
Aalborg Universitet

Non-linear Interactive Storytelling

Bangsø, Olav; Jensen, Ole Guttorm; Jensen, Finn Verner; Andersen, Peter Bøgh; Kocka,
Tomas

Publication date:
2004

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Bangsø, O., Jensen, O. G., Jensen, F. V., Andersen, P. B., & Kocka, T. (2004). Non-linear Interactive
Storytelling. Paper presented at CGAIDE 2004 - International Conference on Computer Games :Artificial
Intelligence, Design and Education, Reading, United Kingdom.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: August 23, 2025

https://vbn.aau.dk/en/publications/1b442100-9c2e-11db-8ed6-000ea68e967b

NON-LINEAR INTERACTIVE STORYTELLING USING
OBJECT-ORIENTED BAYESIAN NETWORKS

Olav Bangsø1, Ole G. Jensen1, Finn V. Jensen1, Peter B. Andersen2, and Tomas Kocka3

1Department of Computer Science, Aalborg University,
Frederik Bajers Vej 7E, DK–9220 Aalborg Øst, Denmark,

E-mail: <bangsy| guttorm| fvj>@cs.aau.dk

2Department of Information and Media Studies, University ofAarhus,
Helsingforsgade 14, DK–8200 Aarhus N, Denmark,

E-mail: pba@imv.au.dk

3ADASTRA, s.r.o.,
Beneovská 10, 101 00 Praha 10, Czech Republic,

E-mail: tomas.kocka@adastracorp.com

KEYWORDS

Interactive narrative, interactive drama, object-oriented
Bayesian networks.

ABSTRACT

Narration and interaction are often viewed as contrary
properties in computer games. Games with a high degree
of interaction fail to provide a coherent narration and the
player’s interaction seldom has any direct impact on the
narrative. Games with a high degree of narration often tells
a linear story similar to books or movies with little room
for the player to interact. We proposenon-linear interac-
tive storytelling(NOLIST) as a first step towards develop-
ing games with a high degree of interaction and a coherent
narrative. The main idea is that the narrative is not fixed
from the beginning but instead constructed as the game
progresses based on the player’s interaction. We provide
a simple model that allows writers to specify a NOLIST as
a set ofactionswhich the game engine then combines to
create the narrative. Finally, we propose to develop a game
engine using Bayesian networks to model the probability of
the possible narratives that can be created from the actions,
and use this knowledge to create better narratives.

INTRODUCTION

Narration and interaction are often considered as two in-
compatible properties in computer games. This has lead to
the distinction between games of progression and games of
emergence [Juul, 2004]. Games of progression have been
compared to movies that stop at certain points to allow the
player to choose among a set of options which determine
how the narrative progresses from that point on. In these

games, narration is highly linear with limited player inter-
action, so playing the game more than once rarely provides
the player with a new gaming experience. Games of emer-
gence define a set of simple and deliberate rules which
when combined emerge into more complex patterns, and
thus motivate the player to develop more advanced strate-
gies for playing the game. The high level of player inter-
action is achieved at the expense of a coherent narrative.
Players rarely experience events later in the game as direct
consequences of earlier events, and much of the interaction
has no impact on the narrative [Mallon and Webb, 2000].

This paper proposesnon-linear interactive storytelling
(NOLIST) as a first step towards the development of games
with both a high degree of player interaction and a co-
herent narrative. The main idea is that the narrative is
not fixed from the outset, but instead constructed as the
game progresses. The outcome of events that occur in the
game whether caused by the player’s direct interaction or
by agents in the game world change the likelihood of past
events (not observed by the player) having occurred and
the probability that certain future events can occur. At any
point in the game, the narrative consists of the events ob-
served by the player. These events determine the probabil-
ity and possibility of different pasts and futures for the nar-
rative. The player’s interaction is restricted to events that
are consistent with the possible pasts and futures in order
to ensure a coherent narrative. As more events are observed
by the player, the set of possible pasts and futures narrows.
Consequently, the player’s choices become more and more
restricted as the game progresses until all the events of the
narrative are determined.

We propose a framework to develop NOLIST in com-
puter games. A NOLIST game engine specifies a set of
actions which are the building blocks of the narrative. An

action could, e.g., be a small movie clip, a sentence in a
dialog, or the description of an event. The game engine
maintains a model of the possible pasts and the possible fu-
tures for the narrative. The game is played in rounds, where
in each round the game engine first determines which ac-
tions are possible. These actions must be part of a possible
future and be consistent with a possible past. The player
then chooses one of them. The chosen action is played out
in the game and then part of the narrative. The chosen ac-
tion influences the possible pasts and futures for the nar-
rative. E.g., in a murder story the investigator (the player)
finds a smoking gun close to the spot where someone was
killed. This action influences the past by making it more
probable that the gun was used to kill the victim and less
probable that the victim was stabbed to death. In turn, all
suspects with access to the gun are more likely to be the
murderer. Changes to the possible pasts influence the pos-
sible futures. E.g., the suspects with access to the gun are
now more likely to try to conceal their actions and mislead
the investigator. The action also influences the possible fu-
tures directly. E.g., it is now more probable that a bullet
will be found in the victim’s body if it is examined. When
the game engine has determined how the chosen action in-
fluences the possible pasts and futures, a new round can
commence. Some actions are possible endings. The game
can only end immediately after the game engine has played
out such an action, however, this is not mandatory.

NOLIST is related to interactive drama. The narrative
engine, IDtension, calculates the set of all possible actions
of the characters based on the current state in the world
of the story and ranks them according to a user model for
their narrative effects [Szilas, 2003]. The NOLIST game
engine ensures consistency between past events observed
by the user and future events as well as prevents stories
with no endings. The narrative quality of stories is not con-
sidered in this paper, however, with NOLIST it is possible
to evaluate the narrative quality based on the probability of
the possible futures of each action. In Facade interactive
dramas are divided into beats and semi-autonomous agents
with a drama manager are used to choose among the pos-
sible beats [McKee, 1997, Mateas and Stern, 2003]. Each
beat has a tension value and beats are chosen to best fit the
Aristotelian story tension value arc. It is the responsibility
of the author to ensure that all states have possible beats.
In NOLIST atomic actions resemble beats, and the engine
ensures that the story never reach a state where no actions
are possible.

NON-LINEAR INTERACTIVE STORY-
TELLING (NOLIST)

A story is usually divided into a number of smaller parts,
we use the term chapter, but any subdivision is valid and
supported. The chapters are supposed to be read in se-
quence, so the first chapter begins the story while the last
chapter ends it. Before reading each chapter, the reader is
required to know about certain characters and events in the
story (those described in all chapters preceding this chap-

ter). Reading the chapters in any other order often makes
the story confusing and incoherent. We say that such a
story is linear because all the chapters must be read in a
specific order. In contrast, a non-linear story allows chap-
ters to be read in different orders and not all chapters have
to be read. We cannot expect a coherent narrative to re-
sult from any random order of chapters, so each chapter
has some prerequisites that must be satisfied by the preced-
ing chapters. E.g., to identify the murderer, a motive and
an opportunity must have been established. However, the
details of what the motive and opportunity are or how they
were established are not relevant and can be established by
different sequences of preceding chapters. Therefore, with
much fewer chapters a non-linear story can represent many
different linear stories. In a non-linear interactive story the
reader can influence the order of chapters.

We introduce actions as the building blocks of a non-
linear interactive story. Some actions are possible endings
(denoted by a suffix ’∗’). An action is characterized by its
content, prerequisites, and effects. Thecontentencapsu-
lates a set of actions, analogical to a chapter being divided
into sub-chapters. If the content is empty, then the action
is atomic. Theprerequisitesare the events that must have
occurred before the action can be performed and theeffects
are the events that occur as a result of performing the ac-
tion. An eventis a simple statement such asthe gun is the
murder weaponor if John has a motive it is not known. The
content of an action may encapsulate actions which in turn
encapsulate other actions. This leads to anaction hierarchy
such as the one illustrated in Figure 1. In the figure the ac-
tion Examine the crime sceneencapsulates the two actions
X found at crime sceneandY found at crime scene, both
of which are atomic actions (since their content is empty)
and possible endings (denoted by the ’∗’).

X found at crime scene∗

No evidence for a motive is known

X indicating motive is found

No evidence for a motive is known

Y indicating motive is found

Y found at crime scene∗

Prerequisites

Effects

Content

No evidence for a motive is known

Examine the crime scene

Figure 1: Action hierarchy forExamine the crime scene.

A non-linear interactive storyconsists of an action and
a past. Thepastis a set of events that is believed to hold at
a particular point in the narrative, and only actions whose
prerequisites are satisfied by the past can be performed.
Whenever an action is performed, the past is changed to
reflect the effects of that action.

An Example of a Non-Linear Interactive Story

To help illustrate non-linear interactive stories and actions
we provide an example. The example is a murder story
where the player takes the role of an investigator trying to
solve a murder case by investigating the crime scene and
interviewing the three suspects namedA, B, andC. Fig-
ure 2 depicts the action hierarchy for the murder story. At
the top level (1) is the Murder story action with a content of
five actions: Investigate the crime scene (1.1), InterviewA,
B, andC (1.2-1.4), and Reveal the murderer (1.5). Actions
at the lowest level are atomic.

The prerequisites and effects of the atomic actions are in
the appendix. The effects of all non-atomic actions in the
murder story are empty, and the prerequisites of any non-
atomic action is the disjunction of the prerequisites of the
actions in its content.

When the game begins, the past is initialized as follows:

No evidence for a motive is known
No evidence for an opportunity is known
It is not known who found the victim
It is not known ifA had a motive
It is not known ifB had a motive
It is not known ifC had a motive
It is not known ifA had an opportunity
It is not known ifB had an opportunity
It is not known ifC had an opportunity

In order to identify the murderer, the investigator must
establish a strong motive and a clear opportunity for at least
one of the suspects. Note that at this point, the game has
not decided who actually murdered the victim. This will be
determined as the game progresses based on the player’s
interaction with the game.

A Game Example using the Murder NOLIST

In this section we describe an example gaming session
using the murder story described in the previous section.
When using a NOLIST for a game, some actions are cho-
sen by the player or others by the game engine. In this
example, all non-atomic actions are chosen by the player
while the game engine chooses among the atomic actions.
Table 1 summarizes the gaming session.

The game begins at the top level of the action hierar-
chy, where only the Murder story action is available. To
perform this action, we must perform actions in its content
whose prerequisites are satisfied by the (initial) past until
a possible ending is performed. All actions at this level
of the action hierarchy are available except 1.5, and the
player chooses 1.1. Again, the player must choose among
the actions in the content of action 1.1, and chooses 1.1.1.

1 Murder story∗

1.1 Investigate the crime scene
1.1.1 Examine the victim∗

1.1.1.1 M found on victim∗

1.1.1.2 N found on victim∗

1.1.2 Examine the crime scene∗

1.1.2.1 X found at crime scene∗

1.1.2.2 Y found at crime scene∗

1.1.3 Ask who found the victim∗

1.1.3.1 A found the victim∗

1.1.3.2 B found the victim∗

1.1.3.3 C found the victim∗

1.2 InterviewA

1.2.1 Ask A aboutB∗

1.2.1.1 A indicates weak motive forB∗

1.2.1.2 A indicates vague opportunity forB∗

1.2.1.3 A andB have an alibi∗

1.2.2 Ask A aboutC∗

1.2.2.1 A indicates strong motive forC∗

1.2.2.2 A indicates vague opportunity forC∗

1.3 InterviewB

1.3.1 Ask B aboutA∗

1.3.1.1 B indicates weak motive forA∗

1.3.1.2 B indicates clear opportunity forA∗

1.3.2 Present evidence toB∗

1.3.2.1 B acknowledges clear opportunity∗

1.3.3 Ask B aboutC∗

1.3.3.1 B indicates weak motive forC∗

1.3.3.2 B indicates clear opportunity forC∗

1.3.3.3 B andC have an alibi∗

1.4 InterviewC

1.4.1 Ask C aboutA∗

1.4.1.1 C provides evidence indicating motive∗

1.4.1.2 C indicates strong motive forA∗

1.4.1.3 C indicates vague opportunity forA∗

1.4.2 Ask C aboutB∗

1.4.2.1 C indicates weak motive forB∗

1.4.2.2 C indicates clear opportunity forB∗

1.5 Reveal the murderer∗

1.5.1 A is the murderer∗

1.5.2 B is the murderer∗

1.5.3 C is the murderer∗

Figure 2: Action hierarchy for the murder story. Actions
marked with∗ are possible endings.

P: 1 Murder story
P: 1.1 Investigate the crime scene
P: 1.1.1 Examine the victim
G: 1.1.1.2 N found on victim
P: 1.1.2 Examine the crime scene
G: 1.1.2.1 X found at crime scene
P: 1.1.3 Ask who found the victim
G: 1.1.3.1 A found the victim
P: 1.2 InterviewA

P: 1.2.2 Ask A aboutC
G: 1.2.2.2 A indicates vague opportunity forC
G: 1.2.2.1 A indicates strong motive forC
P: 1.3 InterviewB

P: 1.3.3 Ask B aboutC
G: 1.3.3.3 B andC have an alibi
P: 1.3.1 Ask B aboutA
G: 1.3.1.1 B indicates weak motive forA
G: 1.3.1.2 B indicates clear opportunity forA
P: 1.4 InterviewC

P: 1.4.1 Ask C aboutA
G: 1.4.1.2 C indicates strong motive forA
P: 1.5 Reveal the murderer
G: 1.5.1 A is the murderer

Table 1: An example gaming session of the murder story.

The contents of action 1.1.1 contains two atomic actions
both with satisfied prerequisites. The game engine chooses
among atomic actions and performs 1.1.1.2. The action
is performed immediately (since it is atomic) and its ef-
fects update our belief in which events occurred in the past
by replacing the statementNo evidence for an opportunity
is knownwith N indicating opportunity is found. Since
1.1.1.2 is a possible ending, the enclosed action (1.1.1) can
be completed. Action 1.1.1 is also a possible ending, so the
player may choose to complete action 1.1 as well. How-
ever, the player chooses to complete the two remaining ac-
tions in its content instead before completing action 1.1. At
this point, the player chooses to interviewA and establish a
vague opportunity forC to commit the murder and a strong
motive. The player now questionsB aboutC hoping to es-
tablish a clear opportunity forC and thus revealC as the
murderer (action 1.3.3). The game engine has two atomic
actions with satisfied prerequisites to choose from: 1.3.3.2
and 1.3.3.3. Either a clear opportunity is established forC
or B provides an alibi for bothB andC. In the example,
the game engine selects the latter atomic action. Conse-
quently, neitherB norC are likely suspects, and the player
starts to question them aboutA (who apparently tried to
frameC). This line of questioning leads to a strong mo-
tive and a clear opportunity forA, andA is finally revealed
as the murderer by action 1.5.1. This action is a possible
ending and action 1.5 can now be completed. Action 1.5 is
also a possible ending, so the top level action can finally be
completed, and the game ends.

In the example we did not specifyhowthe game engine
chooses which atomic story part to play next. Satisfaction
of the prerequisites of an atomic story part is not sufficient
to ensure a coherent and interesting story. E.g., in the mur-

der story it is entirely possible for more than one suspect
to be the murderer or for all suspects to have an alibi. In
the latter case, the prerequisites for the chapter marked as
an ending will never be satisfied, so the story continues in-
definitely. In the former case, only one of the suspects will
be revealed before the story ends. To avoid such inconsis-
tent stories, the game engine has to consider the possible
futures for each of the atomic story parts to be played next.
Only atomic story parts with acceptable futures and sat-
isfied prerequisites can be played next. E.g., in the murder
story, atomic story parts leading to everyone having an alibi
or more than one suspect having a clear opportunity and a
strong motive will never be played. As a consequence some
actions may become unavailable to the player although they
are associated with atomic story parts with satisfied prereq-
uisites.

By evaluating the stories produced by the possible fu-
tures for an atomic story part, the game engine can avoid
the least interesting stories. E.g., in round six of the murder
story the game engine could have selected the atomic story
part with the narrative:B indicates clear opportunity forC
if evidence is known. This leads toC being the murderer.
However, since all evidence points towardsC from the be-
ginning, the story is a trivial detective story. Clearly, what
constitutes an interesting story varies a lot between genres.
However, we believe that writers often have a fairly clear
idea about how their own story should develop and that this
can be modeled, at least in part, by considering how the past
develops.

In the example we have only considered which atomic
story parts are possible after each round of the game. In
general, we would also like to know how probable they are.
A story where all atomic story parts played are highly im-
probable might be fun to read but can easily become con-
fusing and incoherent. Similarly, playing only the most
probable atomic story parts produces a predicable and most
likely boring story. Knowing the probability of each possi-
ble future helps the game engine to progress the story ac-
cording to the stated intentions of the writer.

In the next section we introduce Bayesian networks for
as they seem fit for modeling a NOLIST game engine that
considers the probability of possible futures and avoids the
pitfalls of stories without endings.

BAYESIAN NETWORKS

A Bayesian network is a graphical structure, which
is used to represent cause-effect relations in a domain
([Pearl, 1988] and [Jensen, 2001]). In particular, they are
widely used in domains with uncertainty attached to the
impact of a cause. For example, if a investigator asks a sus-
pect where he was at the time of the crime, the fact whether
the suspect is guilty of the crime has a causal impact on the
answer. However, even if the suspect was not at the crime
scene at the time of the crime (and not guilty), you cannot
be sure that he will tell the truth.

A Bayesian network consists of a structural part and a
quantitative part. The structural part is a directed acyclic

graph (DAG), where nodes represent particular events, and
the directed links represent cause-effect relations. A node
has a finite set of states representing possibilities for this
event. In Figure 3 the situation above is represented.

Figure 3: A DAG representing the situation where a inves-
tigator asks a suspect of his whereabouts at the time of the
crime.

The node Actual represents the suspect’s possible
whereabouts, and it may have the stateshome, crime scene,
mistress,andwork. The nodeGuilty has the statesyesand
no, and the nodeAnswerhas the same states asActualplus
the stateno answer. We refer to the relations in a DAG
using family terms. For example,Actual is a parent ofAn-
swer, andAnsweris a child ofGuilty.

The strength of the cause-effect relations is represented
through conditional probabilities. For each node you have
to specify a probability distribution for its states given all
possible configurations of its parent nodes. For the model
in Figure 3 you for example specify the probability distri-
bution forAnswergivenActual= homeandGuilty=no. This
could be

P (Answer|Actual = home, Guilty = no) =

(0.1, 0.1, 0.2, 0.3, 0.3)

You have to specify eight distributions of that kind. Fur-
thermore, you also have to specify (prior) distributions for
ActualandGuilty.

When Bayesian networks are used they are more com-
plicated than the example in Figure 3. Figure 6 shows a
slightly more complex model.

Basically, Bayesian networks are used to determine new
probabilities given evidence. For example, when you know
the answer of the question it is inserted in the network and
used to determine the posterior probabilities forActualand
Guilty.

Object-Oriented Bayesian Networks

We utilize an extension to Bayesian networks
called Object Oriented Bayesian Networks (OOBN)
[Koller and Pfeffer, 1997, Bangsø and Wuillemin, 2000].
In the object oriented paradigm the basic component is an
object; an entity with identity, state and behavior. Objects
are grouped into classes. A class which is a description
of a set of objects with the same structure, behavior and
attributes. Whenever an object of a class is needed, an
instance of that class is created. Note that each instance
has a unique encapsulating class, the class in which they
are instantiated.

A class is a Bayesian network fragment containing three
sets of nodes:

• O: the set of output nodes; nodes that can be parents
of nodes outside instances of the class.

• I: the set of input nodes; represents nodes that are
not in the class, but are used as parents of nodes inside
instances of the class. Input nodes cannot have parents
in the class.

• P : the set of protected nodes; nodes that can only have
parents and children inside the class.

The input and output nodes constitute theinterface; the
part of instances of a class that interfaces with the surround-
ings of the instance.

When an instance of a class is created, it can be linked
to the rest of the network through the interface. To be able
to do this linking a new type of link needs to be defined;
the reference link. The child node in a reference link must
be an input node and the parent is the node which is used
as parent of the children of the input node, the parent and
child must have the same number of states.

To allow the presence of input nodes without a parent,
a default potential is introduced; a probability distribution
over the states of the input node, used to create a regular
node if the input node is not a child in a reference link. It
is worth noting that the interface nodes are part of both the
instance where they are defined and the class encapsulating
that instance. This means that links from output nodes of
an instance to nodes not in that instance (be it nodes in
the encapsulating class or input nodes of other instances in
the encapsulating class) are part of the specification for the
encapsulating class.

By construction, instances of classes are inside a unique
encapsulating class, ensuring that a tree of instances can be
constructed. We will call such a tree an Instance Tree (IT).
This tree will have the encapsulating class as the root, and
each instance inside this class will define a sub tree with
that instance as the root, and so on.

CREATING AN OOBN FOR A NOLIST

The specification of a NOLIST can be used to make a trans-
lation of the story into an OOBN. This OOBN will be used
to choose actions for the game engine. The translation can
be done automatically by letting :

• Prerequisites and effects for actions be variables.

• Actions be classes where the prerequisites are input
nodes and the effects are output nodes.

• The action hierarchy be reflected in the IT.

In the following the translation will be outlined, and
some problems and their solution described.

Atomic Actions

A class for an atomic action will consist of the prerequisites
as input nodes and the effects as output nodes.

A class for one of the atomic actions under the “Exam-
ine the crime scene” action can be seen in Figure 4.e m
is the event modeling what evidence on motive has been
found, it has the statesno evidence, M, andN. This event is
both a prerequisite and an effect, so it is present as both an
input node (the name is prefixed withi) and an output node
(prefixed witho . We need another event stating whether
the prerequisites are fulfilled or not, modeled by the node
Prereq. As we will show later, this will be used by the en-
capsulating action class to determine if the atomic action
can be performed or not, so this must be an output of the
atomic action class.

Figure 4: A class for the atomic action “M found on the vic-
tim” The special event output nodePrereqhas two states;
yesandno for implying that the prerequisites for the atomic
story are fulfilled or not. i e m is the input prerequisite
event ando e m is the effect of the atomic story, and it is
an output node.

Non-Atomic Actions

The representation of Non-atomic actions must ensure that
any possible action it contains (called sub-actions) can be
performed and also that sub-actions are performed until an
end action has been performed. When and end sub-action
has been performed, sub-actions can still be performed, as
long as the last sub-action performed in the action is an end
action. To handle this we make a representation of an ac-
tion that will perform one of the possible sub-actions and
make a several instances of it to perform several of the sub-
actions. In the murder story all atomic actions are marked
as endings of the action they are in, but several atomic ac-
tions can be performed in sequence, e.g. P4 “AskA about
C, whereA first indicates a vague opportunity forC and
then indicates a strong motive forC.

A Non-atomic action class has to make sure that one and
only of its sub-actions is performed in each instance and
that only possible sub-actions can be performed. This is
done by using an instance of each sub-action class, i.e., the
class representing the sub-action, an instance of the con-
straint class in Figure 5 for each sub-action. Evidence will
be entered in theOk nodes to make sure that only legal
sub-actions can be performed. To ensure that at most one
sub-action is performed, a variable with a state for each

Figure 5: The constraint class that is instantiated once for
each sub-action of an action

sub-action and one for nothing happening is created, and a
variable for each sub-action monitoring if that sub-action
can be performed created as a child of this.Sc is the vari-
able describing possible sub-actions, eachChoosablevari-
able monitors if a sub-action is possible, they aretrue, if the
corresponding sub-actions is possible. Note thatSchas Sc
old as a parent, this is to ensure that if nothing happens in an
action instance, nothing will also happen in subsequent ac-
tion instances, of the current action. Also,nothing happen-
ing can only be occur if the last sub-action performed was
an end sub-action ornothing happening. Making sure that
an action ends with an end sub-action is done by introduc-
ing the variableEndwith two states,y andn as a child ofSc
and letting the conditional probability table be constructed
soEnd is in the statey if the sub-action performed inScis
an end sub-action andn otherwise, and entering evidence
ony in the last instance of the action class. Note that ifScis
in the statenothing happening, the last sub-action actually
performed was an end sub-action, sonothing happeningis
also an end. In Figure 6 the OOBN unfolded to a Bayesian
network for an action with two sub-actions, and one event,
e m, is shown, evidence will be entered in the twoOkvari-
ables to ensure that thechoosablevariables are onlytrue if
the prerequisites for the corresponding sub-action are met.

Figure 6: The part of an action class making sure that at
most one sub-action is performed, and that only possible
sub-actions can be performed. Note that the two atomic
actions are calledSch1.1andSch1.2.

Inputs and Outputs of an Action Class

All that is left for the action class is to make sure that the
appropriate variables are available for the sub-actions, and
that the past is updated according to the actions performed.
This is done by having the union of inputs and outputs of
the sub-actions as input to the action class, and the union of
the outputs of these as output. The input of the action class
ensures that any information that may be needed by a sub-
action is available. The output of an action class ensures
that any changes to events is available outside the action
class instances. As only one sub-actions are performed in
each instance, some of the events that can be changed may
not necessarily be changed. In order for the action class to
have the correct distributions in its outputs we need to know
what these events are before the sub-action is performed. In
Figure 7 a chapter class can be seen. Each output has the
corresponding input as a parent to make sure that if the sub-
action performed does not change the event, the events is
not changed. Furthermore each output has the choosable
variables corresponding to the sub-actions where they may
be changed as parents, and the appropriate output of those
sub-action instances are also parents. We have used parent
divorcing to simplify the conditional probability tables,but
as an example look ato e m, the output of the action class
for the evente m. It can be changed in sub-action 1.1 and
1.2 (Sch11 andSch12), sochoosable1 andchoosable2
are parents along with thee m outputs of these instances.
The conditional probability table ofo e m is the same asi
e m if none of thechoosablevariables are true, otherwise it
will be the same as thee m variable of the instance corre-
sponding to the one that is. The structure and the evidence
on theOkvariables ensures that at most onchoosablevari-
able can be true in each instance of the action class. Note
that the action class should be instantiated several times
where each output is is referenced by the corresponding in-
puts in the next instance.

Figure 7: An action class for an action with eight sub-
actions. The instances have not been expanded for
overview.

Note that the sub-actions may themselves be non-atomic
actions, and that the overall story will also be an action.

An OOBN for the example can be generated automatically
from the specification. We will call an OOBN generated in
this way a NOOBN.

FUTURE RESEARCH DIRECTIONS

The work presented in this paper is still preliminary and
subject to ongoing research. Given an NOOBN, we en-
vision a game engine that, whenever it has to choose an
action, ensures that the game generated will have an end-
ing, regardless of the players actions. It furthermore has to
ensure that the possible continuations of the game will be
interesting, and that two games will not be identical even
if the player always performs the same actions. There are
three problems in constructing this game engine:

1. Ensuring diversity of games.

2. Guaranteeing that the last action of the game is
marked as an ending of the game.

3. Generating interesting games.

Sampling the Actions

Whenever the game engine chooses an action it will start
by entering evidence on the actions already performed in
theScnodes of the NOOBN. We will then sample possible
continuations of the game to make it likely that we get dif-
ferent games, even if everything so far has been the same.
Sampling is done by starting with the first part and hence
the firstScvariable that hasn’t received evidence in this yet.
There are different ways this sampling can be done, one is
to incorporate the probability distribution in the variable by
weighting the possible states with their probability. We will
then sample the nextScvariable given the previous actions.
This however requires a propagation of the network as we
have evidence both before this point of the game (the pre-
vious actions) and later (we want all actions to end with
an action that is marked as an ending. We will continue to
sampleScvariables as long as we have not reached the end
of the overall action. We have reached the end if there are
no more unsampledScnodes. All theScnodes will now
be a complete game, with an ending. Note that we are also
sampling the player actions.

Rating the Game

When choosing the next action, we want to ensure that it
leads to interesting games. This requires a method of scor-
ing a game.

A simplistic approach is to associate a score value with
each atomic action. The measure the value of a story
we can either accumulate the values or compare the val-
ues to some distribution (such as the tension value arc in
[Mateas and Stern, 2003]. Such a simplistic approach will
not capture all the intricacies of a good game, e.g. in a mur-
der story it is usually good form to let the evidence point

strongly at one of the subjects, only to reveal that this sub-
ject could not have done the crime. Developing useful al-
gorithms to score games based on the narrative content and
other factors is a subject of future research.

Assuming games can be scored, the NOLIST game en-
gine facilitates the rating of each possible next action by
adding the weighting the score of each sampled game re-
sulting from that action with its probability. The next action
can then be chosen among the possible next actions based
on their rating. The chosen action is then performed and
the past updated by it effects, and the process is repeated
until the story ends.

REFERENCES

[Bangsø and Wuillemin, 2000] Bangsø, O. and Wuille-
min, P.-H. (2000). Top-down construction and repetitive
structures representation in Bayesian networks. InPro-
ceedings of the Thirteenth International FLAIRS Con-
ference, Florida, USA.

[Jensen, 2001] Jensen, F. V. (2001).Bayesian Networks
and Decision Graphs. Springer Verlag, New York.

[Juul, 2004] Juul, J. (2004).Half-real. Video games be-
tween real rules and fictional worlds. PhD thesis, IT-
Universitetet.

[Koller and Pfeffer, 1997] Koller, D. and Pfeffer, A.
(1997). Object-oriented Bayesian networks. In Geiger,
D. and Shenoy, P. P., editors,Proceedings of the Thir-
teenth Conference on Uncertainty in Artificial Intelli-
gence, pages 302–313, San Francisco. Morgan Kauf-
mann Publishers, San Francisco.

[Mallon and Webb, 2000] Mallon, B. and Webb, B.
(2000). Structure, causality, visibility, and interac-
tion: propositions for evaluating engagement in nar-
rative multimedia. International Journal of Human-
Computer Studies, 53:269–287.

[Mateas and Stern, 2003] Mateas, M. and Stern, A.
(2003). Facade: An experiment in building a fully-
realized interactive drama. InGame Developers Con-
ference.

[McKee, 1997] McKee, R. (1997). Story: Substance,
Structure, Style and The Principles of Screenwriting.
HarperCollins, New York.

[Pearl, 1988] Pearl, J. (1988).Probabilistic Reasoning in
Intelligent Systems: Networks of Plausible Inference.
Morgan Kaufmann Publishers.

[Szilas, 2003] Szilas, N. (2003). IDtension: a narrative en-
gine for interactive drama. In1st International Confer-
ence on Technologies for Interactive Digital Storytelling
and Entertainment (TIDSE 2003), March 24-26, 2003,
Darmstadt, Germany.

APPENDIX
In the following table each number defines an atomic ac-
tion. The last line of each entry contains the effects while
the remaining lines are the prerequisites.

1.1.1.1 No evidence for an opportunity is known
M indicating opportunity is found

1.1.1.2 No evidence for an opportunity is known
N indicating opportunity is found

1.1.2.1 No evidence for a motive is known
X indicating motive is found

1.1.2.2 No evidence for a motive is known
Y indicating motive is found

1.1.3.1 It is not known who found the victim
A found the victim,A had vague opportunity

1.1.3.2 It is not known who found the victim
B found the victim,B had vague opportunity

1.1.3.3 It is not known who found the victim
B found the victim,C had vague opportunity

1.2.1.1 It is not known ifB had a motive
B has a motive

1.2.1.2 It is not known ifB had an opportunity
B had vague opportunity

1.2.1.3 B had vague or clear opportunity
A had no opportunity,B had no opportunity

1.2.2.1 X indicating motive is found
C had strong motive

1.2.2.2 It is not known ifC had an opportunity
C had vague opportunity

1.3.1.1 It is not known ifA had a motive
A had weak motive

1.3.1.2 A had vague opportunity,
N indicating opportunity is found
A had clear opportunity

1.3.2.1 B had vague opportunity,M indicating oppor-
tunity is found, it is not known ifB had a motive
B had clear opportunity

1.3.3.1 It is not known ifC had a motive
C had weak motive

1.3.3.2 C had vague opportunity,
N indicating opportunity is found
C had clear opportunity

1.3.3.3 C had vague or clear opportunity
B had no opportunity,C had no opportunity

1.4.1.1 X indicating motive is not found
Y indicating motive is found

1.4.1.2 A had weak motive,
X indicating motive is found
A had strong motive

1.4.1.3 It is not known ifA had an opportunity
A had vague opportunity

1.4.2.1 It is not known ifB had a motive
B had weak motive

1.4.2.2 B had vague opportunity
B had clear motive

1.5.1.1 A had strong motive,A had clear opportunity

1.5.1.2 B had strong motive,B had clear opportunity

1.5.1.3 C had strong motive,C had clear opportunity

