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Abstract— Optimal design and dimensioning of wireless data
networks, such as GPRS, requires the knowledge of traffic
characteristics of different data services. This paper presents an
in-detail analysis of an IP-level traffic measurements taken in
an operational GPRS network. The data measurements reported
here are done at the Gi interface. The aim of this paper is to reveal
some key statistics of GPRS data applications and to validate
if the existing traffic models can adequately describe traffic
volume and inter-arrival time distribution for different services.
Additionally, we present a method of user session identification
in case when only measurements on IP level are available.

I. I NTRODUCTION

The recent development in telecommunication networks has
revealed two important tendencies. The first one is the increase
in Internet traffic. The second one is the demand for wireless
delivery of data services. The introduction of the General
Packet Radio Service (GPRS) was an important step in con-
verging wired and wireless communication. GPRS provides a
packet-switched access service for IP traffic, integrated into
the GSM architecture [1].

The performance analysis of new wireless data technologies,
their optimization and network planning require information
about the data traffic profile. While much measurement and
analysis has been done for wireline networks [2], there is still
very limited material available about wireless traffic models.
It is questionable whether for wireless traffic modelling the
existing models can be used and extrapolated. The use of wire-
less Internet services has different characteristics comparing
with the traditional Internet since it is greatly influenced by
mobility of a user, the access speed, the access client and the
pricing. It is expected that the traffic characteristics (the para-
meter settings, but likely also distribution types) are strongly
dependent on the used wireless access technologies. Different
wireless networks will dictate different user behavior: e.g.
measurements of WLAN traffic will reflect the specifics of
this particular access technology, but it can not be used to
model traffic in a wireless network of other kind. Therefore,
a technology-specific measurements should be carried out.

This paper is dealing with the analysis of measured data
traffic of a live GPRS network. GPRS networks are now fully
in operation and measurements can be used to validate and
update the existing traffic models. Even though the first GPRS
network was deployed in 2000, there is still very limited
measured data analysis reported in the literature. Nowadays
these networks are mature and they carry traffic levels that

allow reliable analysis of the measured data. One should also
note that with time, data services become more and more
popular, resulting in the changes in traffic characteristics.
Thus, the analysis based on recent series of measurements
is needed. Identification of traffic changes over long period
of time based on the set of three independent measurements
performed from 2002 to 2004 is presented in [3]. However,
that work is considering only the aggregate workload statistics.
GPRS service usage and traffic volumes are investigated in [4]
based on measurements taken in two live GPRS networks.
There are a few studies available describing particular services
(e.g. WAP [5]). The aim of this paper is to investigate the
application level activity of the subscribers and to identify
models that suitably describe the statistics of different appli-
cations (including such dominant applications as WWW and
e-mail).

Since only traces at the Gi interface were at our disposal,
some assumptions should be made about user sessions taking
into account the total amount of IP addresses and distribution
of inactive periods. We introduce an approach to identify a
user session based on the idle period threshold. The impact of
the threshold choice on the data statistics is investigated.

The paper is organized as follows. Section II describes
the data collection process. Section III elaborates on how to
identify a user session. Sections IV and V present flow and
service-specific analysis. Section VI offers some concluding
remarks and outline for the future work.

II. DATA COLLECTION

Traffic traces can be obtained at appropriate network ag-
gregation points, over a substantially long period of time.
Arrival and departure process statistics can be deduced from
the traffic traces, e.g. packet length and packet inter-arrival
time distributions.

In GPRS networks traffic measurements can be either done
at IP level (revealing information about application types and
packet characteristics) or at the logical link-control (LLC) and
radio link control (RLC) level (allowing analysis of mobility
events). The measurements presented in this paper are done
at the IP level. We captured IP packets at the Gi interface.
The Gi interface connects the GPRS network to external IP
based networks, such as the Internet or the operator’s service
network. The base for analysis is firewall data. Table I shows
a sample of a firewall log. One row presents an information



for one firewall session for the same source- destination pair,
containing information about time when the session began
and session duration, what service, transfer protocol and
source port were used, the IP address of the source, how
many bytes were transferred, how many bytes were uploaded
(client inbound bytes, CIB) and downloaded (client outbound
bytes, COB) and how many packets were involved in the
transmission. To preserve subscriber privacy the destination
IP address was not available in the measurement data.

The data available for analysis on this paper consists of
approx. 90 min firewall traces collected in March 2004.

III. U SERSESSION

A. Identification of user sessions

Since IP addresses are assigned to the subscribers tempo-
rally and the same IP address may be reused later (even within
a few seconds), the IP address does not identify the user.
Some additional information (the relevant GPRS signalling)
is needed to sort out packets to separate Packet Data Protocol
(PDP) contexts. In what follows, we call anIP sessiona
period from the moment we have observed the first usage
of a particular IP address until the last registered activity
period with this IP address (during the whole interval of
observations). Since one IP session may comprise of multiple
activity periods of the same user or even of different users,
we introduce a termuser sessionto isolate different users and
activity periods of one user.

It was observed that approx. half of the IP addresses from
the available pool of the addresses appeared in the traces. Since
nothing was known about the address assignment strategy
and taking into account the fact that the used addresses were
randomly distributed over the whole address interval, we could
not conclude that one observed IP session would belong only
to one user.

Each of the IP sessions consists of a number of activity
periods, that we refer to asflows. Different flows that belong
to one IP session can in principle overlap, this will correspond
the case when different applications are active at the same time
or when the same application initiates several data streams. At
the same time, it was observed that 170 IP sessions consist of
a single flow.

Without having a related measurements of a PDP context,
we have decided to identify user sessions among sessions with
the same IP address based on the distribution of inactivity
periods. Figure 1 presents a histogram of duration of idle
periods within IP sessions. It can be seen that even though
the majority of idle periods are short, that is less than 10 min,
a large number of IP sessions contains inactivity periods that
are 30 min long and up to 1 hour long. Considering these long
idle periods, it makes sense to treat a bursts of flows appearing
after these idle times as a separate user session. Even if there
was no physical change of user, the activities of a user with
30 min gap will be uncorrelated and they can be considered
as two independent sessions. Therefore, a threshold value,T ,
should be found such that the activity periods of the same
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Fig. 1. Histogram of inactivity periods in IP sessions.
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Fig. 2. Total number of user sessions as a function of the threshold value.

IP session are regarded as different user sessions if the idle
period between them is larger thanT .

The choice of the thresholdT has a big influence on the user
sessions’ statistics. Figure 2 and 3 shows how the total number
of sessions and the average number of flows per session
depend on the threshold value. If the threshold is chosen small,
then the statistics of the system is very sensitive to any change
in this value. At the same time, there is a range of values
(intervals [600, 1500] and [2200, 3500]) where the lines on
Figures 2 and 3 become almost constant. It is advisable to
chooseT exactly within those ”unsensitive” intervals. In what
follows, we have fixed the value of the threshold equal to1200
sec.

To be sure that we do not split too many sessions by
introducing a too small threshold, we perform the following
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Fig. 3. Average number of flows per session as a function of the threshold
value.



Time Service Source Protocol Source port Elapsed Bytes CIB COB Packets
09:25:32 dom.udp 212.88.73.106 UDP 49192 00:00:00 138 61 77 2
09:25:32 pop-3 212.88.73.106 TCP 1179 00:01:33 1048 439 609 19
09:51:40 http 212.88.73.107 TCP 1036 00:00:04 4464 3528 936 11

TABLE I

A SAMPLE FROM A FIREWALL-LOG
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Fig. 4. Histogram of interarrival times of user sessions (smaller than 40 sec)
with exponential fit.

test. We verify if the arrival time process for the obtained
user sessions resembles a Poisson process as we would expect
for a large number of independent events. Figure 4 presents
a histogram of the corresponding interarrival process with the
exponential fit.

It should be noted that there exist large interarrival times, up
to 10 min (not shown on Figure 4), something we would not
expect if distribution follows strictly the exponential distribu-
tion. These big interarrival times do not disappear even if we
will decrease the value for the threshold. Further investigations
are required.

B. Window censoring

Due to the data collection mechanism, the following prob-
lem appears regarding IP sessions start and end time. When we
observe a flow with a particular IP address, we can not say if it
is the first flow of this IP session or if the session has started in
the past and this is a next activity period after an idle period.
Since none of the flows that have started before our initial
observation point is recorded in our data, the flow interarrival
times can not be estimated. Introducing the threshold approach
does not help to combat this problem. The problem stays
unless a user session starts later than the threshold valueT
after we begin to record the data. The similar phenomena
appears also at the end of the data record: if the last time
interval between the last flow and the end of the study is less
than the threshold value, we do not know if this bit belongs to
the last IP-session or a new IP-idle time. The above mentioned
problem with left- and right truncation of the data is known
in the literature aswindow censoring.

Let consider IP-sessions as a process that jumps back and
forth between two states of being busy (transmitting flows)
and idle (waiting for a new IP assignment) and suppose the
durations of subsequent busy and idle times are i.i.d. and that
the process has started in the far past, so it has achieved
stationarity. Such alternating renewal processes (ARP) have
been taken as models in a variety of contexts such as systems
reliability in engineering or the behaviour of healthy-sick
cycles in actuarial and insurance mathematics.

For ARPs window censoring problem is often present in
one or another form. Efficient methods for dealing with
censoring have only recently been proposed. A study which
resembles the present problem can be found in [6]. It tackles
a similar problem but this problem does not match exactly the
phenomenon we have observed. In that paper the status of the
first waiting and last waiting times are know as opposite to
our case, but it is possible to modify the procedure for the
problem at hand. This and other related issues will be touched
upon in a separate paper.

IV. FLOW ANALYSIS

In the previous section we have explained that due to
specifics of data collection process a window censoring prob-
lem occurs when we consider IP session process. At the
same time, if we consider an aggregation of all flows, we are
avoiding this problem. Since we are recording all flows that
have started within a specified interval, the flows that started
before the first observation point,tstart, will not be collected
even if they ended aftertstart; but all flows with the starting
point before the last observation momenttend are recorded
regardless how long they last.

In this section we are looking at the flow properties,
especially at such phenomena as heavy tails. Long range
dependence and heavy tails cannot be ignored if estimation
of network capacity is the goal [7]. These phenomena have
received some attention (see e.g. [8]) and it is expected that
heavy tails will be of crucial importance for a wide range of
network engineering problems.

To help with assessing whether heavy tails are present and to
estimate the indexα (loosely speaking, the reliability function
drops off as a power ofx, R(x) ∼ c/x−α for largex), various
exploratory plotting techniques are available. Following one of
the approaches, we plot the reliability function of flow volumes
on log-log scale (see Figure 5). The tail shows the straight-
line behavior with negative slopeα ≈ 1.1. The same type
of behavior can be observed for flow durations (Figure 6).
In this case the slope is approx. 1.2. The small difference
in parameterα for these two distribution can be explained by
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Fig. 5. Indication for heavy-tail distribution of flow volumes.
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Fig. 6. Indication for heavy-tail distribution of flow duration.

the difference of the connection speed for different users. This
can lead to differences in flow duration even for the same flow
volumes. What is more, usually users with a good connection
tend to download bigger files, but this will not take longer time.
Therefore, in the collected data we observe bigger number of
”heavy” volumes compared with ”heavy” durations.

We would like to mention that in [3] it was concluded
that the Poisson Pareto Burst Process (PPBP) model provides
an accurate model of the aggregated GPRS traffic. It is in
correspondence with our observations of heavy tail behavior
of flow volumes and durations.

V. SERVICE-SPECIFIC ANALYSIS

This section presents in-detailed analysis of different appli-
cations usage in a GPRS network. We start with providing an
overall picture of network services and later concentrate on
two dominant applications, namely web browsing and email
service.

A. Distribution of Services

Table II summarizes the information about different service
types observed in the measured data. The total of 18 services
were counted. Web browsing and email service constitute a

Service type No of flow ratio, % Volume ratio, %
http 31 51
https 10 15

e-mail (pop-3, imap, smtp) 11 19
WAP 6 9
ftp 1 2

DNS 33 1
other 8 19

TABLE II

SERVICE TYPES DISTRIBUTION

Fig. 7. Histogram for transfer size of email service smaller than 2000 bytes
with a normal distribution fit.

large proportion of both the total number of flows and the
total traffic volume.

As expected from the properties of Domain Name System
(DNS), DNS request and response occurs frequently, thus it
has a large share in the total number of flows. But since only
files of small sizes are transferred, this kind of service occupies
only 1% of the total traffic volume.

B. Email service

Table III shows summary statistics for e-mail service. The
data is investigated as two distributions, small transfer size
(< 2000 bytes) and large transfer size (> 2000). A histogram
for small transfer size is fitted with a normal distribution (see
Figure 7).

Observing interarrival times of different sessions, it was
concluded that they are independent: from Figure 8 we can
see that the autocorrelations are near zero for all time-lag
separations and no one is significantly non-zero. Exponential

Mean 17331.58
Standard deviation 152918.7
Sample variance 2,34E+10

Minimum 44
Maximum 4571428

Number of sessions 1288

TABLE III

E-MAIL SERVICE (BYTES)



Fig. 8. Autocorrelation function for interarrival time of email sessions.

Fig. 9. Histogram of e-mail session interarrival times with the exponential
distribution fit.

distribution provides a good fit for the histogram (see Figure 9)
and Poisson distribution for counts.

C. WWW service

In this section we present analysis of flows that contain only
http or https traffic. The distribution of www volumes can
be approximated by exponential distribution (see Figure 10).
Table IV presents the summary of the www flow volume
statistics. As for the case of email traffic, interarrival times
can be approximated by the exponential distribution.

The complete histograms of transfer sizes for both www
and email gives an indication of the presence of heavy tails.
This is in correspondence with our findings of heavy-tailed
behavior of the aggregated traffic volumes (Section III.C).

VI. CONCLUSION AND OUTLOOK

This paper presents an analysis of an IP-level traffic mea-
surements taken in an operational GPRS network. We address
the issue of a user session identification when only traces at

Mean 15368.02
Standard deviation 1.785E+05
Sample variance 3.186E+10

Minimum 40
Maximum 10147134

Number of sessions 4938

TABLE IV

WWW SERVICE (BYTES)
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Fig. 10. Histogram for transfer size of www traffic smaller than 12000 bytes
with an exponential distribution fit.

the IP level are at the disposal and no correlated measure-
ments of PDP contexts are available. A discussion on heavy-
tailed traffic characteristics for flow volumes and duration is
provided. As a dominant applications, examples of www and
email traffic are considered. A visual fit of known distributions
to the measured data is presented.

Furthermore, discussion about window censoring problem
is provided. This problem occurs due to the data collection
method and some corrections should be introduced in the es-
timation of distribution parameters. How to find the necessary
corrections will be presented in our future work. It is our future
plans to make correlated measurements on RLC/LLC layer.
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