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Nomenclature 
τ,t   Time  

f   Frequency 
)(ty   System response 

mN   Number of measurement channels 

Φφ,   Mode shape, mode shape matrix 
C   Covariance matrix 
G   Spectral density matrix 

Uu,   Singular vector, Matrix of singular vectors 

[ ]is   Diagonal matrix of singular values 

21,dd   Discriminator functions 

21,ΩΩ  Threshold levels 
γσµ ,,  Mean, standard deviation, kurtosis 

 

Abstract 
The Frequency Domain Decomposition (FDD) technique is known as one of the most user friendly and powerful 
techniques for operational modal analysis of structures. However, the classical implementation of the technique 
requires some user interaction. The present paper describes an algorithm for automated FDD, thus a version of 
FDD where no user interaction is required. Such algorithm can be used for obtaining a default estimate of modal 
parameters in commercial software for operational modal analysis - or even more important – it can be used as 
the modal information engine in a system for structural health monitoring.  
 

Introduction 
Frequency domain techniques have always been popular. Even among people who will state that they only use 
time domain techniques for modal identification, as soon as they get new data in their hands, the first thing they 
will normally do is to take a look at some frequency domain functions. For Operational Modal Analysis frequency 
domain techniques are based on spectral density functions, Bendat and Piersol [1]. 



 
Working directly with spectral density function has been popular and is still used a lot; see for instance Felber [2]. 
One of the problems working directly with the spectral density functions is the amount of data the user has to work 
with simultaneously. For instance in a case with 8=mN  channels of measurements, the user has to deal with 

 different spectral density functions. Further, even though the spectral densities by directly 
depicting the modal peaks and thus gives a direct indication of the presence of modes, the spectral density 
function in itself does not provide the user with modal information since the spectral density function is linear 
combination of the modal responses. Therefore working directly with spectral density functions will limit modal 
identification to cases with well separated modes. 
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The Frequency Domain Decomposition technique is a way to solve these two problems, Brincker et al [3], [4]. The 
technique simplifies the user interaction because the user has only to consider one frequency domain function - 
the singular value plot of the spectral density matrix. This plot concentrates information from all spectral density 
functions. Further, if some simple assumptions are fulfilled, the technique directly provides a modal decomposition 
of the vibration information, and the modal information for each mode – even in the case of closely spaced modes 
and noise – can be extracted easily and accurately.  
 
The principle in the Frequency domain Decomposition (FDD) techniques is easiest illustrated by realizing that any 
response can by written in modal co-ordinates 
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Now obtaining the covariance matrix of the responses 
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and using equation (1) leads to 
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Then by taking the Fourier transform 
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Thus if the modal co-ordinates are un-correlated, the power spectral density matrix  of the modal co-
ordinates is diagonal, and thus, if the mode shapes are orthogonal, then Eq. (4) is a singular value decomposition 
(SVD) of the response spectral matrix.  
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Therefore, FDD is based on taking the SVD of the spectral density matrix 
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The matrix is a matrix of singular vectors and the matrix [ L,, 21 uuU = ] [ ]is  is a diagonal matrix of singular 
values. As it appears from this explanation, plotting the singular values of the spectral density matrix will provide 
an overlaid plot of the auto spectral densities of the modal coordinates. Note here that the singular matrix 

 is a function of frequency because of the sorting process that is taking place as a part of the 
SVD algorithm. A mode is identified by looking at where the first singular value has a peak, let us say at the 

[ L,, 21 uuU = ]



frequency . This defines in the simplest form of the FDD technique - the peak picking version of FDD - the 

modal frequency. The corresponding mode shape is obtained as the corresponding first singular vector  in . 
0f
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Introducing modal discrimination 
The process of findings peaks on a function is actually easy to automate. However, we need to define indicators 
that can help us distinguishing between different modes and between modes and noise. 
 
Let us say that we have identified a peak in the first singular value. The question is now if this is a liable modal 
peak or is if it just a noise peak. Calculating the correlation between the first singular vector at the peak – the 
mode shape vector at that point - and the first singular vector at neighboring points defines the discriminator 
function called the modal coherence 
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If the modal coherence is close to unity, then the first singular value at the neighboring point correspond to the 
same modal coordinate, and therefore, the same mode is dominating. This function is helpful in discriminating 
between points dominated by modal information and points dominated by noise. If the components of each of the 
vectors in Eq. (6) are random, then  
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and since the length is unity 
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Thus the more measurement channels we have the closer two points with random (non-physical) information will 
get to zero. A reasonable criterion for accepting the neighboring point as a point with similar physical information, 
and thus accepting the presence of physical information at that frequency, could be by introducing a threshold 
level  and the requirement 1Ω
 

11 Ω≥d        (10) 
 
setting the limit  equal to a number  times the standard deviation of the correlation for random vectors as 
given by Eq. (9) 

1Ω n

 

mNn /1 =Ω        (11) 
 
where n  could be chosen in the region 3-5.  This criterion is strongly dependent upon the numbers of measured 
channels , if we choose  andmN 3=n 16=mN , then 75.01 =Ω , if 10=mN , then . Thus for 
channel counts lower than say 16, the criterion becomes of less value using only correlation between two points. 
In this case several points on each side of the peak can be combined to calculate the correlation between the 
considered peak point and a set of neighboring points increasing the effective value of  correspondingly. 

95.01 =Ω

mN
 
Once a peak has been accepted as representing modal information, another discriminator function can be helpful 
in discriminating between different modes. In this case the discriminator function is defined as 
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Figure 1. Illustration of the definition of the modal domain for of a considered mode. The top picture shows the 
modal decomposition using the SVD of the spectral density matrix. Bottom picture shows how the modal domain 
is defined by the part of the discriminator function 22 Ω≥d . 
 
 
 

 
Figure 2. Example of modal discrimination. Top: SVD of two closely spaced modes measured in two channels. 
Middle: modal coherence function , bottom: modal domain function  1d 2d
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hus this discriminator function is not a function of the initial point given by the frequency , but is a function of T 0f

the frequency f  of the considered neighboring point. If a high correlation is present over a certain frequency 
range around the considered peak it means that over that frequency range only that mode is dominating and 
introducing a similar criterion 
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efines a frequency range  around each peak of modal dominance called the modal domain, 

 value  the larg

d [ ]2010 ; ffff ∆−∆−
see Figure 1. The lower the er the size fff2Ω , 21 ∆+∆=∆  of the corresponding modal domain. 
An example of discriminator functio  are shown in Figure 
 

ns 2.  

troducing harmonic discrimination 
ractice is when harmonics are present in the signal. A harmonic is easily 

n efficient way to discriminate harmonics is by the statistical characteristics of the response in a narrow 
ifferent 
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One important problem often arising in p
confused with a modal peak if not special measures are taken to avoid mistakes. The reason is that a harmonic 
appear as a narrow peak in the spectral density functions, thus the peak will also be present in the singular 
values.  
 
A
frequency band around a harmonic peak. It is well known that the statistical properties of a harmonic are d
from the properties of a stochastic response. Due to the central limit theorem, and the fact that in practice a 
structure is loaded by many stochastically independent forces, the stochastic distribution of a modal respons
be close to Gaussian. Further, the distribution of a harmonic is different from Gaussian since it has two distinctive 
peaks where the distribution goes to infinity, see Bendat and Piersol [1], see Figure 3. This difference between 
stochastic and harmonic response was proposed as a basis for harmonic discrimination in Brincker et al [5]. 
 

 
Figure 3. Normalized PDF of the response of a pure structural mode (left) and pure harmonic component (r

 Jacobsen et al [6] it is shown how to use the kurtosis to discriminate between modal peaks and harmonic 

ight) 
 
 
In
peaks. The kurtosis γ of a stochastic variable x provides a way of expressing how peaked or how flat the 
probability density function of x is. The kurtosis is defined as the fourth central moment of the stochastic variable x 
normalized with respect to the standard deviation σ as follows  
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Often the number 3 is subtracted from equation (1) as this gives a kurtosis of zero, when x follows as normal 
distribution   

( ) ( ) 3,,* −= σµγσµγ xx       (15) 

 
Using Eq. (15), a PDF with a positive kurtosis is said to be leptokurtic. If its kurtosis is negative, it is said to be 
platykurtic. A PDF with kurtosis equal to zero is called mesokurtic. Leptokurtosis is associated with PDFs that are 
simultaneously “peaked” and have “fat tails.” Platykurtosis is associated with PDFs that are simultaneously less 
peaked and have thinner tails. For the response of a pure structural mode, the PDF will be normally distributed, 
and hence the kurtosis γ* = 0 (mesokurtic). For a sinusoidal component γ* = -1½. This fact is used in the harmonic 
detection technique described further in Jacobsen et al [6]. Further in this paper it is described how the influence 
of harmonics can be removed from the measured response when the FDD is used for identification. 
 
FDD automated 
The search set includes all points on the first singular value plot that is within a predefined frequency band (as a 
special case the total frequency band of the vibration data) and is above a predefined excitation level. A 
procedure can be the following 
 

1. Identify a peak on the first SVD representing a maximum 
2. check if the peak is likely to be physical 
3. If so, establish the modal domain 
4. If not define a noise domain around the peak 
5. Exclude the modal domain or noise domain from the search set 
6. Continue until the search set is empty, the peak is below the predefined excitation level, or a specified 

number of modes has been estimated 
 
The key point of the algorithm is point 2). As described earlier, it is essential at this point to include a criterion 
concerning the correlation between neighboring points as described by the modal coherence function . Also it 
is essential to be able to distinguish between a harmonic peak and a modal peak. Additional criteria can be based 
on for instance the size of the modal domain being larger than a certain value or the damping estimate being 
below a certain value. Calculating the damping it might be useful to isolate the modal coordinate by using the a 
modal filter as proposed by Zhang [7], thus the auto spectral density for the modal coordinate is calculated by 

1d
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And then the damping is extracted from the decay of the corresponding auto correlation function.  
 
When doing automated identification quite often we have a’priori information about what mode we are looking for. 
In this case we simply use the a’priori mode shape φ  in stead of  when calculating the modal coherence 

function .  
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If we are looking for a certain number of modes, we can take the modes that have the largest modal domain, or 
could take the modes that have the largest excitation level. 
 
For peak picking FDD we are satisfied when the peak is identified as a modal peak, and the corresponding mode 
shape vector is estimated. 
 
For enhanced FDD the following step is to estimate the auto correlation function for the modal coordinate as 
described above, see more information in Brincker et al [3],[4]. The correlation level Ω  used for estimation of the 



part of single degree of freedom bell function that is going to be used in the inverse Fourier transform can be 
equal to , or a different value for  can be used. Identifying the damping and natural frequency from the 
corresponding correlation function is easily automated, since a robust algorithm is based on excluding some 
points in the beginning of the correlation function and using only the function down to a certain decay level, for 
instance using from 0.95 down to 30 % of the envelope. 

2Ω Ω

 
 
Conclusions 
The proposed algorithms have been tested on different data. The conclusion is that the proposed technique is 
useful and robust and in many cases provides information similar to what can be achieved by manual interaction.  
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