

Aalborg Universitet

Adapting Bayes Network Structures to Non-stationary Domains

Nielsen, Søren Holbech; Nielsen, Thomas Dyhre

Published in:
International Journal of Approximate Reasoning

DOI (link to publication from Publisher):
doi:10.1016/j.ijar.2008.02.007

Publication date:
2008

Document Version
Early version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA):
Nielsen, S. H., & Nielsen, T. D. (2008). Adapting Bayes Network Structures to Non-stationary Domains.
International Journal of Approximate Reasoning, 49(2), 379-397. https://doi.org/doi:10.1016/j.ijar.2008.02.007

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: March 19, 2024

https://doi.org/doi:10.1016/j.ijar.2008.02.007
https://vbn.aau.dk/en/publications/2943aaf0-a713-11dc-9a5d-000ea68e967b
https://doi.org/doi:10.1016/j.ijar.2008.02.007

Adapting Bayes Network Structures to Non-stationary Domains

Søren Holbech Nielsen

Department of Computer Science

Aalborg University, Denmark

Thomas D. Nielsen

Department of Computer Science

Aalborg University, Denmark

Abstract

When an incremental structural learning method gradually modifies a Bayesian network
(BN) structure to fit a sequential stream of observations, we call the process structural
adaptation. Structural adaptation is useful when the learner is set to work in an unknown
environment, where a BN is gradually being constructed as observations of the environment
are made. Existing algorithms for incremental learning assume that the samples in the
database have been drawn from a single underlying distribution. In this paper we relax
this assumption, so that the underlying distribution can change during the sampling of the
database. The proposed method can thus be used in unknown environments, where it is not
even known whether the dynamics of the environment are stable. We state formal correctness
results for our method, and demonstrate its feasibility experimentally.

Keywords: Bayesian networks, learning, adaptation, non-stationary domains.

1 Introduction

Ever since Pearl (1988) published his seminal book on Bayesian networks (BNs), the formalism
has become a widespread tool for representing, eliciting, and discovering probabilistic relation-
ships. One area of research that has seen much activity is the area of structural learning of
BNs. Here probabilistic relationships for variables are discovered, or inferred, from a database
of observations of these variables (see e.g. (Heckerman, Geiger, and Chickering 1995)). One part
of this research area focuses on incremental structural learning, where observations are received
sequentially, and a BN structure is gradually constructed along the way without keeping all
observations in memory. A special case of incremental structural learning is structural adapta-
tion, where the incremental algorithm maintains one or more candidate structures and applies
changes to these structures as observations are received. This particular area of research has
received little attention, with the only results that we are aware of being (Buntine 1991; Lam
and Bacchus 1994; Lam 1998; Friedman and Goldszmidt 1997; Roure 2004).

A common characteristic of these results is that they all assume that the database of ob-
servations has been produced by a stationary stochastic process. That is, the ordering of the
observations in the database is inconsequential. However, many real life observable processes
cannot really be said to be invariant with respect to time: Mechanical mechanisms may sud-
denly fail, for instance, and non-observable effects may change abruptly. When human decision
makers are somehow involved in the data generating process, they are almost surely not fully de-
scribable by the observables and may change their behavior instantaneously. A simple example
of a situation in which it is unrealistic to expect a stationary generating process is an industrial
system, in which some component is exchanged for one of another make. Similarly, if the coach
of a soccer team changes the strategy of the team during a match, data on the play from after
the change would be distributed differently from the data representing the time before.

1

In this paper we relax the assumption on stationary data, opting instead at learning from data
which is only “approximately” stationary. More concretely, we assume that the data generating
process is piecewise stationary, as in the examples given above. Thus, we do not try to deal
with situations in which the data generating process changes gradually, as can happen when
machinery is slowly being worn down.1 Furthermore, we focus on domains in which the shifts
in distribution from one stationary period to the next is of a local nature (i.e. only a subset of
the probabilistic relationships among variables change as a shift takes place).

2 Preliminaries

To start off we present the definitions and terminology used in the remainder of the text. As a
general notational rule we use bold font to denote sets and vectors (V , c, etc.) and calligraphic
font to denote mathematical structures and compositions (B, G, etc.). Moreover, we shall use
upper case letters to denote random variables or sets of random variables (X, Y , V , etc.), and
lower case letters to denote specific states of these variables (x4, y′, c, etc.).

A BN B ≡ (G,Φ) over a set of discrete variables V consists of an acyclic directed graph
(traditionally abbreviated DAG) G, whose nodes are the variables in V , and a set of conditional
probability distributions Φ (which we abbreviate CPTs for “conditional probability table”). A
unique joint distribution PB over V is obtained by taking the product of all the CPTs in Φ.

For any graph G ≡ (V ,E ⊆ V ×V) we shall use X → Y to denote that there is an arc from
X to Y in G, i.e. the fact that (X,Y) ∈ E and (Y,X) /∈ E, and X − Y to denote that there is a
link between X and Y , {(X,Y), (Y,X)} ⊆ E. In addition to paG(X), we introduce the notation
chG(X), adjG(X), and deG(X) to mean the children, adjacents, and descendants of node X in
G, respectively. When G is obvious from the context we shall leave out the subscript.

Due to the construction of PB we are guaranteed that all dependencies inherent in PB can be
read directly from G using the d-separation criterion (Pearl 1988). The d-separation criterion
states that, if X and Y are d-separated by Z, then it holds that X is conditionally independent
of Y given Z in PB, or equivalently, if X is conditionally dependent of Y given Z in PB, then
X and Y are not d-separated by Z in G. In the remainder of the text, we use X⊥⊥GY | Z to
denote that X is d-separated from Y by Z in the DAG G, and X⊥⊥P Y | Z to denote that X
is conditionally independent of Y given Z in the distribution P . The d-separation criterion is
thus

X⊥⊥GY | Z ⇒ X⊥⊥PB
Y | Z, (1)

for any BN B ≡ (G,Φ). The set of all conditional independence statements that may be read
from a graph in this manner is referred to as that graph’s d-separation properties. We refer to
any two graphs over the same variables as being equivalent if they have the same d-separation
properties. Equivalence is obviously an equivalence relation.

For a DAG G, we define the pattern of G as the graph G∗ obtained from the skeleton of G
by directing links that participate in a v-structure2 in G in the direction dictated by G. Verma
and Pearl (1991) proved:

Theorem 1. Let G1 and G2 be DAGs over V . G1 is equivalent to G2 iff G∗1 = G∗2 .

This equivalence relation defines an equivalence class, and for any member G the class
is uniquely represented by the pattern G∗. Any graph G′ obtained from G∗ by directing the

1The changes in distribution of such data is of a continuous nature, and adaptation of networks would probably
be better accomplished by adjusting parameters in the net, rather than the structure itself.

2Two arcs X → Y and Z → Y in G constitute a v-structure if X and Z are non-adjacent in G.

2

remaining undirected links, without creating a directed cycle or a new v-structure, is then
equivalent to G. We say that G′ is a consistent extension of G∗. The partially directed graph
G∗∗ obtained from G∗, by directing undirected links as they appear in G whenever all consistent
extensions of G∗ agree on this direction, is called the completed pattern of G. G∗∗ is obviously a
unique representation of G’s equivalence class as well. Any arc in G∗∗ is called compelled in G.

Given any joint distribution P over V it is possible to construct a BN B such that P = PB

(Pearl 1988). A distribution P for which there is a BN BP ≡ (GP ,ΦP) such that PBP
= P and

for which
X⊥⊥P Y | Z ⇒ X⊥⊥GP

Y | Z (2)

holds, is called DAG faithful, and BP (and sometimes GP alone) is called a perfect map. DAG
faithful distributions are important, since if a data generating process is known to be DAG
faithful, then a perfect map can, in principle, be inferred from the data under the assumption
that the data is representative of the distribution.

For any probability distribution P over variables V and variable X ∈ V , we define a Markov
boundary of X (denoted by mbP (X)) to be a set Z ⊆ V \{X} such that X⊥⊥P V \(Z∪{X}) | Z
and this holds for no proper subset of Z. Pearl (1988) proved that if G is a perfect map of P
over V and X ∈ V , then the Markov boundary of X is unique and consists of X’s parents,
children, and children’s parents in G (denoted by mbG(X)).

3 The Adaptation Problem

We will work with sequences of observations that are samples from a piecewise DAG faithful
distribution, meaning that the sequence can be partitioned into sets such that each set is a
database sampled from a single DAG faithful distribution. Formally, let D = (v1, . . . ,vl) be
a data stream over variables V . We say that D is sampled from a piecewise DAG faithful
distribution (or simply that it is a piecewise DAG faithful sequence) if there are indices 1 =
i1 < · · · < im+1 = l + 1, such that each Dj ≡ (vij , . . . ,vij+1−1), for 1 ≤ j ≤ m, is a sequence
of samples from a single DAG faithful distribution. The rank of the sequence is the size of the
smallest such partition, i.e. minj ij+1 − ij , and we say that m is its size and l its length. A pair
of consecutive samples, vi and vi+1, constitute a shift in D, if there is j such that vi ∈ Dj and
vi+1 ∈ Dj+1. Obviously, by selecting the partitions small enough we can have any sequence of
observations being indistinguishable from a piecewise DAG faithful sequence, so we restrict our
attention to sequences that are piecewise DAG faithful of at least rank r. However, we do not
assume that neither the actual rank nor size of the sequences are known, and specifically we do
not assume that the indices i1, . . . , im+1 are known.

The learning task that we address consists of incrementally learning a BN, while receiving a
piecewise DAG faithful sequence of samples, and making sure that after each sample point the
BN structure is as close as possible to the distribution that generated this point. Throughout
the paper we assume that each sample is complete, so that no observations in the sequence have
missing values. Formally, let D be a complete piecewise DAG faithful sample sequence of length
l, and let Pi be the distribution generating sample point vi. Furthermore, let B1, . . . ,Bl be the
BNs found by a structural adaptation method M when receiving D. Given a distance measure
dist on BNs, we define the deviance of M on D wrt dist as

dev(M,D) ≡
1

l

l
∑

i=1

dist(BPi
,Bi) .

3

We say that a method M adapts to D wrt dist if M seeks to minimize its deviance on D wrt
dist.

That a method aggressively adapts to a piecewise DAG faithful sample sequence might come
at a price: Every time the method learns a new BN different from the previous one, the user
of the learned BNs would have to inspect the new network and possibly replan accordingly.
Similarly, the computational resources used for learning a new network might be better used for
other purposes, if the newly learned BN is only marginally closer to representing the generating
distribution than the currently held one. Therefore, we introduce a measure capturing the
average improvement achieved by each new learned network: Given the distance measure dist
on BNs, we define the efficiency of M on D wrt dist as

eff(M,D) ≡
1

|{i : Bi 6= Bi−1}|

∑

i : Bi 6=Bi−1

(dist(BPi−1
,Bi−1)− dist(BPi

,Bi)) .

An efficiency close to zero would then mean that the method improves on the average — but
not much. A higher number would mean that the method improves more drastically when it
changes the net. A negative efficiency is an indication that on the average the method does more
wrong than good. Note, however, that efficiency in itself cannot be used to judge an adaptation
method, as the measure is nearly independent of how well the learned networks actually fit the
underlying distributions. For instance, a learning method that learns only once, at the reception
of the last observation (where the generating distribution has changed much) would have a good
chance of scoring a high efficiency, but clearly it is not a good method for adaptation. Conversely,
the perfect learner, which always output the correct network, would achieve a neutral score of
0. However, if two methods tend to yield comparable deviances, efficiency becomes a relevant
measure.3

4 A Structural Adaptation Method

The method proposed here continuously monitors the data stream D and evaluates whether the
last, say k, observations fit the current model. When this turns out not to be the case, we
conclude that a shift in D took place k observations ago. To adapt to the change, an immediate
approach could be to learn a new network from the last k cases. By following this approach,
however, we will unfortunately loose all the knowledge gained from cases before the last k
observations. This is a problem if some parts of the perfect maps of the two distributions on
each side of the shift do not differ, since in such situations we relearn those parts from the new
data, even though they have not changed. Not only is this a waste of computational effort, but
it can also be the case that the last k observations, while not directly contradicting these parts,
do not enforce them either, and consequently they are altered erroneously. Instead, we try to
detect where changes have taken place in the perfect maps of the two distributions, and only
learn these parts. This presents challenges not only in detection, but also in learning the changed
parts and combining them with the non-changed parts. Hence, the method consists of two main
mechanisms: One, monitoring the current BN while receiving observations and detecting when
and where the model should be changed, and two, relearning the parts of the model that conflicts
with the observations, and integrating the relearned parts with the remaining parts of the model.
These two mechanisms are described below in Sections 4.1 and 4.2, respectively.

3An anonymous reviewer has suggested to us that it may be interesting to split the efficiency measure into
two measures, representing the positive and negative contributions to the measure, and analyze these in isolation.
In particular, this could be informative in situations where e.g. a single negative term is dominating the measure.
Sadly, we have not had time to pursue this line of analysis in this paper.

4

4.1 Detecting Changes

The detection part of our method, outlined in Algorithm 1, continuously processes the cases
it receives. For each observation v and node X, the method measures (using ConflictMea-

sure(B, X, v)) how well v fits with the local structure of B around X. Based on the history
of measurements cX for node X, the method tests (using ShiftInStream(cX, k)) whether a
shift occurred k observations ago. k thus specifies the number of observations that are allowed
to “pass” before the method should realize that a shift has taken place. We therefore call the
parameter k the allowed delay of the method. Finally, when the actual detection has taken
place, the detection algorithm invokes the updating algorithm (UpdateNet(·)) with the set of
nodes for which ShiftInStream(·) detected a change, together with the last k observations.

Algorithm 1 Algorithm for BN adaption. The algorithm takes as input an initial network B,
defined over variables V , a data stream D, and an allowed delay k for detecting shifts in D.

1: procedure Adapt(B, V , D, k)
2: D′ ← []
3: cX ← [] (∀X ∈ V)
4: loop
5: v ←NextCase(D)
6: Append(D′, (v))
7: C ← ∅

8: for X ∈ V do
9: c←ConflictMeasure(B, X, v)

10: Append(cX , c)
11: if ShiftInStream(cX, k) then
12: C ← C ∪ {X}

13: D′ ←LastKEntries(D′, k)
14: if C 6= ∅ then
15: UpdateNet(B, C, D′)

To monitor how well each observation x ≡ (x1, . . . , xn) “fit” the current model B, and
especially the connections between a node Xi and the remaining nodes in B, we have followed
the approach of Jensen et al. (1990): If the current model is correct or is at least a good
predictor of future observations, then we would in general expect that the individual elements
of an observation v are positively correlated (unless v is a rare case, in which case all bets are
off):

log
PB(Xi = xi)

PB(Xi = xi|Xj = xj (∀j 6= i))
< 0 . (3)

Therefore, we let ConflictMeasure(B, Xi, v) return the value given on the left-hand side
of (3). Note that this is where the assumption of complete data comes into play: If v is not
completely observed, then (3) cannot be evaluated for all nodes Xi.

Since a high value returned by ConflictMeasure(·) for a node X could be caused by a
rare case, we cannot use that value directly for determining whether a shift has occurred. This
can easily be seen from the plot of values shown in Figure 1(a) in which only those following case
2725 should be considered “high”. So instead we look at the block of values from before the last
k cases, and compare them with the values from the last k cases. If there is a tendency towards
higher values in the latter, then we conclude that this cannot be caused by only rare cases, and
that a shift must have occurred. Specifically, for each variable X, ShiftInStream(cX, k) check

5

whether there is a significant increase in the values of the last k entries in cX relative to those
before that. In our implementation we first calculate the negative of the second discrete cosine
transform (DCT) component (see e.g. (Press et al. 2002)) of the last 2k measures c1, . . . , c2k in
cX :

C2 ≡

2k
∑

j=1

cj cos

(

π(j + 1

2
)

2k

)

.

An example of such values are plotted in Figure 1(b). The component calculated after reception
of each observation tells how much there is a tendency for the last 2k measures to be arranged
on a line with a positive slope. A high value therefore indicates that the last k cases are more
in conflict with the model than those from before these.

-4

-2

 0

 2

 4

 6

 8

 10

 12

 2500 2600 2700 2800 2900 3000
-4

-2

 0

 2

 4

 6

 8

 10

 12

C
on

f

Case

(a)

-40

-20

 0

 20

 40

 60

 80

 100

 2500 2600 2700 2800 2900 3000
-40

-20

 0

 20

 40

 60

 80

 100

D
C

T
(C

on
f)

Case

(b)

-2500

-2000

-1500

-1000

-500

 0

 500

 1000

 1500

 2000

 2500

 2500 2600 2700 2800 2900 3000
-2500

-2000

-1500

-1000

-500

 0

 500

 1000

 1500

 2000

 2500

D
C

T
(D

C
T

(C
on

f)
)

Case

(c)

Figure 1: A situation where a shift happens at observation 2725 as it is reflected in (a) the
conflict measure values, (b) the DCT-component of the last 200 conflict measure values, and (c)
the DCT-component of the last 100 DCT-components of the conflict measure values.

As can be seen from Figure 1(b), the DCT statistic tends to increase, when a shift occurs,
and then drop after a while. This is to be expected: As new data arrives, the conflict measures
of the old well-fitting observations will be pushed out of cX , and eventually the measures in cX

will no longer be arranged on a line with strictly positive slope. We wish to react exactly when
the DCT statistic starts to drop (around 2850 in the figure), since this means that the slope of
the conflict measures is maximal, and hence that the last k observations at this point are more
different from those before, than they would be at any other point. However, as can be seen
from the figure the curve of DCT statistics is not smooth, and we might be tricked into reacting
too soon. To ensure against this, we calculate the DCT-component of the last k DCT statistics,
as seen in Figure 1(c). When this meta statistic is at 0, it means that the last k DCT statistics
is approximately arranged on a line with slope 0. This should happen exactly k

2
observations

after the DCT statistic reaches its maximum and start to drop steadily. In the figure, this would
be a little before observation 2900.

We are unaware of any previous work using this technique for change point detection in
data streams, but we chose to use this as initial experiments showed that it outperformed more
traditional methods such as log-odds ratios (Nielsen and Jensen 2005) and t-tests (Press et al.
2002) in our setting.

Example 1 (A Simple Example): Consider the two BNs in Figures 2(a) and 2(b) and imagine
that the sequence of observations D consists of n1 observations sampled from B1 and n2 from
B2. When feeding D to Adapt(·) in Algorithm 1 starting with B = B1 and using a value of k
less than n1

2
and n2, the algorithm first constructs empty histories cA, . . . , cF and a list for the

last k cases D′, which is initially empty.

6

A B C

D E F

(a) B1

A B C

D E F

(b) B2

Figure 2: The two BNs we wish to adapt to in Examples 1 and 2.

After reading each case of D the algorithm computes the conflict measure for each variable,
and adds it to the corresponding history. After reception of the first 2k cases, the algorithm
starts testing if there appears to be a jump in the values in a history k cases back. When the
algorithm reads the k’th case of the part of D drawn from B2 a jump should be detected for
nodes A, C, and E, as each has gotten a new Markov boundary in B2, which we expect to
manifest itself in the values of the conflict measures.

Reacting to the detection, the algorithm tells UpdateNet(·) to update B around the nodes
in {A,B,C}, based on the last k cases, which at this point are all samples from B2.

4.2 Learning and Incorporating Changes

Algorithm 2 Update Algorithm for BN. Takes as input the network to be updated B, a set of
variables whose structural bindings may be wrong C, and data to learn from D′.

1: procedure UpdateNet(B, C, D′)
2: G← ∅

3: for X ∈ C do
4: GX ←LearnFragment(X, D′, G)
5: G← G ∪ {GX}

6: for X ∈ V \C do
7: GX ←ExtractFragment(X, B, G)
8: G← G ∪ {GX}

9: G′ ←MergeFragments(G)
10: (G′′,C′)←Direct(G′, B, C)
11: Φ′′ ← ∅

12: for X ∈ V do
13: if X ∈ C

′ then
14: Φ′′ ← Φ′′ ∪ {D′(X|paG′′(X))}a

15: else
16: Φ′′ ← Φ′′ ∪ {PB(X|paG′′(X))}

17: B ← (G′′,Φ′′)

aIn the implementation we used a Bayesian estimate rather than D
′

When a shift involving nodes C has been detected, UpdateNet(B, C, D′) in Algorithm 2
adapts the BN B around the nodes in C to fit the empirical distribution defined by the last k
cases D′ read from D. Throughout the text, both the cases and the empirical distribution will
be denoted D′. Since we want to reuse the knowledge encoded in B that has not been deemed

7

outdated by the detection part of the method, we will update B to fit D′ based on the assumption
that only nodes in C need updating of their probabilistic bindings (i.e. the structure associated
with their Markov boundaries in BD′). Ignoring most details for the moment, the updating
method in Algorithm 2 first runs through the nodes in C and learns a partially directed graph
fragment GX for each node X (GX can roughly be thought of as a “local completed pattern” for
X). When graph fragments have been constructed for all nodes in C, corresponding fragments
are extracted from the original graph of B for each of the nodes not in C. All of the fragments
are then merged into a single graph G′, which is directed using four direction rules that try to
preserve as much of B’s structure as possible, without violating the newly uncovered knowledge
represented by the learned graph fragments. Finally, new CPTs are constructed for those nodes
C

′ that have gotten a new parent set in BD′ (nodes which, ideally, should be a subset of C).
Before we describe the details related to fragment learning, extraction, and the merge and direct
operations, we illustrate the main workings of the algorithms with an example.

Example 2 (A Simple Example — Part II): Consider again the two BNs in Figures 2(a) and
2(b) and let us concentrate of the part of Example 1 where Adapt(·) has called UpdateNet(B,
{A,C,E}, D′) in Algorithm 2. Recall that D′ at this point consists of k observations from B2

and that B = B1.
UpdateNet(·) first learns fragments for A, C, and then E, which are shown in Figures 3(a)

to 3(c). These are all learned solely on the basis of the observations in D′. Following this,
fragments for B, D and F are extracted from B, and they are shown in Figures 3(d) to 3(f). Of
these fragments only GB and GE disagrees on a feature, namely the connection between B and
E. When the fragments are merged (into the graph in Figure 4(a)), the arc takes precedence
over the link, which will be further elaborated upon below. The algorithm ends by directing the
remaining links, as shown in Figure 4(b), in a manner described in more detail below.

A B C

D E F

(a) GA

A B C

D E F

(b) GC

A B C

D E F

(c) GE

A B C

D E F

(d) GB

A B C

D E F

(e) GD

A B C

D E F

(f) GF

Figure 3: Learned and extracted graph fragments matching B2.

More precisely, a graph fragment for a node X, is a partially directed graph were each link
and arc is connected to X. The fragment is intended to capture two aspects of the empirical
distribution D′: (1) The variables that can be rendered conditionally independent of X by
conditioning on some set of variables are nonadjacent to X, and (2) the neighboring variables
that, when added to such a conditioning set, reestablish the probabilistic connection with X

8

are the children of X. As we prove in (Nielsen and Nielsen 2007), having this knowledge for
each variable is sufficient to establish the equivalence class of BD′. This also means that an arc
in a fragment GX is compelled in the network produced by MergeFragments(·). A link, on
the other hand, only means that the corresponding nodes must be neighbors in the network.
Therefore, from the point of view of MergeFragments(·), two graph fragments GX and GY

are in disagreement only if either

• X and Y are nonadjacent in one fragment but adjacent in the other, or

• X and Y are connected by an arc X → Y in one fragment but X ← Y in the other.

As we shall see later, the construction of graph fragments guarantee that the constructed frag-
ments do not disagree in this manner.4

A B C

D E F

(a) G
′
2

A B C

D E F

(b) G2

Figure 4: (a) The merged graph fragments and (b) the fully directed version.

The actual algorithm for learning a fragment GX for a changed node X is given in Algo-
rithm 3. The algorithm consists of four main steps: In Line 2, the graph fragment is first
initialized to contain the arcs and links from previously uncovered graph fragments (see Algo-
rithm 4). Note that the connection between nodes Y and X can be found in at most one of
these previously uncovered fragments (viz GY), so the set of fragments trivially agrees on this
connection. As per the semantics just described, arcs incorporated in this way are there to stay,
but links can be turned into arcs if needed. If the previous fragments are all correct reflections
of the probabilistic bindings in D′, and this is indeed DAG faithful, then this first step should
simply save some independence tests. However, in case the assumptions are violated, this step
implies that fragments already learned have “precedence” over fragments learned later. In the
current implementation fragments for nodes are learned in lexicographical order. Second, in
Line 3, the Markov boundary of X in the empirical distribution D′ is determined, and together
with the nodes adjacent to X they constitute the nodes R that are relevant for constructing
GX . If the previously learned graph fragments reflect genuine probabilistic bindings in D′, we
should have that R coincides with the Markov boundary of X in D′. Third, in Lines 4 to 12,
the algorithm finds the variables S ⊆ R that can be separated from X in D′ by conditioning on
some subset of the variables in R, and the variables E

|X that establish connection from X to
a variable in S. Finally, in Lines 13 to 16, arcs are added to GX going from X to each node in
E

|X , and links are added between X and nodes in R \ (S ∪ E
|X). By studying the fragments

in Figures 3(a) to 3(c) it is clear that they reflect the probabilistic bindings in PB2
.

4Note that we cannot utilize established BN combination methods like that of (Del Sagrado and Moral 2003)
as both the syntax and the semantics of our graph fragments are different from those of BNs. Specifically, a
fragment GX need not be fully directed, a lack of an arc between two variables Y and Z different from X does
not signify anything, and an arc from X to a variable Y may be needed in the final network even if it does not
participate in a v-structure in GX nor is part of a path leading away from a v-structure.

9

Algorithm 3 Learns a graph fragment for a variable X consistent with B∗∗D′ and the fragments
in G.
1: procedure LearnFragment(X, D′, G)
2: (GX ≡ (V ,EX),N)←AlignWithOtherFragments(X, G)
3: R← adjGX

(X)∪MarkovBoundary(X, D′) . R holds relevant nodes
4: S ←N ∩R . S holds separable nodes
5: E

|X ← ∅ . E
|X holds dependency enabling nodes

6: for Y ∈ R \ adjGX
(X) do

7: for Z ⊆ R \ {Y } do
8: if ID′(X,Y |Z) then
9: S ← S ∪ {Y }

10: for Z ∈ R \ ({Y } ∪ S ∪Z ∪E
|X ∪ paGX

(X)) do
11: if ¬ID′(X,Y |Z ∪ {Z}) then
12: E

|X ← E
|X ∪ {Z}

13: for Y ∈ R \ S do
14: EX ← EX ∪ {(X,Y)} \ {(Y,X)}a

15: if Y /∈ E
|X then

16: EX ← EX ∪ {(Y,X)}

17: return (V ,EX)

aRecall that X → Y means (X, Y) ∈ E and (Y, X) /∈ E.

In our experimental implementation, we used the decision tree learning method of Frey
et al. (2003) to find the Markov boundary of a variable X, but this choice is not essential
to the workings of the method. However, both this method and LearnFragment(·) need an
“independence oracle” ID′ . For this we have used Pearson’s χ2 test on D′ (see e.g. (Press et al.
2002)).

In most constraint-based learning methods, only the direction of arcs participating in v-
structures are directly uncovered using independence tests, and structural rules are relied on
for directing the remaining links afterwards. For the proposed method it may happen, however,
that arcs that do not form v-structures in the completed pattern have to be directed through
independence tests, rather than through application of structural rules afterwards. The reason
is that traditional uncovering of the direction of arcs in a v-structure X → Y ← Z relies not
only on knowledge that X and Y are adjacent, and that X and Z are not, but also on the
knowledge that Y and Z are adjacent. At the point, where GX is learned, however, knowledge
of the connections among nodes adjacent to X is not known (and may be dictated by D′ or
B), so this traditional approach is not possible. Of course these unknown connections could be
uncovered from D′ using a constraint-based algorithm, but the entire point of the method is to
avoid learning the complete new network.

A graph fragment for a node X not in C is in principle the same as a learned fragment,
namely a specification of the variables that can be rendered conditionally independent of X
in the empirical distribution D′, by conditioning on some set of variables, and the nodes that
when added to such conditioning sets reestablish the probabilistic connection with X. But, as
we assume that the probabilistic bindings defined by D′ for nodes outside of C do not differ
from those encoded in B, we read these off the graph of B rather than establish them from
independence tests. This is done by ExtractFragment(·) in Algorithm 5. For a given node
X, the algorithm constructs a graph fragment in three steps: In Line 2, the graph fragment is

10

Algorithm 4 Initializes a graph fragment for a variable X, so that it is consistent with the
fragments in G.

1: procedure AlignWithOtherFragments(X, G)
2: N ← ∅ . Nonadjacent nodes
3: EX ← ∅

4: for GY ≡ (V ,EY) ∈ G do
5: if (Y,X) ∈ EY thena

6: EX ← EX ∪ {(Y,X)}
7: if (X,Y) ∈ EY then
8: EX ← EX ∪ {(X,Y)}

9: else
10: N ←N ∪ {Y }

11: return ((V ,EX),N)

aConnections in already established fragments GY can only be links or arcs out of Y .

Algorithm 5 Extracts a graph fragment for a variable X from B, consistent with the fragments
in G.
1: procedure ExtractFragment(X, B, G)
2: (GX ≡ (V ,EX),N)←AlignWithOtherFragments(X, G)
3: E

|X ← {Z ∈ chB(X) : ∃Y /∈ adjB(X) st Z ∈ chB(Y)}

4: E
|X ← E

|X ∪
⋃

Z∈E|X

(deB(Z) ∩ chB(X))

5: for Z ∈ adjB(X) \ (paGX
(X) ∪N) do

6: EX ← EX ∪ {(X,Z)} \ {(Z,X)}
7: if Z /∈ E

|X then
8: EX ← EX ∪ {(Z,X)}

9: return (V ,EX)

first initialized to be consistent with previously constructed graph fragments, in the same manner
as is the case for fragments that are learned. Notice that this means that learned fragments
have “precedence” over reused ones. However, if our assumption that nodes outside C have
not had their probabilistic bindings changed holds true, then the extracted fragments should be
identical to those that would have been learned had LearnFragment(·) been used instead of
ExtractFragment(·) — as we prove in (Nielsen and Nielsen 2007). In case the assumptions
do not hold, the choice of constructing fragments for changed nodes prior to extracting reusable
ones, is a choice of being progressive: Assume change when in doubt. A conservative attitude
could be obtained by swapping Lines 3 to 5 with Lines 6 to 8 in Algorithm 2.

After initialization of the graph fragment, ExtractFragment(·) identifies those children
of X in B where the arc from X to the child is either participating in a v-structure (Line 3), or
the child is a descendant of such a child (Line 4). These children are the ones that must remain
children in the adapted graph (as we prove in (Nielsen and Nielsen 2007)). Finally, in Lines 5
to 8, all relevant nodes adjacent to X in B are connected to X in GX with either a link or an
arc depending on the tests above, unless previously uncovered fragments dictate that the nodes
must be nonadjacent — something that can only happen if the previously uncovered fragment
was learned rather than extracted. The fragments in Figures 3(d) to 3(f) are all results of such
an analysis.

11

Algorithm 6 Merges a set G of graph fragments into a single graph.

1: procedure MergeFragments(G ≡ {GX}X∈V)
2: E ← ∅

3: for X ∈ V do
4: for Y ∈ adjGX

(X) do
5: if X /∈ chGY

(Y) then
6: E ← E ∪ {(Y,X)}

7: return (V ,E)

When graph fragments for all nodes in V have been constructed, they are merged through
a simple graph union with preference given to arcs over links in MergeFragments(·); no
conflicts among orientations of arcs can happen due to the construction of LearnFragment(·)
and ExtractFragment(·). Figure 4(a) show the result of merging the graph fragments in
Figures 3(a) to 3(f).

Following the merge, Direct(G′, B, C) directs the remaining links in G′ according to the
following four rules:

1. (No new v-structures) If X − Y is a link, Z → X is an arc, and Z and Y are nonadjacent,
then direct the link X − Y as X → Y .

2. (No directed cycles) If X − Y is a link and there is a directed path from X to Y , then
direct the link X − Y as X → Y .

3a (Try to preserve parent sets) If Rules 1 and 2 cannot be applied, chose a link X − Y at
random, such that X ∈ V \C, and direct it as in B.

3b (Direct randomly) If Rules 1 to 3a cannot be applied, chose a link at random, and direct
it randomly.

For the final graph in the example, shown in Figure 4(b), we have that both the arcs E → D
and E → F are directed using Rule 1, F → D and B → C are both directed using Rule 3a.

Due to potentially flawed statistical tests, the resultant graph may contain cycles each in-
volving at least one node in C. These are eliminated by reversing only arcs connecting to at
least one node in C. The reversal process resembles the one used in (Margaritis and Thrun
2000): We remove all arcs connecting to nodes in C that appears in at least one cycle. We order
the removed arcs according to how many cycles they appear in, and then insert them back in the
graph, starting with the arcs that appear in the least number of cycles, breaking ties arbitrarily.
When at some point the insertion of an arc gives rise to a cycle, we insert the arc as its reverse.

5 Formal Correctness

We have obtained a proof ensuring that under a set of assumptions our adaptation method is
“correct”, in the sense that when the underlying distribution generating the sequence of data
changes, the algorithm reacts and changes the current BN to accurately reflect the perfect
map of the new underlying distribution. The most important consequence of this result is
that it makes it clear what it means for these changes to be local, probabilistically speaking;
it therefore provides formal requirements on the circumstances which the heuristic for change
point detection must react to. The rigorous formal treatment including proofs is presented in
(Nielsen and Nielsen 2007), but we summarize the main results below.

12

First, we need a few definitions, on which the assumptions are based:

Definition 2. Let P be a DAG faithful probability distribution over variables V and X,Y ∈ V .
We say that a set M is a maximal separating set of Y from X wrt P if

• M ⊆ mbP (X) \ {Y },

• Y⊥⊥P X |M , and

• this holds for no X, where M (X ⊆ mbP (X) \ {Y }.

The set of all variables in V , for which a maximal separating set from X wrt P exists, we

denote by S
X
P (the intuition being “separable from”). For each Y in S

X
P , we denote by E

Y |X
P

the set of nodes Z ∈ mbP (X) for which there is at least one maximal separating set M of Y
from X wrt P , such that Z /∈M (“dependency enabling”).

The central notion that we have built our analysis on is a probabilistic one called similarity:

Definition 3. Let P1 and P2 both be DAG faithful probability distributions over variables V .
We say that P1 is similar to P2 on the variables I ⊆ V , if we have that

1. mbP1
(X) = mbP2

(X), for all X ∈ I, and

2. S
X
P1

= S
X
P2

, for all X ∈ I, and

3. E
Y |X
P1
\ S

X
P1

= E
Y |X
P2
\ S

X
P2

, for all X ∈ I and Y ∈ S
X
P1

.

Here Bullet 3 states that inseparable variables that enable dependencies between X and Y
must be the same in both P1 and P2. Note that similarity on a set of variables I is an equivalence
relation, and two distributions similar on a set of variables I are also similar on any subset of I.

The notion of similarity is crucial to our results as it turns out to be a locally sufficient and
necessary criteria for guaranteeing equivalence of perfect maps of two distributions:

Theorem 4. Let G1 and G2 be perfect maps of probability distributions P1 and P2 both defined
over variables V . Then P1 and P2 are similar on V iff G1 and G2 are equivalent.

That is, similarity is a necessary and sufficient local criteria for equivalence. A full proof of
this result and the main formal result stated next can be found in (Nielsen and Nielsen 2007);
space restrictions prevent us from presenting them here:

Theorem 5. Let BN B1 ≡ (G1,Φ1) and DAG faithful probability distributions P1 and P2 each
be defined over variables V . Moreover, let D be a DAG faithful sample sequence of size 2 and
rank r, where P1 is the distribution of the first sample and P2 is the distribution of the last
sample. Furthermore, let P1 be similar to P2 on I, and B2 ≡ (G2,Φ2) be the result of running
Algorithm 1 on B1 with cases D and some choice of k. If

1. G1 is equivalent to GP1
, and

2. r > k,5 and

3. ShiftInStream(·, k) is true for a variable X iff X /∈ I and the algorithm is currently
processing the k’th sample drawn from P2, and

5Note that Bullet 5 incorporates the traditional assumption on infinite data, and that Bullet 2 is only concerned
with ensuring that ShiftInStream(·) always has at least k cases from a new partition of D to detect the change.

13

4. MarkovBoundary(X, D′) returns mbP2
(X), if D′ consists of samples from P2, and

5. the oracle used in LearnFragment(·) is correct,

then G2 is equivalent to GP2
.

The theorem is important as it guarantees that when our method is started with a BN,
which is equivalent to the perfect map of some DAG faithful distribution P (Assumption 1 in
the theorem), then no matter how often P changes, as long as it remains DAG faithful, and
at least 2k observations6 are drawn from P between each change, then our method continues
to adapt B to fit the distribution, with a delay of k observations. Underlying this result are
four assumptions (in addition to the one described above): Assumption 2 states that any data
partition must contain at least k cases; this ensures that ShiftInStream(·) always has at least
k cases from a new partition of D to detect a change. Assumption 3 specifies that after a shift
has taken place, all relevant variables are identified after exactly k observation. At first this
assumption may seem rather restrictive, however, it is easy to see that it can be replaced by
the following weaker assumption: for a variable X we have that X /∈ I iff there is at least one
i ≥ k such that ShiftInStream(·, k) is true when the algorithm is processing the ith case
from P2. That i should be at least as big as k ensures that once we start learning a graph
fragment for X, the actual learning (Algorithm 3) is based on k cases from P2. Moreover, the
variables involved in a shift need not be identified as a set but can be found sequentially when
processing the cases (thus, the algorithm has some degree of robustness w.r.t. inaccuracies in
ShiftInStream). Assumption 4 requires the algorithm for finding the Markov boundary to be
sound and complete (see e.g. (Peña et al. 2005)), and Assumption 5 corresponds to the standard
assumption that the statistical tests are reliable (see e.g. (Spirtes et al. 1993)).

6 Experiments and Results

To investigate how our method behaves in practice, we ran a series of experiments with a fully
implemented version of the method. The purpose of the experiments was to examine if the
reasoning motivating the construction of our algorithm in Section 4 is sound. More specifically,
we wanted to see

1. if abstaining from learning at regular intervals, but instead only react to a heuristic like
the conflict measure, can result in satisfactory performance, and

2. if the ability of the algorithm to use existing knowledge in the form of extracted graph frag-
ments makes it more robust in cases where the algorithm starts with the correct generating
network.

6.1 Configuration of Algorithm

As stated in Section 4.1, we have used the conflict measure of Jensen et al. (1990) to implement
the method ConflictMeasure(·). However, instead of simply using PB(Xi = xi) in the
numerator of (3), we used the probability Pu(Xi = xi) and kept Pu (but not B) updated to
new observations through fractional updating with fading (Olesen et al. 1992). We did this to

6Here we have a requirement on 2k observations between each shift, rather than the k called for by Bullet 2,
because after a new network is learned using the last k cases, k other cases need to be evaluated with Conflict-

Measure(·) wrt the newly learned network, before ShiftInStream(·) can be relied upon again. See Section 6
for more on this issue.

14

ensure that even when our method fails to acknowledge changes in some parts of the network,
the distribution we compare to in ConflictMeasure(·) should reflect the currently generating
distribution regardless.

Moreover, we have added a “quarantine” mechanism to the main loop of the algorithm, such
that each node X, which receives a new parent set in UpdateNet(·), is prevented from entering
the C set in the next 2k iterations of Adapt(·) in Algorithm 1. This was done in order to ensure
that the conflict measure history cX consists only of conflict measures that are calculated wrt
the newly learned network.7

6.2 Nature of Experiments

We implemented the DAG generator of Ide et al. (2004), which allows for random generation of
DAGs with a given number of nodes n and a maximum induced tree width w through a Markov
chain Monte Carlo process. We adapted the method to take as input a DAG G and a percentage
p, and use these to generate a graph based on the nodes of G, and having connections different
from those in G between p% of the nodes and only between these. We could therefore randomly
create sequences (G1, . . . ,Gm) of DAGs, where each DAG Gi differs from Gi−1 only by the links
among p% of nodes. The actual p% of nodes selected could be different for each DAG in the
sequence.

We turned each of these sequences into a sequence of BNs

(B1 ≡ (G1,Φ1), . . . ,Bm ≡ (Gm,Φm))

by randomly assigning a number of states between 2 and 5 to each node, and then generating
CPTs for the nodes in each DAG. We used the following four methods for generating CPTs:

• Hard : For each node X with parents X (possibly ∅) in G1, we randomly generated a
distribution over the states of X for each configuration x of X. For each graph Gi, where
i > 1, we generated distributions only for nodes having different parent sets in Gi−1, and
simply reused the CPTs found in Φi−1 for the other nodes.

• Medium: The same procedure as Hard, but for each node X with parents X, we ensured
that the distributions P (X|xj) and P (X|xj+1) generated for any two adjacent configura-
tions xj and xj+1 had a KL-distance of at least 1. This was done to ensure at least some
kind of genuine probabilistic bindings between parents and child.

• Easy : The same procedure as Medium, but this time using a threshold of 5 for the KL-
distance, attempting to ensure strong probabilistic bindings among nodes.

• T-Hard : Same as the Medium method for the initial DAG G1. For subsequent graphs Gi

and node X having a new parent set X, for each configuration x of X we did a propagation
of evidence X = x in Bi−1 and used the resulting marginal distribution over X subjected
to a little random noise as P (X|x). Theoretically, data points drawn from networks in a
sequence of BNs, where the CPTs are generated by this method, should therefore be hard
to distinguish, as each new network is an approximation of the preceding one.

So, for a BN sequence (B1 ≡ (G1,Φi), . . . ,Bm ≡ (Gm,Φm)) we had the following parameters
open for adjustment: the number of nodes n in each DAG Gi, the percentage p of nodes whose

7In addition to these points, we have made minor modifications to the presented algorithm in the implemen-
tation, which are described in full in (Nielsen and Nielsen 2007). For exposition purposes, we have stuck with the
presentation given previously, though.

15

graphical bindings are changed in the transition from each Gi to Gi+1, the maximum induced
tree width w of each DAG Gi, the number m of BNs in the sequence, and the method d used
for generating each Φi (Hard, Medium, Easy, and T-Hard).

Here we shall report on eight sets of parameters, all summarized in Table 1. We generated
five BN sequences for each of Settings 1 to 4 (named Sequence 1.1 to 4.5), and three of each of
Settings 5 to 8 (named Sequence 5.1 to 8.3).

Table 1: Experimental settings. n is the number of nodes in each DAG, p is the percent of nodes
among which links may differ, w is the maximum induced tree width of each DAG, m is the
number of DAGs in the sequence, and d is the method used to generate CPTs.

n p w m d n p w m d

Setting 1 10 30% 5 15 Hard Setting 5 20 20% 4 15 Hard
Setting 2 10 30% 5 15 Medium Setting 6 20 20% 4 15 Medium
Setting 3 10 30% 5 15 Easy Setting 7 20 20% 4 15 Easy
Setting 4 10 30% 5 15 T-Hard Setting 8 20 20% 4 15 T-Hard

We generated piecewise DAG faithful sample sequences by sampling from the BN sequences.
For a given BN sequence (B1, . . . ,Bm), we sampled sj samples Dj ≡ (vj

1
, . . . ,vj

sj) from each BN
Bj, and concatenated them into a DAG faithful sample sequence

D ≡ (v1
1 , . . . ,v

1
s1

,v2
1, . . . ,v

2
s2

, . . . ,vm
1 , . . . ,vm

sm
) .

Each sample size sj was drawn at random from [smin; smax] using a uniform distribution over
this interval. The values smin and smax are therefore parameters that need to be specified in
advance, along with the list of parameters given above. Concretely, we used smin = 200 and
smax = 1000 when sampling from BN Sequences 1.1 to 4.5, and smin = 50 and smax = 1000 when
sampling from Sequences 5.1 to 8.3. We sampled five sample sequences from each BN sequence,
making for a total of 160 sample sequences reported on here.

Each experiment was run by starting an adaptation method on a DAG faithful sample
sequence with either the correct BN B1 as starting network, or a randomly generated alternative
network (the same for all methods). For each of these experiments we measured the deviance
and efficiency of the method wrt the KL-distance.

6.3 Methods

Our algorithm requires the setting of two parameters by hand: As described in Section 4.1 we
need to specify a threshold τ for the DCT-components calculated by ShiftInStream(·), and
we need to set an α level for the oracle ID used for independence tests. Initial experiments
seemed to indicate that τ should lie somewhere between 25 and 35, so we arbitrarily decided to
test our algorithm with τ = 27 and τ = 31. α has traditionally been set to either 0.01 or 0.05
in the literature on constraint-based learning, so we have decided to test both of these values
in the experiment. We thus have four versions of our method: A with τ = 27 and α = 0.01, B
with τ = 27 and α = 0.05, C with τ = 31 and α = 0.01, and D with τ = 31 and α = 0.05.

For baseline comparisons we implemented the incremental learning methods of Lam and
Bacchus (1994) and Friedman and Goldszmidt (1997). Both methods learn at regular intervals
from the most recent observations and from summaries of previous data either in the form of
selected data statistics (Friedman and Goldszmidt 1997) or a DAG (Lam and Bacchus 1994).
We limited both methods to investigating nets with a maximum of four parents for a single
node to reduce running time. The baseline comparison methods are: (Lam and Bacchus 1994)

16

with a greedy hill-climbing search step (E), (Friedman and Goldszmidt 1997) with a greedy
hill-climbing search step (F), and (Friedman and Goldszmidt 1997) with a greedy Simulated
annealing search step (G).

Both of the methods in (Lam and Bacchus 1994; Friedman and Goldszmidt 1997) need to
be told how often to learn, and our method needs to be told how many entries in the conflict
measure histories ShiftInStream(·) should evaluate. For fairness in comparison we chose to
have Methods E to G learn every kth case and ShiftInStream(·) to evaluate 2k entries, as this
means that each of Methods A to G learns from exactly k full cases at each learning step. For
k we tried two values, 100 and 300. The resulting methods we call A-100, A-300, B-100, etc.

6.4 Results and Discussion

Space restrictions prevent us from presenting the results in full, but a selection is reproduced in
Tables 2 to 4, and more is presented in (Nielsen and Nielsen 2007). Each reported number is
the mean of the five sample sequences drawn from the listed BN sequence. The best number for
given k (100 or 300) (lowest for deviances and highest for efficiencies) is reported in either bold
or italics. For each sequence we compared the best mean score achieved by Methods A to D with
the best mean score achieved by Methods E to G. We performed a t-test for significant different
means (significance level 0.05) on the two columns using all five sample sequences for that row,
and if the test was positive, we reported the best number in bold. Due to a combination of very
long evaluation times for KL-distances of larger BNs and pressing deadlines for the paper, we
have neglected to evaluate the performance of Methods B and D in the experiments based on
Sequences 5.1 to 8.3.

The results for deviance of the KL-distance in Table 2 show consistently poor performance
for Method E, and best performance from Methods A to D. That E is performing poorly here
is not so surprising, as it only remembers the past in the form of a graph structure, and not as
CPTs or sets of sufficient statistics like the remaining methods.

To get a better idea of how the algorithms perform along the way, we have plotted the
KL-distance between the currently learned network and the generating network for each case
in one of the experiments in Figures 5(a) and 5(b). Of course, we cannot make any general
statements based on this one experiment, but it is our impression that the general trend of
“instability” shown by Methods E and F, compared to Methods A and D is a recurring feature
in most experiments. Moreover, the tendency for some of the methods to show signs of not
having converged to a steady distance at the end of the experiment tends to repeat itself in
other experiments. Therefore, it could be interesting to experiment with longer BN sequences,
to see how the methods perform over longer periods of time.

As would be expected, the superiority of Methods A to D on Settings 1 and 4 drops noticeably
when the starting network is not the correct one (as seen in Table 3), but does not fade away
completely, meaning that A to D are competitive on these cases wrt KL-distance. Finally, we
can see that raising the number of nodes n to 20 and lowering the percentage p of nodes whose
graphical bindings change impacts the performance of Methods E to G far worse than it does
Methods A and C. We performed additional experiments were only p was changed and n was
kept at 10 and these did not show the same trend, so we conclude that as the number of nodes
increase Methods A to D get more attractive wrt the KL-distance. An explanation for this could
be the exponential increase in search space, which does not affect Methods A to D as much as
Methods E to G, since the former methods only relearn those parts of the network that seem to
conflict with data, whereas the latter methods have a much looser guiding line in the form of a
prior network.

17

Table 2: The deviance of the KL-distance of each method when starting with the correct network
averaged over five different sample sequences drawn from a BN sequence. The sequence number
appears in the first column. A bold or italic number means that it is the lowest number for
that row. A number for Methods A-D (versions of our algorithm) is reported in bold if it
is statistically fair to say that it is lower than the lowest number for Methods E-G (baseline
methods) on the same BN sequence and vice-versa.

A-100 B-100 C-100 D-100 E-100 F-100 G-100 A-300 B-300 C-300 D-300 E-300 F-300 G-300
1.1 124.0 97.4 109.0 115.0 247.0 199.0 232.0 88.7 82.7 104.0 67.6 241.0 158.0 215.0
1.2 101.0 81.1 94.2 74.0 172.0 101.0 108.0 53.0 43.0 54.1 39.9 167.0 89.8 82.0
1.3 57.9 52.8 66.3 38.1 202.0 126.0 145.0 71.5 93.4 78.7 70.2 197.0 111.0 118.0
1.4 149.0 137 .0 188.0 164.0 242.0 147.0 165.0 98.8 105.0 99.8 90.4 237.0 136.0 150.0
1.5 116.0 119.0 90.0 84.5 269.0 172.0 189.0 132.0 106.0 111.0 92.5 260.0 124.0 129.0
2.1 57.3 60.8 58.2 42.3 133.0 80.3 79.5 40.2 31.5 39.8 44.4 130.0 29 .8 50.1
2.2 161.0 153.0 174.0 125 .0 304.0 139.0 196.0 71.3 73.0 82.2 63.5 294.0 131.0 170.0
2.3 137.0 151.0 113.0 126.0 322.0 208.0 226.0 99.8 85.2 122.0 102.0 315.0 153.0 185.0
2.4 81.2 75.3 54.4 53.6 206.0 95.8 106.0 55.4 45 .8 56.3 45.9 194.0 55.3 60.5
2.5 97.8 87.4 83.3 118.0 167.0 67.0 84.5 52.6 25.6 40.3 36.9 160.0 43.4 63.7
3.1 227.0 215.0 216.0 195.0 366.0 175 .0 244.0 170.0 139.0 164.0 150.0 346.0 101.0 232.0
3.2 250.0 277.0 280.0 258.0 587.0 187.0 375.0 190.0 218.0 196.0 172.0 572.0 159 .0 269.0
3.3 43.1 25.9 47.5 35.1 166.0 34.3 37.5 33.2 29.9 33.1 31.0 140.0 21 .2 31.1
3.4 28.8 26.5 27.0 30.6 90.8 23 .9 34.7 34.4 31.5 33.8 28.3 80.1 16.7 26.0
3.5 225.0 203.0 214.0 224.0 406.0 180 .0 223.0 175.0 142.0 178.0 102 .0 397.0 119.0 180.0
4.1 105 .0 106.0 119.0 127.0 245.0 112.0 160.0 117.0 86 .8 95.8 96.3 241.0 115.0 121.0
4.2 126.0 134.0 135.0 114.0 295.0 181.0 219.0 112.0 103.0 154.0 98 .7 289.0 115.0 158.0
4.3 104.0 103.0 102.0 85 .7 190.0 102.0 132.0 59.3 43.3 53.4 54.2 187.0 82.6 85.5
4.4 116.0 83.0 119.0 72.4 281.0 176.0 184.0 77.9 68.9 82.5 62 .2 273.0 74.0 135.0
4.5 118.0 104.0 91.0 88 .4 198.0 107.0 142.0 59.1 42 .3 70.8 52.9 190.0 64.6 97.0

5.1 120.0 N/A 111.0 N/A 211.0 1082.0 650.0 201.0 N/A 196 .0 N/A 205.0 1653.0 840.0
5.2 226.0 N/A 227.0 N/A 275.0 1092.0 1087.0 165.0 N/A 163.0 N/A 267.0 600.0 652.0
5.3 263.0 N/A 196.0 N/A 306.0 1320.0 1127.0 235.0 N/A 183.0 N/A 299.0 468.0 843.0
6.1 426 .0 N/A 466.0 N/A 433.0 2081.0 1394.0 1469.0 N/A 1678.0 N/A 418.0 1299.0 1117.0
6.2 421.0 N/A 332 .0 N/A 352.0 1259.0 2433.0 329.0 N/A 286 .0 N/A 338.0 811.0 2370.0
6.3 285.0 N/A 194.0 N/A 365.0 757.0 1676.0 155.0 N/A 213.0 N/A 350.0 1322.0 1631.0
7.1 522.0 N/A 282.0 N/A 355.0 727.0 956.0 277.0 N/A 255.0 N/A 339.0 486.0 837.0
7.2 124.0 N/A 135.0 N/A 149.0 383.0 458.0 90.5 N/A 294.0 N/A 140.0 447.0 455.0
7.3 317.0 N/A 493.0 N/A 293 .0 483.0 1124.0 240.0 N/A 654.0 N/A 278.0 216 .0 857.0
8.1 307.0 N/A 291.0 N/A 422.0 619.0 1019.0 324 .0 N/A 2607.0 N/A 401.0 1382.0 1331.0
8.2 193.0 N/A 180.0 N/A 271.0 857.0 838.0 166 .0 N/A 227.0 N/A 261.0 228.0 995.0
8.3 279 .0 N/A 353.0 N/A 305.0 1081.0 946.0 259 .0 N/A 446.0 N/A 293.0 1901.0 2258.0

18

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000
 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

K
L

Case

A-100
D-100
E-100
F-100

(a)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000
 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

K
L

Case

A-300
D-300
E-300
F-300

(b)

Figure 5: KL-distance between generating distribution and learned distribution for each case in
an experiment based on Sequence 1.1. To reduce clutter in the plots, we have only shown the
performance of Methods A, D, E, and F.

Table 3: The deviance of the KL-distance of each method when starting with a network that
is not correct, averaged over five different sample sequences drawn from a BN sequence. The
sequence number appears in the first column. A bold or italic number means that it is the lowest
number for that row. A number for Methods A-D (versions of our algorithm) is reported in bold

if it is statistically fair to say that it is lower than the lowest number for Methods E-G (baseline
methods) on the same BN sequence and vice-versa.

A-300 B-300 C-300 D-300 E-300 F-300 G-300
1.1 127.0 81.8 129.0 89.8 241.0 185.0 186.0
1.2 69.0 41.9 70.4 56.3 167.0 96.8 75.9
1.3 92.2 101.0 91.9 69.0 197.0 102.0 112.0
1.4 105.0 96.7 110.0 107.0 237.0 122.0 147.0
1.5 139.0 133.0 119.0 101.0 260.0 146.0 142.0
2.1 47.6 40 .1 50.0 40.8 130.0 45.1 85.5
2.2 89.5 71.9 74.7 72.1 294.0 135.0 134.0
2.3 147.0 105.0 131.0 123.0 315.0 188.0 169.0
2.4 47 .7 48.6 56.0 50.2 195.0 59.8 80.5
2.5 42.2 37.0 47.1 27.8 160.0 49.8 64.8
3.1 199.0 194.0 188.0 199.0 347.0 90.7 233.0
3.2 271.0 236.0 208 .0 281.0 572.0 245.0 275.0
3.3 44.4 41.5 43.0 45.6 140.0 32 .2 38.6
3.4 35.6 34.8 36.8 40.5 80.2 30 .2 34.6
3.5 218.0 183.0 203.0 144.0 397.0 94 .5 171.0
4.1 99.6 87 .6 110.0 98.9 241.0 106.0 140.0
4.2 149.0 127.0 137.0 122 .0 289.0 137.0 176.0
4.3 55.7 45.6 58.5 59.3 187.0 81.9 87.3
4.4 75.7 48.6 83.9 81.4 273.0 124.0 133.0
4.5 76.4 50.3 81.7 47.3 190.0 70.9 88.3

19

Table 4: The efficiency wrt. the KL-distance of each method when starting with correct and
alternative network. The first column states the sequence number. A bold or italic number
means that it is the highest number for that row. A number for Methods A-D (versions of our
algorithm) is reported in bold if it is statistically fair to say that it is higher than the lowest
number for methods E-G (baseline methods) on the same BN sequence and vice-versa.

Correct starting network Alternative starting network
A-300 B-300 C-300 D-300 E-300 F-300 G-300 A-300 B-300 C-300 D-300 E-300 F-300 G-300

1.1 -6.33 2.29 0.38 5 .63 -27.2 -10.7 -7.17 26.2 17.8 25.7 29.6 -27.2 -8.09 -10.3
1.2 -2.93 -1.68 -2.56 1 .05 -19.9 -4.49 -4.04 10.2 11.8 17.5 12.4 -22.0 -2.27 -5.66
1.3 -8.80 -3.28 -7.27 -1.18 -12.7 3 .19 -10.8 -4.63 -5.96 5.89 9.06 -12.7 -3.09 -3.67
1.4 8.16 7.85 9.29 3.81 -13.9 14 .3 -13.5 19.5 18.6 22.5 20.1 -12.0 -3.74 -11.6
1.5 3.10 -4.23 -1.03 -4.18 -32.1 -8.94 -14.5 0 .23 -5.31 -15.5 -3.46 -32.1 -6.72 -13.1
2.1 5 .07 3.18 -0.00 4.33 -3.07 0.32 1.68 16 .2 10.8 7.82 8.31 -3.07 -0.92 2.60
2.2 -3.59 -6.85 8.06 3.50 -28.0 7.87 13 .8 9.88 8.62 15.9 9.77 -28.0 6.30 16 .4
2.3 6.35 0.60 6 .97 -14.2 -18.9 -13.1 1.70 -14.1 -4.13 -2.85 15 .4 -17.7 -5.70 -9.36
2.4 -6.57 -7.24 -7.74 -5.41 -13.7 -3 .08 -4.35 5.30 -4.04 0.25 1.07 -12.7 -3.21 -2.21
2.5 0.74 6.27 -0.96 0.37 -2.36 0.31 -4.10 0.55 1.38 2.51 3 .23 -2.22 0.39 -2.40
3.1 17.5 19.1 26.7 38.7 -24.8 -7.76 -28.2 46.5 56.3 33.7 40.5 -21.1 2.49 -19.3
3.2 -35.7 -31.1 -14.3 -20.0 -45.4 -1.73 11 .6 -11.4 -17.2 49.0 15.9 -45.4 -20.0 -33.2
3.3 4.85 6.01 3.90 4.29 -9.88 0.65 -1.08 9.57 7.73 9.28 10.9 -9.88 0.58 -0.15
3.4 0.80 3 .04 0.86 1.44 -7.11 1.63 1.33 8.47 8.17 12.6 7.69 -6.15 1.90 0.94
3.5 23.8 1.80 27 .3 6.69 -12.5 4.52 -5.84 28 .3 4.23 15.0 20.0 -12.5 1.97 -9.97
4.1 -16.6 -22.8 -8.03 -7.50 -20.4 4.03 -5.25 -9.05 -0.10 -8.77 2.79 -20.4 2.33 11 .8
4.2 3 .63 -19.2 -9.89 1.59 -29.4 -5.47 -13.1 -14.7 2.28 -5.30 8.98 -26.2 -7.26 -10.1
4.3 -2.73 6 .07 4.66 0.67 -8.36 -0.77 0.59 -3.73 -2.00 -2.35 3 .51 -7.29 -4.50 3.24
4.4 2.22 12.1 -2.53 19.2 -45.2 -4.05 -7.58 -9.05 6 .50 -12.6 3.88 -45.2 -6.61 -8.41
4.5 -6.59 16.9 -0.63 8.89 -27.2 -5.47 -6.77 -12.8 -4.60 -1.53 11 .5 -25.8 -0.05 -5.78

Looking at efficiency (Table 4), we see that a large portion of the mean improvements
are negative for all methods, indicating that the methods tend to be destructive rather than
constructive. Some of the numbers can be explained by the fact that the methods start with
the correct network and proceed to change it over time. This can be verified by studying the
experiments with alternative starting networks, where most numbers for Methods A to D are
positive. The remaining low numbers could be caused by the fact that when the structure is
changed by one of the learning methods the new CPTs are either estimated from the last k
cases (Methods A to E) or from statistics which might be defined from only the last k cases or
— even worse — from cases generated by networks long back in the sequence. In any case, the
new CPTs might render the new network a worse approximation of the underlying distribution
than the previous one. In general though, the picture is somewhat muddy. The poor performer
is obviously Method E, but none of the other methods can really be said to be best.

The answers to the questions set forth in the beginning of this section, are thus as follows:
First, it seems that the strategy of abstaining from learning, unless a sudden increase in conflict
measure is detected, can yield satisfactory performance wrt the KL-distance. However, the same
cannot be said about the structural difference measures. The second question on robustness,
must be answered in the positive — at least for the KL-distance. The relatively better statistics
for experiments with BNs having 20 nodes give a strong indication that, when only parts of
the underlying nets are changed, and these nets contain a lot of links, then the conservative
approach of keeping as much as possible is fruitful.

Finally, we have also investigated deviance and efficiency wrt structural distances, but the
results are not readily interpretable, see (Nielsen and Nielsen 2007).

20

Conclusion

We have treated a problem of learning BNs in settings with unstable underlying dynamics.
Despite the more realistic assumptions this problem has so far received little attention in the
literature, which has prompted a thorough analysis and problem discussion here.

The method that we have presented addresses the problem of keeping a BN model structure
updated in face of new observations. The distinguishing feature is to only learn when new
observations are highly unlikely given the current model, and in those cases only change the
parts of the model that are contested by evidence. Our method rests on a very solid formal
basis (which is sadly too extensive to include here in full detail) and has been evaluated using
carefully designed experiments. The experiments suggest that the method performs reasonably
well in settings determined by unstable dynamics.

The heuristics the method use for detecting “highly unlikely” observations, and parts “con-
tested by evidence” can be exchanged for other heuristics. Our formal results give clear guidelines
on what must be expected of such heuristics, and new heuristics could therefore be evaluated in
isolation by testing empirically how well they live up to these expectations.

Currently, we have a series of ideas for optimizing our method, including performing pa-
rameter adaptation on the maintained structure while monitoring for change points, and letting
changes “cascade” by marking nodes adjacent to changed nodes as changed themselves. This
latter idea might help our algorithm catch more changes when shifts occur. Moreover, currently
we quarantine nodes with new structural bindings for 2k observations after a learning run, to
ensure a stable history of conflict measures before we start using this to detect shifts. We might
be able to avoid this by sampling new cases from the learned network to construct k artificial
conflict measures immediately after learning.

In the future it would be interesting to see how a score-based approach to the local learning
part of our method would perform. The problem with taking this road is that it does not seem
to have any formal underpinnings or justification, as the measures the score-based approaches
optimize are all defined in terms of a single underlying distribution — a difficulty which Friedman
and Goldszmidt (1997) also allude to in their efforts to justify learning from data collections of
varying size for local parts of the network.

Coinciding with the publication of (Nielsen and Nielsen 2006), Castillo and Gama (2006)
presented a method that also builds on the idea of only learning when new data indicates the
need, and more specifically a view of sequences of data much similar to our notion of piecewise
DAG faithful data. The approach they present differs from the one presented here in several
areas: First, they work with BNs with a distinguished class variable, and the classification
accuracy of this variable is used as sole indicator of a shift in the underlying distribution.
Second, the BNs they work with are tree augmented BN classifiers (Friedman et al. 1997),
which is a subclass of BNs. Third, they learn a full model when resorting to structural learning,
using a full hill-climbing search, unlike our local approach.

References

Buntine, W. (1991). Theory refinement on Bayesian networks. In B. D’Ambrosio, P. Smets,
and P. Bonissone (Eds.), Proceedings of the Seventh Conference on Uncertainty in Artificial
Intelligence 91, pp. 52–60. Morgan Kaufmann Publishers.

Castillo, G. and J. Gama (2006). An adaptive prequential learning framework for Bayesian
network classifiers. In J. G. Carbonell and J. Siekmann (Eds.), Proceedings of the Tenth

21

European Conference on Principles and Practice of Knowledge Discovery in Databases,
Volume 4213 of Lecture Notes in Computer Science, pp. 67–78. Springer Verlag.

Del Sagrado, J. and S. Moral (2003). Qualitative combination of Bayesian networks. Interna-
tional Journal of Intelligent Systems 18 (2), 237–249.

Frey, L., D. Fisher, I. Tsamardinos, C. F. Aliferis, and A. Statnikov (2003). Identifying Markov
blankets with decision tree induction. In X. Wu and A. Tuzhilin (Eds.), Proceedings of the
Third IEEE International Conference on Data Mining, pp. 59–66. IEEE Computer Society
Press.

Friedman, N., D. Geiger, and M. Goldszmidt (1997). Bayesian network classifiers. Machine
Learning 29 (2/3), 131–163.

Friedman, N. and M. Goldszmidt (1997). Sequential update of Bayesian network structure. In
D. Geiger and P. Shenoy (Eds.), Proceedings of the Thirteenth Conference on Uncertainty
in Artificial Intelligence, pp. 165–174. Morgan Kaufmann Publishers.

Heckerman, D., D. Geiger, and D. M. Chickering (1995). Learning Bayesian networks: The
combination of knowledge and statistical data. Machine Learning 20 (3), 197–243.

Ide, J. S., F. G. Cozman, and F. T. Ramos (2004). Generating random Bayesian networks
with constraints on induced width. In R. L. de Mántaras and L. Saitta (Eds.), Proceedings
of the Sixteenth European Conference on Artificial Intelligence, pp. 323–327. IOS Press.

Jensen, F. V., B. Chamberlain, T. Nordahl, and F. Jensen (1990). Analysis in HUGIN of data
conflict. In P. Bonissone, M. Henrion, L. Kanal, and J. Lemmer (Eds.), Proceedings of the
Sixth Conference on Uncertainty in Artificial Intelligence, pp. 519–528. Elsevier Science
Publishing.

Lam, W. (1998). Bayesian network refinement via machine learning approach. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 20 (3), 240–251.

Lam, W. and F. Bacchus (1994). Using new data to refine a Bayesian network. In R. L. de
Mantaras and D. Poole (Eds.), Proceedings of the Tenth Conference on Uncertainty in
Artificial Intelligence 94, pp. 383–390. Morgan Kaufmann Publishers.

Margaritis, D. and S. Thrun (2000). Bayesian network induction via local neighborhoods.
In S. A. Solla, T. K. Leen, and K.-R. Müller (Eds.), Advances in Neural Information
Processing Systems 12: Proceedings of the 1999 Conference, pp. 505–511. MIT Press.

Nielsen, S. H. and T. D. Nielsen (2006). Adapting Bayes network structures to non-stationary
domains. In M. Studený and J. Vomlel (Eds.), Proceedings of the Third European Workshop
on Probabilistic Graphical Models, pp. 223–230. Action M Agency.

Nielsen, S. H. and T. D. Nielsen (2007). Adapting Bayes network structures to non-stationary
domains. Technical report, Aalborg University.

Nielsen, T. D. and F. V. Jensen (2005). Alert systems for production plants: A methodology
based on conflict analysis. In L. Godo (Ed.), Proceedings of the Eighth European Conference
on Symbolic and Quantitative Approaches to Reasoning with Uncertainty, Volume 3571 of
Lecture Notes in Computer Science, pp. 76–87. Springer Verlag.

Olesen, K. G., S. L. Lauritzen, and F. V. Jensen (1992). aHUGIN: A system creating adaptive
causal probabilistic networks. In D. Dubois and M. P. Wellman (Eds.), Proceedings of the
Eigth Conference on Uncertainty in Artificial Intelligence, pp. 223–229. Morgan Kaufmann
Publishers.

22

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems. Representation & Reasoning.
Morgan Kaufmann Publishers.

Peña, J. M., J. Björkegren, and J. Tegnér (2005). Scalable, efficient and correct learning of
Markov boundaries under the faithfulness assumption. In L. Godo (Ed.), Proceedings of the
Eighth European Conference on Symbolic and Quantitative Approaches to Reasoning with
Uncertainty, Volume 3571 of Lecture Notes in Computer Science, pp. 136–147. Springer
Verlag.

Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery (Eds.) (2002). Numerical
Recipes in C++: The Art of Scientific Computing (2nd ed.). Cambridge University Press.

Roure, J. (2004). Incremental hill-climbing search applied to Bayesian network structure learn-
ing. In J. Boulicaut, F. Esposito, F. Giannotti, and D. Pedreschi (Eds.), Proceedings of
the Eighth European Conference on Principles and Practice of Knowledge Discovery in
Databases, Volume 3202 of Lecture Notes in Computer Science. Springer Verlag.

Spirtes, P., C. Glymour, and R. Scheines (1993). Causality, prediction, and search. Springer
Verlag.

Verma, T. and J. Pearl (1991). Equivalence and synthesis of causal models. In P. Bonissone,
M. Henrion, L. Kanal, and J. Lemmer (Eds.), Proceedings of the Sixth Conference on
Uncertainty in Artificial Intelligence, pp. 220–227. Elsevier Science Publishing.

23

