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ABSTRACT 
In this paper addresses the problems of separating structural modes and harmonics 
arising from sinusoidal excitation. Though the problem is mostly know in 
mechanical engineering applications such as rotating machinery, some civil 
engineering applications experiences the same challenges. A robust and fast 
harmonic detection procedure is presented and illustrated on a civil engineering 
case. 
 
1 INTRODUCTION 
 

One of the major advantages of testing civil engineering structures compared to 
mechanical structures is that the ambient excitation nearly always is broad-banded 
and multiple input. This makes the response measurements obtained from such 
structures extremely suitable for all popular estimation algorithms in Operational 
Modal Analysis. They all rely on the assumptions that the input forces are derived 
from Gaussian white noise and are exciting in multiple points.  

Mechanical engineering structures such as engines and other structures having 
rational part tend to be much more difficult to handle for most algorithms, 
especially if the sinusoidal forces have more energy than the ambient excitation. In 
this case the structural modes typically are weakly excited and sometimes they are 
more or less drowning in the noise. To account for this the measurement systems 
used must a high measurement range to be able to catch the weak structural 
response and at the same time prevent clipping from the strong sinusoidal forces.  

However, even with good measurements system it is impossible to prevent the 
harmonics from the sinusoidal excitation to appear in the acquired data, which 
means that also the modal estimation algorithms must be able to handle the 
presence of harmonics. Further, it turns out that the presence of harmonics not only 
is limited to mechanical application, there is a range of cases where civil engineers 
have to face the harmonics presence as well. Large structures like gravity dams 



have rotating parts in terms of the turbines, production facilities in cement and 
mining industry have large rotating parts as well and bell towers exhibits sinusoidal 
excitation during ringing with the bells.  

In this paper, we will present a fast algorithm for detection of harmonics 
originating from sinusoidal excitation. The technique consists of two steps; first a 
fast search for potential harmonics is performed in frequency domain. In step two a 
statistical assessment of the potential harmonics is made to determine which in fact 
are harmonics. In the following, step 2 is described first running over all discrete 
frequencies between DC and the Nyquist frequency. After that we describe how to 
optimize the algorithm by the introduction of step 1. 

When the harmonics are detected, the information is fed to the modal estimation 
algorithm, enabling it to account for the harmonic presence. The harmonic 
detection approach will be demonstrated on a civil engineering case; A gravity 
dam.  
 
2 TESTING FOR HARMONICS AT SPECTRAL FREQUENCIES 
 
2.1 The Central Limit Theorem 
 

According to the central limit theorem the distribution of the response of a 
structural system subject to multiple random inputs will tend to a Gaussian 
distribution as the number of independent input goes to infinity.  

If the distribution of the different inputs have a bell shaped distribution 
indicating that most amplitudes will be close to their mean value, which is typical 
for wind and wave loading, then only a few number of inputs are necessary for the 
response to become approximately Gaussian. However, if the input on the other 
hand is dominates by amplitudes far from the mean value, which is the case of a 
sinusoidal excitation, then it takes much more inputs before the structural response 
will turn Gaussian, Wirsching et al. [1].  

Therefore, testing of the shape of Probability Density Function (PDF) of the 
measured response is an effective way to detect if a few sinusoidal excitation forces 
are presents. Especially, if the response is examined in narrow frequency intervals, 
it is possible to obtain information about which intervals that are dominated by 
harmonics and which are not. 
 
2.2 Testing PDF’s Shape using Kurtosis 
 

There are a numerous ways to test if sampled data has a specific PDF or not, like 
the Χ2-test, Papoulis [2], most in some ways based on the sampled mean value µ 
and the sampled standard deviation σ. Here, we will use the fact that the Kurtosis γ 
of a the ny × 1 dimensional vector y(t) of measured response, defined as 
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for Gaussian distributed data with zero mean value and unit variance, is equal to 3. 
The Kurtosis for a sinusoidal data with zero mean value, unit variance and a 
random phase is on the other hand always 1.5. 
 
2.3 The Basic Testing Algorithm 
 

In practice we have to be able to test the probability density function in several 
frequency intervals, characterized by their center frequency fj, and in several 
measurement channels yi(t), for i = 1 to ny. The output of the test algorithm should 
an indicator Hj, for j = 1 to nf.  Hj is a function of the center frequency fj, where j is 
all center frequencies we like to test between DC and the Nyquist frequency setting 
DC to j = 1 and the Nyquist frequency to j = nf. The indicator should be 1 at center 
frequencies where a harmonic is present and otherwise 0. 

The algorithm used here contains the following steps: 
 

1. Normalize each measurement channels yi(t) to zero-mean and unit variance 
using sampled mean and variance. 

2. For all center frequencies fj of interest, perform a narrow band-pass 
filtering around fj. 

3. Calculate the Kurtosis γij for the at fj band-pass filtered signal yi(t). 
4. For each center frequency fj calculate the median value mj of the Kurtosis γj 

over all measurement channels yi(t). This median is a robust measure for 
the mean value used to account for possible outliers due to noise etc. 

5. For each center frequency fj assess if mj deviates significantly from 3. If so 
set Hj equal to 1, and otherwise 0. 

 
This algorithm has been tested on a series of real data cases and proven efficient, 
Jacobsen et al. [3],[4].  
 
3 OPTIMIZING SEARCH FOR POSSIBLE HARMONICS 
 

The major drawback of the basic algorithm for harmonic detection is that it 
becomes rather time consuming in case of many measurement channels ny and 
when testing many frequencies nf. It would be desirable to find ways of reducing 
both ny and nf.  
 
3.1 Reducing the Number of Measurement Channels 
 

Since the spectral density matrix Gyy(f) of the measured response at some 
discrete frequency f typically consist of much more columns than there are modes 
participating at that frequency, many of the columns of are linear dependent upon 
each other resulting in a rank deficiency of the spectral matrices. For system with 
many measurement channels ny there is therefore typically a substantial amount of 
redundancy, indicating that it might not be necessary to actually Kurtosis test on all 
channels. The subset of channels we will test is called the Projection Channels in 
the following and the number of projection channels denoted np. 



In case of multiple testing using multiple setups, where a certain amount of 
sensors are kept at the same locations, while the rest are moved from one 
measurement setup to another, a good initial choice of projection channels is to 
choose them as the reference channels.  

The quality of this choice can be verified by applying the Singular Value 
Decomposition (SVD) to the spectral densities matrices Gyp(f),  
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where index y indicate the measurement vector y(t) and p the subset of channels 
selected as the projection channels. The matrices Gyp(f) and S both have dimension 
ny × np. S is diagonal matrix consisting of np singular values. 

By plotting the singular values for all the frequencies all modes in the projection 
channels will be revealed. If the last plotted singular value forms a horizontal line 
over the frequency band of interest, and if the other singular values display a good 
mode separation, then the choice is fine. If not then other and / or more projection 
channels should be included. 

If more projection channels are needed, the channels to look for should contain 
as much new information as possible about the system compared to the channels 
already selected. This evaluation can be performed using a simple analysis of the 
correlation coefficients between the difference measurement channels.  

Figure 3.1 display a poor choice of projection channels for a system, whereas 
figure 3.2 shows an appropriate choice. 
 
3.2 Reducing the Number of Frequencies Needed Check 
 

In figure 3.3 the singular values of the spectral densities of a system excited with 
a broad-banded excitation as well as a sinusoidal excitation. The natural frequency 
first mode appear at 354 Hz, and only the first singular value is significant larger 
that the rest at this frequency. This indicates that this particular mode is dominating 
at this particular frequency. On the other hand, at 374 Hz and even more clear at 
748 Hz a distinct narrow peak appear in several of the singular values. The peak at 
374 Hz indicates the rotational speed of the harmonic excitation and the 748 Hz is 
the first over harmonic originating from the same sinusoidal excitation source. That 
more than one singular value has a peak at these two frequencies indicates that 
several modes have been significantly excited at these frequencies compare to the 
surrounding frequencies.  

We will make use of this phenomenon that always happens in case of sinusoidal 
excitation, when the ambient excitation acting on a structure is much weaker. If the 
sinusoidal excitation is much weaker than the broad-banded ambient excitation, the 
sinusoidal excitation becomes negligible and does not affect the modal analysis 
algorithms. 
 If an abrupt change happens at the same frequency at least in two singular value 
lines, then we have detected a potential harmonic. This potential harmonics should 
then be tested using the basic algorithm described in section 2.3. In this way it is 
possible to limit the number of times that the Kurtosis needs to be checked. In the 
example in figure 3.3 it reduces the number of times from 1024 to 7 times. 



 There are several ways to test if there is an abrupt change on a curve, see e.g. 
Basseville et al. [4]. Here we apply a simple approach based on a median 
calculation.  

Given a sequence of positive and non-zero singular values Si,j of length ns, where 
index i is the singular value number and j the discrete frequency index, we 
construct the following normalized sequence Xi,j
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where k is a small number, say 2-5. If the median of the values Si,j-k to Si,j+k is equal 
to the value Si,j then Xi,j is 0 and otherwise Xi,j will be a non-zero value. Since the 
sequence is normalized using the median that is robust towards outliers, the result 
is that Xi,j will have significant values at the locations where the singular values 
have significant but narrow peaks. 

The algorithm used here contains the following steps: 
 

1. For each singular value Si,j calculate the sequences Xi,j for i = 1 to np and j = 
1 to ns. 

2. Calculate the sampled standard deviations of the sequences Xi,j. 
3. Check if some of the values of Xi,j exceeds a threshold of say 2-3 times the 

standard deviation of Xi,j.  
4. If, for a certain index j, more than one of the ns sequences Xi,j exceeds the 

threshold, then a potential harmonic has been detected at position j. 
5. Apply Kurtosis check described in section 2.3 at position j. 

 
In figure 3.4 the sequences Xi,j are shown for 3 singular values corresponding to the 
example shown in figure 3.3. The number of potential harmonics to check has been 
decreased to only 7. 

Once the harmonics have been detected they can easily be removed from any 
frequency domain based modal parameter estimation algorithm, see e.g. Jacobsen 
et al. [3],[4], Brincker et al. [6] and Andersen et al. [7]. 
 
4 EXAMPLE 
 
In the following the complete harmonic detection algorithm is tested on 
measurements of a Canadian gravity dam.  
 
4.1 Description of the gravity dam 
 
In figure 4.1 two pictures display the dam from both the low and high water level 
sides. The dam is 130 m long and 58 m high, and built in 1930. An ambient 
vibration test was conducted using 20 setups of 8 channels. In setup 8 channel 8 
was dead and was disabled from the analysis. A 3D accelerometer served as 
reference station mounted on the dam itself. Some part of the rock at both side of 



the dam was also measured. In figure 4.2 all measured degrees of freedom are 
presented on the test geometry used by the operational modal analysis software 
ARTeMIS Extractor. 

The measurements were conducted using an 8-channel measurement system for 
819 seconds. The sensors were Kinemetrics Episensors accelerometers of the 
forced balanced type. Due to the turbines running the measurements are affected by 
harmonics at every 2 Hz. 
 
4.2 The Analysis 
 

Since setup 8 only have 7 active channels the number of projection channels 
used in this analysis is 7. The 7 largest singular values of the spectral densities of 
all 20 setups were then averaged, and the harmonic detection described in section 
3.2 was applied using k = 2 in eq. (3). In step 3 of the algorithm, the threshold was 
set to 2 times the standard deviation of the sequence Xi,j. 

In figure 4.3 the results of the harmonic detection analysis are shown. All 
harmonics at 2 Hz intervals have been detected. The algorithm has mistakenly 
detected two harmonics at 19.5 Hz and 39 Hz. Taking the scatter of the SVD 
spectrum from the poor signal to noise ratio into account, it is a quite satisfactory 
results. 
 
5 CONLUSIONS 
 

In this paper, we have presented a fast algorithm for detection of harmonics from 
sinusoidal excitation. A statistical assessment algorithm of potential harmonics, 
based on evaluation of the Kurtosis of band pass filtered measurement, has been 
introduced. The speed of this algorithm has been optimized by applying a search 
algorithm that looks for abrupt changes in more than one singular value at a certain 
frequency, since this is a typical phenomenon in case of harmonics. This search 
algorithm typically increases the performance of the statistical assessment 
algorithm significantly. The harmonic detection approach has been demonstrated 
on measurements from a gravity dam.  
 
6. FIGURES 
 

 
Figure 3.1: 16 projection channels were chosen resulting in 16 singular values per 
frequency. All the lower singular values being completely horizontal indicates a 
substantial amount of redundant information at all frequencies. 



 

 
Figure 3.2: 6 projection channels were chosen resulting in only 6 singular values 
per frequency. Only the lowest singular values is significantly flat (horizontal) this 
indicates that 6 measurement channels are sufficient to contain all information 
about the system dynamics. 
 

 
Figure 3.3: Similar structure as in figure 3.3, but now also with harmonic 
excitation. The excitation is a single point shaker with a sinusoidal force at 374 Hz. 
Number of discrete frequencies between DC and the Nyquist is 1024. First, second 
and forth harmonic are clearly shown at 374 Hz, 748 Hz and 1496 Hz. 
 
 
 
 



 
Figure 3.4: Sequences Xi,j shown for 3 singular values (1,2 an 7) of the example 
shown in figure 3.3. Thresholds are exceeded in more than one singular value at 
frequencies 28 Hz, 372 Hz, 374 Hz, 376 Hz, 746 Hz, 748 Hz and 1496 Hz. 
 

  
Figure 4.1: The dam seen from low and high water level. 
 



 
Figure 4.2: All measured degrees of freedom of all 20 setups on the dam as well as 
the surrounding rock on both sides. The three dark arrows below point 4 is the 
reference station. 
 

 
Figure 4.3: Result of the harmonic detection analysis. All harmonics at 2 Hz 
intervals have been detected. The algorithm has mistakenly detected harmonics at 
19.5 Hz and 39 Hz. The harmonics are indicated with vertical lines at the harmonic 
frequencies. 
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