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ABSTRACT 
 
Operational modal analysis is used for determining the modal parameters of structures for which the input forces 
cannot be measured. However, the algorithms used assume that the input forces are stochastic in nature. While 
this is often the case for civil engineering structures, mechanical structures, in contrast, are subject inherently to 
deterministic forces due to the rotating parts in the machinery. These forces are seen as harmonic components in 
the responses, and their influence should be eliminated before extracting the modes in their vicinity. 
This paper describes a new method based on the well-known Enhanced Frequency Domain Decomposition 
(EFDD) technique for eliminating these harmonic components in the modal parameter extraction process. For 
assessing the quality of the method, various experiments were carried out where the results were compared with 
those obtained with pure stochastic excitation of the same structure. Good agreement was found and the method 
is shown to be an easy and robust tool for enhancing the EFDD technique for mechanical structures. 
 
 
1 INTRODUCTION TO OPERATIONAL MODAL ANALYSIS 
 
Operational Modal Analysis (OMA) is based on measuring the output of a structure only and using the ambient 
and natural operating forces as unmeasured input. It is used instead of classical mobility-based modal analysis for 
accurate modal identification under actual operating conditions, and in situations where it is difficult or impossible 
to artificially excite the structure. 
 
The algorithms used in OMA assume that the input forces are stochastic in nature. This is often the case for civil 
engineering structures like buildings, towers, bridges and offshore structures, which are mainly loaded by ambient 
forces like wind, waves, traffic or seismic micro-tremors. The loading forces of many mechanical structures are, 
however, often more complex. They are typically a combination of harmonic components (deterministic signals) 
originating from the rotating and reciprocating parts and broadband excitation originating from either self-
generated vibrations from, for example, bearings and combustions or from ambient excitations like air turbulence 
and road vibrations. However, civil engineering structures can also have broadband responses superimposed by 
harmonic components from, for example, ventilation systems, turbines and generators. 
 
As the input forces to the structure are not measured in OMA, special attention must be paid to identify and 
separate harmonic components from true structural modes and eliminate the influence of the harmonic 
components in the modal parameter extraction process. 
 

 



This paper starts by describing the consequences of having harmonic components present in the responses for 
different modal parameter identification techniques. Then an overview of various methods for separating harmonic 
components from structural modes is given, before explaining in more depth a very easy-to-use and robust 
method based on kurtosis. The well-known and popular Enhanced Frequency Domain Decomposition (EFDD) 
modal identification technique is briefly explained, leading to a description of the new EFDD-based method for 
eliminating the influence of harmonic components in OMA. 
 
Finally the quality of the method is assessed from various experiments using a plate structure. The structure is 
excited by a combination of a single sinusoidal signal and a broadband stochastic signal and compared to the 
results obtained with pure stochastic excitation of the same structure. 
 
 
2 CONSEQUENCES OF HARMONIC COMPONENTS 
 
The consequences of having harmonic components present in the responses depend on both the nature of the 
harmonic components (number, frequency, and level) and the modal parameter extraction method used. Table 1 
below indicates these consequences for the Frequency Domain Decomposition (FDD), Enhanced FDD (EFDD) 
and Stochastic Subspace Identification (SSI) techniques. See [1], [2] for further description of the FDD, EFDD and 
SSI techniques. The EFDD method is briefly explained in Chapter 4.2 as well. 
 
Technique Consequences 
All techniques • Harmonic components are potentially mistaken for being structural modes 

• Harmonic components might potentially bias the estimation of the structural modes 
(natural frequency, modal damping, mode shape) 

• A high dynamic range might be required to extract “weak” modes 
FDD • The picked FFT line might be biased by the harmonic component(s) 

• Harmonic components must be away from the structural modes (only the picked FFT 
line is used in the FDD technique) 

EFDD • The identified SDOF function used for modal parameter estimation might be biased by 
the harmonic component(s) 

• Harmonic components must be outside the SDOF function thereby potentially narrowing 
the SDOF function and resulting in poorer identification (leakage) 

SSI 
(PC, UPC, CVA) 

• The SSI methods estimate both harmonic components and structural modes. The 
modes are estimated correctly even for harmonic components close to - or with equal 
frequency as - the modes 

• Information in the time signal is used both to extract the harmonic components and the 
modes, therefore the recording time should generally be longer 

 
Table 1. Consequences of harmonic components for various identification techniques. 

 
For the EFDD technique it is important that harmonic components inside the desired SDOF function are identified 
and their influence eliminated before processing with the modal parameter extraction process. 
 
It should be noticed that harmonic components cannot, in general, be removed by simple filtering as this would in 
most practical cases significantly change the poles of the structural modes and thereby their natural frequency 
and modal damping. 

 



3 IDENTIFICATION OF HARMONIC COMPONENTS 
 
This chapter gives a brief overview of some useful methods for identifying harmonic components and structural 
modes in OMA response data followed by a more detailed description of the kurtosis method. 
 
 
3.1 OVERVIEW OF METHODS 
 
In [3] various methods for identifying harmonic components and structural modes were investigated. A brief 
overview is presented in Table 2 below. 
 

 

Technique Description 
Short Time Fourier 
Transform (STFT) 

When responses are shown in a contour plot, structural modes are shown as thick 
vertical lines. Harmonic components are shown as thin vertical lines for stable conditions 
(fixed frequencies) and as, for example, “saw tooth” patterns for run-up/down conditions 
(varying frequencies). 

Singular Value 
Decomposition 
(SVD) 

For a shaped broadband white noise signal exciting the structure, the rank of the matrix 
containing the singular values will be 1 at frequencies, where only one mode is 
dominating and higher, if closely-coupled modes or repeated roots are present. In the 
case of harmonic components, a high rank will be seen at these frequencies, as all 
modes will be excited. The rank will correspond to the number of responses assuming 
the dynamic range in the measurement is sufficiently high. Hence, when the SVD curves 
are plotted, the peaks will indicate whether they are due to a harmonic component or a 
structural mode. 

Visual Mode Shapes 
Comparison 

When a harmonic component is far away from a structural mode, the operating deflection 
shape (ODS) caused by the harmonic component will be a combination of several 
excited modes and the loading forces acting on the structure. However, when a harmonic 
component is close to an isolated structural mode, the ODS of the harmonic component 
will resemble the mode shape and thus can be mistaken for being a mode shape. 

Modal Assurance 
Criterion (MAC) 

As a harmonic component will excite all modes, the MAC value between a true mode 
shape and an ODS will show high correlation, if the frequency of the ODS is close to the 
frequency of the mode shape. On the other hand, the MAC value between two closely 
spaced modes will, in general, show low correlation. The MAC value between two ODS 
will depend on the modes being excited. 

Stabilization 
Diagram 

Using the SSI techniques, a stabilization diagram showing stable, unstable and noise 
modes is used to select the optimal State Space Dimension. For modes to be classified 
as stable, they must fulfil certain mode indicator requirements of which one is a valid 
range of damping ratios. By adjusting this range, both harmonic components and non-
physical modes can be filtered out thereby only indicating the true structural modes as 
stable modes. 

Probability Density 
Functions (PDFs) 

The significant difference in the statistical properties of a harmonic component and a 
narrowband stochastic response of a structural mode can be used as a harmonic 
indicator. Each potential mode is isolated by band-pass filtering, the PDF is calculated on 
the result that is subsequently fitted to both the PDF of a pure harmonic component and 
the PDF of the response of a pure structural mode. The prediction error between the 
fitted and measured data is calculated in both cases. 

Table 2. Overview of methods for identifying harmonic components and structural modes. 

 



3.2 KURTOSIS 
 
In addition to the above-mentioned methods, kurtosis can also be used as a harmonic indicator. The kurtosis γ of 
a stochastic variable x provides a way of expressing how peaked or how flat the probability density function of x 
is. The kurtosis is defined as the fourth central moment of the stochastic variable normalised with respect to the 
standard deviation σ as follows [4]: 
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where µ is the mean value of x and E is denoting the expectation value. 
 
Often the number 3 is subtracted from equation (1) giving a kurtosis of zero, when x is normally distributed [5]: 
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Using equation (2), a PDF with a positive kurtosis is said to be leptokurtic. If its kurtosis is negative, it is said to be 
platykurtic. A PDF with kurtosis equal to zero is called mesokurtic. Leptokurtosis is associated with PDFs that are 
simultaneously “peaked” and have “fat tails.” Platykurtosis is associated with PDFs that are simultaneously less 
peaked and have thinner tails. 
 
The PDF of the response of a pure structural mode will be normally distributed, and hence the kurtosis γ* = 0 
(mesokurtic). The PDF y is given by: 
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A harmonic component can be treated as a stochastic signal if the phase varies randomly within its period. In the 
case of a pure harmonic component, the PDF will have two distinct peaks approaching infinity at ±a, where a is 
the amplitude of the harmonic component.  The PDF is given by: 
 

( ) ( )( )( ) 1arcsincos −== axaxfy π         (4) 
 

 
Figure 1. Normalized PDF of the response of a structural mode (left) and a harmonic component (right). 

 
The kurtosis γ* = -1½ for a sinusoidal component. This difference in kurtosis of various signals is used in the 
harmonic detection technique described in this paper. 
 

 



4 ELIMINATING THE INFLUENCE OF HARMONIC COMPONENTS USING THE EFDD TECHNIQUE 
 
Before describing the method, the EFDD technique is briefly explained and the consequences of having harmonic 
components inside the SDOF function is illustrated. 
 
 
4.2 BRIEF DESCRIPTION OF THE EXISTING EFDD TECHNIQUE 
 
The Enhanced Frequency Domain Decomposition (EFDD) technique is an extension to the Frequency Domain 
Decomposition (FDD) technique. FDD is a basic technique that is extremely easy to use. You simply pick the 
modes by locating the picks in SVD plots calculated from the spectral density spectra of the responses. Animation 
is performed immediately. As the FDD technique is based on using a single frequency line from the FFT analysis, 
the accuracy of the estimated natural frequency depends on the FFT resolution and no modal damping is 
calculated. Compared to FDD, the EFDD gives an improved estimate of both the natural frequencies and the 
mode shapes and also includes damping. 
 
In EFDD, the SDOF Power Spectral Density function, identified around a resonance peak, is taken back to the 
time domain using the Inverse Discrete Fourier Transform (IDFT). The natural frequency is obtained by 
determining the number of zero-crossing as a function of time, and the damping by the logarithmic decrement of 
the corresponding SDOF normalized auto correlation function. The SDOF function is estimated using the shape 
determined by the previous FDD peak picking - the latter being used as a reference vector in a correlation 
analysis based on the Modal Assurance Criterion (MAC). A MAC value is computed between the reference FDD 
vector and a singular vector for each particular frequency line. If the MAC value of this vector is above a user-
specified MAC Rejection Level, the corresponding singular value is included in the description of the SDOF 
function. The lower this MAC Rejection Level is, the larger the number of singular values included in the 
identification of the SDOF function will be. 
 
In the left-hand side of Figure 2, the estimated SDOF function for the plate’s first bending mode is shown. A pure 
SDOF function can be extracted. In the right-hand side of Figure 2, a harmonic component close to the resonance 
frequency is present. As seen, the SDOF function is severely distorted by the presence of the harmonic 
component and hence the estimation of the modal parameters will be incorrect. 

 
 

 
 

Figure 2. Singular Value SDOF identification without (left) and with (right) harmonic component. 
Mode at 354 Hz. Harmonic component at 374 Hz. 

 
Performing an IDFT on the above SDOF functions the normalized correlation functions are calculated. In the 
upper part of Figure 3, a typical response is seen of a resonating system that decays exponentially. In the lower 
part of Figure 3, the effect of the harmonic component is clearly visible. The harmonic component can be thought 
of as a forced vibration with very low damping. The decay is significantly longer and beating phenomena are 
observed. 
 

 



 
Figure 3. Normalized correlation function without (upper) and with (lower) harmonic component. 

Mode at 354 Hz. Harmonic component at 374 Hz. Grey area indicates the part of the function used. 
 

 
Figure 4. Natural frequency identification by zero-crossing counting without (upper) and 

with (lower) harmonic component. Mode at 354 Hz. Harmonic component at 374 Hz. 

 



The number of zero-crossings as a function of time calculated from the above correlation functions is shown in 
Figure 4. In both cases, the zero-crossing number follows a straight line, but in the case with the harmonic 
component, the estimated natural frequency of the mode will be significantly biased by the presence of the 
harmonic component and set equal to its frequency. 
 
In Figure 5 the damping ratio is estimated by the logarithmic decrement technique from the logarithmic envelope 
of the correlation function. The estimation is performed by applying a linear fit to the part of the curve being close 
to a straight line. Again the influence of the harmonic component is clearly visible. 
 
Compared to the FDD technique, an improved estimate of the mode shape is obtained by using a weighted sum 
of the singular vectors Φi and singular values si whereby random noise is efficiently averaged out. 
 

i
i

iweight s∑Φ=Φ         (5) 

 
In order not to destroy the mode shape estimate, the singular vector and singular value for the harmonic 
component must not be included in the summation.  
 
In Chapter 6, the influence of harmonic components in the modal parameter identification is described quantitative 
by various examples. 
 

 
Figure 5. Damping ratio estimation from the decay of the correlation function without (upper) and  

with (lower) harmonic component. Mode at 354 Hz. Harmonic component at 374 Hz. 
 
 

 



4.3 BRIEF DESCRIPTION OF THE NEW EFDD TECHNIQUE 
 
The steps in the automated method for identifying the harmonic components are roughly as follows: 
1. Each measurement channel yi is normalized to unit variance and zero mean 
2. For all frequencies fj from DC to the Nyquist frequency a narrow bandpass filtering of yi around fj is performed 
3. The Kurtosis γj,i for the filtered signal yi around fj  is calculated 
4. For each frequency, the mean of the Kurtosis γj is calculated across the measurement channels 
5. The median m of the Kurtosis of all frequencies is calculated. If the signal is purely Gaussian distributed this 

robust measure for the mean will theoretically be 0 (equation (2)). 
6. For each frequency fj the deviation of the Kurtosis γj from the median m is calculated. If γj deviates significantly 

from m, then the distribution around fj is different than for the majority of the other frequencies. In such a case 
γj can be characterised as an outlier that should not be included in the estimation of the SDOF functions. 

 
In Figure 6 below, the fundamental frequency at 374 Hz as well as the 2nd and 4th harmonics are automatically 
identified and shown as vertical green lines in the SVD plot. 
 
 

 
 

Figure 6. Indication of harmonic components at 374 Hz, 748 Hz and 1496 Hz in the SVD plot. 
 
Knowing the frequencies of the harmonic components, the SDOF function can be estimated by removing the 
peaks caused by these harmonic components by using linear interpolation. The global modal parameters – 
natural frequency and damping – can subsequently be calculated. The local parameter – mode shape – is 
calculated as described in equation (5). However, only the non-interpolated singular values and vectors are used. 
Figure 7 shows the SDOF function in the SVD plot after removing the harmonic component. 

 

 
Figure 7. Removal of harmonic component in the SVD plot using linear interpolation. 

Mode at 354 Hz. Harmonic component at 374 Hz. 

 



5. MEASUREMENT SETUP 
 
The measurements were performed using an aluminium plate structure supported by foam rubber as test object. 
The plate has lightly damped and well-separated modes. A Brüel & Kjær Hand-held Exciter Type 5961 was 
attached to provide the deterministic signal at a single fixed point. The broadband stochastic noise input was 
provided by finger tapping on the plate randomly in time and space to fulfil the criteria for performing OMA 
measurements. To avoid mass loading effects across data sets, which is not insignificant due to the low dynamic 
mass of the plate, all measurements were done in single data sets by using 16 accelerometers (Brüel & Kjær 
Type 4507-B) equally distributed over the plate. The data acquisition and analysis was performed using PULSE 
Type 3560-D front-end and a laptop PC running PULSE software. All measurements were done in a 1.6 kHz 
frequency range using 60 s of time data. A frequency resolution of 0.25 Hz and 1 Hz was used. 
 

 
 

Figure 8. The measurement setup. 
 
 
6. MEASUREMENT AND ANALYSIS RESULTS 
 
Several tests were conducted to assess the robustness and accuracy of the method as shown in Table 3.  
 

dF = 1 Hz dF = 0.25 Hz dF = 1 Hz dF = 0.25 Hz dF = 1 Hz dF = 0.25 Hz dF = 1 Hz dF = 0.25 Hz
None 354 354 0.5812 0.5545 354 354 0.5812 0.5545
329 329 329 0.1237 0.03099 353.8 353.8 0.5829 0.544
334 334 334 0.1192 0.02977 353.9 353.9 0.4956 0.449
339 339 339 0.1205 0.03025 353.8 353.8 0.504 0.4687
344 344 344 0.1227 0.03038 354.1 353.8 0.4387 0.4681
349 349 349 0.131 0.03307 354.1 354.3 0.6063 0.5331
354 354 354 0.1312 0.03287 354.3 354.2 0.6387 0.5669
359 359 359 0.1268 0.03191 354.6 354.1 0.6272 0.4657
364 364 364 0.1161 0.02867 354.2 354.2 0.453 0.4093
369 369 369 0.1137 0.02897 354.4 354.3 0.4709 0.4321
374 374 374 0.1101 0.02834 354 354 0.446 0.4172
379 379 379 0.09905 0.02507 354.4 354.2 0.4652 0.4317

New EFDD Method

Natural Frequency [Hz] Damping Ratio [%]
Harmonic 

Component 
[Hz]

Natural Frequency [Hz] Damping Ratio [%]

EFDD Method

 
 

Table 3. Comparison of natural frequency and damping ratio using the existing EFDD 
and new EFFD techniques. 1st bending mode at 354 Hz. 

 



Measurements with a single harmonic component located within the SDOF function of the plate’s 1st bending 
mode at 354 Hz were compared to the measurement based on purely stochastic excitation. The measurements 
were done with a frequency resolution of 0.25 Hz and 1 Hz. The natural frequency and damping ratio were 
calculated for the existing EFDD technique and for the new EFDD technique with removed harmonic component. 
 
If harmonic components are present inside the SDOF function, the existing EFDD technique will give inaccurate 
estimates of the modal parameters. The natural frequency will – if the peak of the harmonic component is higher 
than the peak of the structural mode - be estimated equal to the frequency of the harmonic component and the 
damping ratio will be estimated too low. The harmonic component can be seen as a forced vibration with low 
(theoretically zero) damping. The damping ratio consequently drops by a factor of 4, when the frequency 
resolution is reduced by a factor of 4 due to the reduction of the narrow-banded stochastic noise. 
 
Using the new EFDD technique the natural frequencies and damping ratios are, in general, estimated with a good 
accuracy. However, when the harmonic component is close to the natural frequency, larger deviations occur. As 
the plate is very lightly damped, this is expected due to the use of linear interpolation. The obtained damping ratio 
will be higher as the calculated SDOF function gets more “flat” and the mode will consequently be estimated as 
more heavily damped. A polynomial fit is believed to significantly improved the calculated SDOF function and will 
be examined in the near future. 
 
Also the MAC values between the actual mode shape and the estimated mode shapes obtained after removing 
the harmonic component give high correlation. In all cases, the MAC value was better than or equal to 0.9997. 
 
Some of the benefits of the new EFDD method are: 
• Robust method – Harmonic components are clearly identified and their effect can be eliminated even in the 

case of a harmonic component located exactly at a structural mode. Using high frequency resolution and/or 
polynomial fit is required 

• No prior knowledge required – For example about the number of harmonics and their frequencies 
• Easy-to-use – Automated method based on the EFDD technique 
• Fast – Based on computational efficient algorithms 
 
 
7. CONCLUSIONS AND FUTURE WORK 
 
The presence of dominant harmonic components in the measured responses is unavoidable in many applications 
of Operational Modal Analysis. The consequences can be quite drastic, when using the Enhanced Frequency 
Domain Decomposition (EFDD) technique, as it requires the harmonic components to be outside the determined 
SDOF function. This paper has described a new method based on the EFDD technique, where the harmonic 
components are first identified using kurtosis and then removed by performing a linear interpolation across the 
harmonic components in the SDOF function. 
 
The quality of the method has been assessed from various experiments using a plate structure excited by a 
combination of a single sinusoidal signal and a broadband stochastic signal. Compared to the modal results 
obtained with pure stochastic excitation of the same structure, the method shows good agreement in terms of 
natural frequency, damping ratio and mode shape. Even the effect of having a harmonic component located 
exactly at the peak of a structural mode can be eliminated and a good modal estimate obtained, if a high 
frequency resolution is used. Using a polynomial fit, instead of the simple linear interpolation used in this initial 
implementation, would improve the results. The method furthermore benefits from not requiring any prior 
knowledge of the harmonic components in terms of frequencies or levels, is computational very efficient, and 
really simple to use. 
 
Future work will include examination of the method’s robustness to multiple and varying frequencies located 
within the SDOF function. The effect of different polynomial fits will be studied as well. Finally, a new method for 
eliminating harmonic components before using the Stochastic Subspace Identification (SSI) techniques will be 
worked on. 
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