
Aalborg Universitet

Algorithm-Architecture Affinity - Parallelism Changes the Picture

Abildgren, Rasmus; Šaramentovas, Aleksandras; Ruzgys, Paulius; Koch, Peter; Le Moullec,
Yannick

Publication date:
2007

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Abildgren, R., Šaramentovas, A., Ruzgys, P., Koch, P., & Le Moullec, Y. (2007). Algorithm-Architecture Affinity -
Parallelism Changes the Picture. Paper presented at DASIP 2007, Grenoble, France.
http://www.ecsi.org/sites/default/files/DASIP2007proceedings.pdf

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: August 23, 2025

https://vbn.aau.dk/en/publications/ed0e0530-3f43-11dc-912d-000ea68e967b
http://www.ecsi.org/sites/default/files/DASIP2007proceedings.pdf

Algorithm-Architecture Affinity

– Parallelism Changes the Picture

Rasmus Abildgren∗, Aleksandras Šaramentovas†, Paulius Ruzgys†, Peter Koch†, and Yannick Le Moullec†

∗Center for Embedded Software Systems(CISS) †Center for Software Define Radio (CSDR)

Aalborg University, Selma Lagerlöfs Vej 300, Aalborg University, Fredriks Bajers Vej 12,

DK-9220 Aalborg East, Denmark DK-9220 Aalborg East, Denmark

rab@es.aau.dk {aleksara,paulius,pk,ylm}@es.aau.dk

Abstract—Reducing the time-to-market factor is a challenge
for many embedded systems designers. In that respect, hardware-
software partitioning is a key issue which has been studied
during the last two decades. In this paper we present an
extension to recent works dealing with metrics for guiding the
hardware-software partitioning step. This extension builds upon
and complement our own work with metrics in the Design Trotter
project, and is combined with the affinity metric approach. We
show that the proposed extension improves the original affinity
metric in terms of parallelism detection, and thus can help
system designers to make wiser hardware-software partitioning
decisions, which in turn reduces the time-to-market factor.

I. INTRODUCTION

In order to achieve more advanced and faster services in

embedded systems, increasingly sophisticated algorithms are

used. To keep abreast with the increased need for processing

power, heterogeneous multiprocessor platforms are introduced,

which includes GPPs, DSPs and FPGAs.

Introducing this variety of processing elements (PEs), not

only increases the computational capacity of embedded sys-

tems but also adds various computational properties. To exploit

this increased capacity and properties, the designer needs

to find the best suited PEs for the different system func-

tionalities. By considering these facts together with all the

system constraints (Area, Time, Power, Price, Development

Time), it becomes a non-trivial task to decide how the system

functionality should be mapped on the architecture.

To handle this task system level design methodologies have

been developed, including structured design space exploration

(DSE). A suite of academic DSE frameworks, e.g. [1]–[3],

as well as commercial tools have been proposed, in order to

provide the design engineer with qualitative information for

partitioning.

Exploring the design space with optimising for different

constraints is known to be NP hard [4]. The DSE in these

frameworks is therefore carried out as heuristic simulations,

which still can be a time-consuming but necessary task for

state-of-the-art large scale products. Large companies can usu-

ally find these resources and keep up with their competitors.

However, small and medium enterprises (SMEs), which typ-

ically sell state-of-the-art products of much smaller volumes,

must also stay on the competitive edge. They are also restricted

by the time-to-market factor, and can also benefit from using

system level design methodologies (SLD) and tools. Unfortu-

nately, many SMEs can not afford tools and specialists like big

companies, and therefore have problems with changing their

design methodology into SLD methodology.

We have examined the design methodology of a high-

tech company in Denmark and found that the design space

exploration phase in their overall design trajectory is limited

in the sense that their partitioning depends on prior design,

designers intuition and experience, and in rare cases on ad hoc

analysis. Danish Technological Institute, a consulting company

helping many SMEs incorporating new research results, agrees

on that picture in most SMEs [5].

As a consequence of sticking to ad hoc design method-

ologies, SMEs development often run into situations where

redesigning part of the system is necessary and therefore

increases the time-to-market.

In this paper we propose an extension to the existing

affinity metric proposed in [6] for guiding the partitioning

of the system specification, and help making the DSE faster

and easier. The rest of the paper is organised as follows.

In section II, the existing affinity metric is presented and

examples for the need of an extension to the original metric are

shown. In section III the new proposed metric for parallelism is

presented. The benefits of the proposed parallelism metric are

illustrated in section IV by means of a Reed-Solomon decoder

case-study. Finally we conclude in section V.

II. AFFINITY METRIC

This section summarises the affinity metric proposed by D.

Sciuto et.al. in [6], [7], and argues for the need of an extension

of this metric. The affinity metric is designed to guide the

design partitioning of system specification between general

purpose processors, DSP processor, and FPGA/ASIC. The

metric consists of a triplet of values (AGPP , ADSP , AFPGA)

indicating the match between the processing elements and

the examined code. The individual values in the metric are

calculated based on 14 other metrics which are designed to

measure the source code for certain patterns highly correlated

with architectural properties. The measurement is a static

analysis of the source code and the metrics are defined as

ratios between lines with specific properties, e.g., the ratio

between lines with a condition and the total number of lines, or

defined as the number of assignment of a special type related

to the total number of assignments. The metrics measure

properties such as data types, Harvard architecture patterns,

MAC patterns, and bit manipulation.

To illustrate how the affinity metric works on a real life

example, we have applied it onto c-code (Fig 3) calculating a

matrix multiplication. The results of the different metrics are

shown in table I:

TABLE I
THE AFFINITY VALUE FOR THE MATRIX MULTIPLICATION ALGORITHM,

WHERE Axxxx INDICATES THE MATCH BETWEEN THE PROCESSING

ELEMENT TYPE AND THE CODE. 0 =NO MATCHING, 1 =PERFECT MATCH.

AGPP ADSP AFPGA

0.89 0.96 0.39

The normalised metric values indicate that the best archi-

tecture matching the algortihm is a DSP architecture, which

the designer could easily rely on. An in-depth analysis of the

code shows that besides the already extracted properties from

the affinity metric, a high degree of inherent parallelism is

present in the matrix multiplication algorithm. This is further

discussed in section III. A high degree of inherent parallelism

indicates that the algorithm is suited for parallel execution.

This is one property of a FPGA architecture, and the original

affinity metric does not consider it.

III. PARALLELISM METRIC

From the analysis of the matrix multiplication shown in

Fig 3, we see that the inherent parallelism of an algorithm is

an important parameter. Therefore it would be beneficial to

measure the degree of inherent parallelism in the algorithm

and use this in calculating the AFPGA value of the affinity

metric.

One of the first metrics considering the parallelism is

Amdahl’s speedup metric [8]. Here the potential execution

speedup of an algorithm is defined as the ratio between

the sequential execution, and the fully parallelised execution.

What determines the fully parallelised execution is the critical

path in the algorithm.

This is also the case for more recent parallelism metrics

e.g. [9], [10], so let us consider the critical path by looking at

precedence graphs.

Definition 1: Let G = (N,E) represent the precedence

graph of a method, m, where N represents the set of nodes

ni and E is the set of edges ei,j . A node ni can have a source

node and a destination node. If the node does not have a source

node, it is defined as a start node, and if the node does not

have a destination, it is a sink node. If a dependency between

two nodes; the parent node, ni and the child node, nj , exists,

it is connected with an edge ei,j . The node, nj , cannot execute

before it has obtained data from its parent(s).

Using definition 1, we can now express the critical path of

algorithm using the following definition:

Definition 2: The critical path, CP , is a set of

nodes nstart, . . . , ni, . . . , nsink and associated edges

estart,h, . . . , ei,j , . . . , ek,sink forming a path, p, from a start

node, nstart, to a sink node, nsink, for which the sum of

costs are a maximum:

CP = max cost({nstart, estart,h, nh, . . . , ni, ei,j , nj , . . .

. . . , nk, ek,sink, nsink}) (1)

A way to measure the inherent parallelism that uses the

critical path is the γ metric developed in our previous work

[9] which is defined as:

γ =
N

CP
(2)

where we consider the nodes to be atomic, meaning that N

represents the total number of operations in the precedence

graph.

The metric described in (2) expresses the level of inherent

parallelism of the algorithm by calculating the ratio between

the number of operations in the algorithm, and the number of

operations in the critical path. In this case, where we consider

all nodes as basic operations, N is equivalent with the total

number of nodes N . This metric is organised such that with

no inherent parallelism its gives the value 1. The metric value

increases along with the inherent parallelism.

The affinity metric [7] on the other hand is in comparison

a normalised measure, where zero indicates the worst match

and one indicates a perfect match between the algorithm and

the architectural property. Using the γ for expressing the

inherent parallelism will lead to non-comparable results. A

metric expressing the parallelism together with the affinity

metric should have the same normalised properties. To suit

these properties we can rewrite the γ metric into a normalised

metric:

γ′ = 1 −
CP

N
(3)

The affinity metric is based on textural analysis of the source

code and therefore does not refer to the number of operations,

critical path or any of the terms used above for γ and γ′.

Instead it operates with source lines which contain certain

patterns.

In order to cope with the parallelism measure inside this

source line based framework, we propose a new metric, θ,

inspired by the γ′ metric. θ is defined as:

θ = 1 −
SCP

Sm

(4)

where SCP is the number of source lines included in the

critical path and Sm is the total number of source lines in

the code. To emphasise the weight of the critical path, a loop

unrolling is need to be performed before measuring Sm and

SCP of the θ metric.

This way of expressing the parallelism is not equivalent

with γ′ since every source line in a high level language will

usually lead to more than one atomic operation. The danger

is that the number of atomic operations highly depends on

the programmers coding style. A compact code will result in

Fig. 1. Precedence graph of random 1 algorithm.

more operations per source line than a fragmented code with

many intermediated/temporary variables which come close to

one operation per code line. It is therefore impossible to obtain

the same precision, as the modified and normalised γ′ metric.

To examine their differences, extreme cases, i.e. a purely

sequential and a fully parallel execution as well as two random

cases have been considered. The two random execution graphs

are shown in Fig 1 and Fig 2. Comparing the γ′ metric and the

θ metric on these cases provides us with the results shown in

the four first lines of table II. We here consider N = 40 in the

precedence graphs, where a source line on average corresponds

to four nodes. The sequential execution gives, as expected, the

same result for both metrics i.e., 0. The fully parallel execution

however, gives a slightly different result for the two metrics,

γ′ = 0.975 and θ = 0.9. None of them reach the value 1 for a

full parallel execution, because of the way CP is defined. But

we notice that θ gives a lower score than the γ′ metric. This

is due to the smaller number of code lines compared with the

number of nodes, which influences the ratio. For the random

case there are larger differences (0.65 vs. 0.56) and (0.7 vs.

0.75).

TABLE II
DIFFERENCES BETWEEN THE γ′ AND θ METRIC.

γ′ θ

Sequential: 0 0
Parallel: 0.975 0.9

Random 1 0.65 0.56
Random 2 0.7 0.75

Matrix Multiplication: 0.999 0.989

Even though the θ metric and the γ′ metric do not give

similar results, θ still gives a good indication of the algorithms

affinity to a parallel architecture. Let us discuss this issue by

re-considering the matrix multiplication case given by:

C = AB (5)

Fig. 2. Precedence graph of random 2 algorithm.

int matrixMul(static int A[X*Y],

static int B[Y*Z],

static int C[X*Z])

{

int *p_a = &A[0] ;

int *p_b = &B[0] ;

int *p_c = &C[0] ;

int f ;

int i ;

int k ;

for (k = 0 ; k < Z ; k++)

{

p_a = &A[0] ; /* point to the beginning of array A */

for (i = 0 ; i < X; i++)

{

p_b = &B[k*Y] ; /* take next column */

*p_c = 0 ;

for (f = 0 ; f < Y; f++) /* do multiply */

*p_c += *p_a++ * *p_b++ ;

*p_c++ ;

}

}

return(&C[0]) ;

}

Fig. 3. Matrix multiplication example.

where C ∈ R
X×Z , A ∈ R

X×Y , B ∈ R
Y ×Z are matrixes

where X,Y,Z denotes the dimensions. Here the dimensions

are X = Y = Z = 10. The c-code taken from the DSPstone

project [11] is shown in Fig 3, and we see that the kernel of the

algorithm consists of multiplications, memory reads and writes

together with some indexing controls. A precedence graph of

the kernel of the algorithm is shown in Fig 4. The results of

the examination of the algorithm with the two metrics are also

shown in table II. From this we see that there is an insignificant

difference between the two metrics (i.e., 0.999 and 0.989),

which is due to the high number of nodes and unrolled source

lines. From these cases it appears that the newly proposed

metric θ serves its purpose of indicating parallelism.

Fig. 4. Precedence graph of the kernel of the matrix multiplication example.

TABLE III
THE ORIGINAL AFFINITY METRIC VALUES FOR GPP, DSP, AND FPGA

AND THE PROPOSED METRIC (FPGA&θ) FOR THE REED-SOLOMON

DECODER ALGORITHM. THE PERFORMANCE (LATENCY) OF THE

DIFFERENT ARCHITECTURES ARE ALSO SHOWN.

GPP DSP FPGA FPGA&θ

Affinity 0.717 0.795 0.205 0.806
Latency [µs] - 514 2278 244

IV. CASE STUDY

In this section we present a case study, which expresses

the benefits of the introduced metric, before selecting the

architecture for a Reed-Solomon decoder.

A. Reed-Solomon Decoder

Reed-Solomon codes are a forward error correction codes

used in many modern communication systems. The decoder is

able to detect and correct some bit errors which have occurred

doing the transmission. It is an algorithm which involves many

conditional branches in order to detect and repair errors.

The algorithm has been examined with the affinity metric,

and the results are shown in table III. The table shows

the original affinity metric values for GPP, DSP and FPGA

architectures and the affinity metric for FPGA with our new

extension (added as an extra parameter for FPGA metric

before normalisation as in [7]). We see that the Reed-Solomon

decoder has the highest score (0.795) on a DSP architecture

with the original affinity metric, however, the score for FPGA

architecture increases significantly (from 0.205 to 0.806) when

including our extension, and thereby gets the highest score.

To verify the results, the algorithm has been implemented

on a Analog Devices TigerSHARK ADSP-TS201 DSP and

a Xilinx Virtex II FPGA, in high-level languages (C and

Handel-C, respectively). The latency for decoding one block

was measured on both platforms. The FPGA implementation

was done in two steps: first, a version without exploiting the

parallelism, which corresponds to the original affinity metric

interpretation, and second, a version exploiting the inherent

parallelism. These latencies are also shown in table III.

Inspecting the results shows that the best performance is

obtained by the parallelised FPGA implementation, with a

latency of 244µs. We can then deduce that using the orig-

inal affinity value for FPGA in this case will not disclose

the architectures potential for the Reed-Solomon algorithm.

Without considering the parallelism, the designer would make

an inefficient partitioning choice.

Using the extended metric that we propose gives a better

indication of the affinity between algorithm and FPGA ar-

chitecture, thus helps the designer to make wiser partitioning

decisions.

V. CONCLUSION

In this paper we have proposed an extention of the affinity

metric [6], in order to improve the capability to measure

the algorithm-architecture affinity for FPGA. The extension

consists of a new metric derived from some of our previous

work [9]. This new metric provides a mean for measuring the

inherent parallelism of the algorithm inside the source code.

We have shown that adding this new metric to the original

affinity metric improves its score for FPGA matching.

REFERENCES

[1] C. Hylands, E. A. Lee, J. Liu, X. Liu, S. Neuendorffer, Y. Xiong,
Y. Zhao, and H. Zheng, “Overview of the ptolemy project,” Technical
memorandum ucb/erl m03/25, Department of Electrical Engineering and
Computer Science, University of California, Berkeley, California 94720,
July 2003.

[2] C. Erbas, A. D. Pimentel, M. Thompson, and S. Polstra, “A frame-
work for system-level modeling and simulation of embedded systems
architectures,” EURASIP Journal on Embedded Systems, 2007.

[3] J. Riihimäki, P. Kukkala, T. Kangas, M. Hännikäinen, and T. D.
Hämäläinen, “Interfacing uml 2.0 for multiprocessor system-on-chip
design flow,” in Proceedings of International Symposium on System-on-

Chip, November 2005, pp. 108 – 111.
[4] Z. Á. Mann and A. Orbán, “Optimization problems in system-level

synthesis,” in Proceedings of the 3rd Hungarian-Japanese Symposium

on Discrete Mathematics and Its Applications, 2003.
[5] T. S. Olesen, “Private conversation about Danish SMEs design method-

ologies,” August 2006.
[6] C. Brandolese, W. Fornaciari, L. Pomante, F. Salice, and D. Sciuto,

“Affinity-driven system design exploration for heterogeneous multipro-
cessor soc,” Computers, IEEE Transactions on, vol. 55, no. 5, pp. 508–
519, May 2006.

[7] D. Sciuto, F. Salice, L. Pomante, and W. Fornaciari, “Metrics for design
space exploration of heterogeneous multiprocessor embedded systems,”
in Hardware/Software Codesign, 2002. CODES 2002. Proceedings of

the Tenth International Symposium on, 6-8 May 2002, pp. 55–60.
[8] G. M. Amdahl, “Validity of the single processor approach to achieving

large scale computing capabilities,” in AFIPS spring joint computer

conference, 1967.
[9] Y. Le Moullec, N. Ben Amor, J-Ph. Diguet, M. Abid, and J-L. Philippe,

“Multi-granularity metrics for the era of strongly personalized SOCs,” in
Proceedings of the Design, Automation and Test in Europe Conference

and Exhibition, 2003.
[10] G. C. Sih and E. A. Lee, “A compile-time scheduling heuristic for

internocnection-constrained heterogenous processor architectures,” IEEE

Transactions on Parallel and Distributed Systems, vol. 6, no. 4, 1993.
[11] “DSP Stone,” 1995, http://www.ert.rwth-aachen.de/Projekte/Tools/

DSPSTONE/dspstone.html.

