, also with better results). 
 
Figure 11 illustrates the longitudinal mode shapes of the building model with the results identified with the RD-
EFDD method. The represented shapes where obtained with the aid of a finite element model, by imposing at 
each floor the experimentally identified modal components. 
 
 f1 = 2.98 Hz f2 = 8.03 Hz f3 = 11.69 Hz f4 = 18.17 Hz 

     
Fig. 11 – Longitudinal mode shapes identified with the RD-EFDD method. 

 
 
5. Conclusions 
 
The main purpose of this paper was to explore the idea of using the spectral densities estimated from the Fourier 
transform of the random decrement functions of the response of a system, for the application of frequency domain 
output-only modal identification methods. To accomplish that intention, the paper presented a brief review of the 
three main frequency domain output-only modal identification methods, the methods BFD, FDD and EFDD, as 
well as of the random decrement technique, RD. The explored idea resulted in three methods that were named 
RD-BFD, RD-FDD and RD-EFDD, since they correspond to a combination of the referred techniques. 



The gains of the explored idea in relation to the usual procedure of computing the spectral densities directly from 
the time series, are due to the noise reduction that results from the time averaging procedure of the random 
decrement technique, and from avoiding leakage in the spectral densities, as long as the random decrement 
functions are evaluated with sufficient time length to have a complete decay within that length. 
 
The discussed methods were illustrated with the analysis of ambient vibration data measured at a 4-story building 
model. The results that were presented show that a considerable improvement can be achieved with the explored 
approach, in terms of reduced noise estimates of the spectral densities, clarity of the modal identification analysis 
and, consequently, quality of the identified modal parameters. 
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