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Summary  

In recent years large span suspension bridges with very thin and slender profiles have been built without proportional 
increasing torsional and bending stiffness. As a consequence large deformations at the mid-span can occur with risk of 
aeroelastic instability and structural failure. Analysis of aeroelastic stability also named flutter stability is mostly based on 
semi-empirical engineering models, where model specific parameters, the so-called flutter derivatives, need calibration 
from wind tunnel tests or numerical methods. Several papers have been written about calibration of flutter derivatives 
using CFD models and the aeroelastic stability boundary has been successfully determined when comparing two-
dimensional flow situations using wind tunnel test data and CFD methods for the flow solution and two-degrees-of-
freedom structural models in translation perpendicular to the flow direction and rotation around the span axis of the 
bridge section. These models assume that the main contributing modal modes of the bridge are the first bending mode 
and the first torsional mode. The present work focuses on numerical evaluation of the flutter instability using an arbitrary 
number of modes describing the structural deformation. Furthermore, flutter derivatives are evaluated by CFD models 
using forced motion of a bridge section in a two-dimensional virtual wind tunnel. The parameter region of critical values is 
shown to be outside measured values. It is shown that a rough extrapolation of the measured values may lead to 
erroneous results and CFD simulations may be used for extrapolation into the critical region. The flow analysis serves as 
preliminary studies for evaluating flutter stability using CFD methods in three dimensions, where the span-wise 
correlation of vortex separation, skew inflow, and effects from cables at the mid-span are to be considered. 

Keywords: CFD; Suspension bridges; flutter derivatives; aeroelastic stability.  
 

1. Introduction 

 

 

Fig. 1 Definition of notation. a) Principle structural setup of a suspension bridge. b) Cross section of bridge deck.   

With ever increasing span lengths without proportional increase of the torsion and bending stiffness, modern suspension 
bridges become susceptible to aeroelastic instability and excessive vibrations when exposed to strong turbulent wind. 
Due to sharp edges and railings the boundary layer will generally be fully separated almost from the leading edge as 
illustrated in Fig. 1. 
Aeroelastic stability analysis of suspension bridges is mostly based on engineering models defined by the pioneering 
work by Davenport [1] and later by Scanlan [2,3] using the so-called empirical determined flutter derivatives for 
aeroelastic loading on a reduced degree-of-freedom structural model. These represent a kind of frequency response 
functions for the aeroelastic loads due to forced harmonic motions of the bridge deck. 
The underlying aerodynamic theory is basically two-dimensional, and presumes that parameters of the theory such as 
static force and moment coefficients, flutter derivatives and aerodynamic admittance functions are determined 
experimentally in model tests in a wind tunnel. The effect of along-wind response has been included in the 2D-approach, 
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at the expense of increasing the number of flutter derivatives from 12 to 18, [4]. When applied to time domain 
simulations, the flutter derivatives and aerodynamic admittance functions are typically approximated by low order rational 
functions for which the corresponding impulse response functions are directly available, making direct time integration 
possible at the expense of introducing additional filter state variable, Chen and Kareem [5,6]. The indicated filter 
variables account for various delay effects, e.g. the transient circulation built up following any instantaneous change of 
the effective angle of attack. 
Attempts have been made to take the aerodynamic non-linearity into account by linearizing the loads around a static 
angle of torsion, [7,8,9]. This implies that the aerodynamic coupling constants (flutter derivatives and aerodynamic 
admittance functions), in addition to a dependence on frequency and Reynold's number, also become a function of the 
said angle. However, large suspension bridges are relatively flexible, and may undergo relatively large deformations. 
This questions the application of any linear load model, which in principle is based on the linearization of the loads 
around a given fixed position of the bridge. 
3D-effects caused by oblique incoming wind have been taken into account in the same way by determining the flutter 
derivatives in the wind tunnel with the model section skewed to the along wind, [10]. The component of the skewed 
incoming wind along the bridge deck will convey a separated boundary layer pattern at a certain position to other 
positions on the bridge, and in this way introduce a certain delayed coherence of the flow pattern along the bridge. This 
convection is partly constrained by the sidewalls of the wind tunnel in the indicated model test. Neither has it been 
adequately considered elsewhere in the literature. 
Still, another 3D-effect is the influence of the cables on the flow over the bridge deck at the mid-span. This may influence 
the modal loads of symmetric bending and torsion modes significantly, which have maximum amplitude at this position. 
All the 3D-effects mentioned can be treated in wind tunnel tests of a full-model bridge. Since such tests have to be 
performed at scales as small as say 1:100, the tests suffer from inherent problems to reproduce the real flow pattern and 
dynamic behaviour of the bridge. Especially the along-span correlation of turbulence can be very difficult to simulate. 
To improve the understanding of both 2D- and 3D-flows over the bridge sections and the coupled fluid structure problem, 
CFD (Computational Fluid Dynamics) is a possible supplement to the simpler aerodynamic models and wind tunnel tests 
typically used. In recent years, the progress in computer speeds, numerical methods and turbulence modelling have 
made it feasible to resolve the flow over bridge sections with a high degree of details. This has resulted in a series, of 
mainly 2D-studies of the fluid structure problem of the flow around 2D-bridge sections using CFD type codes; see 
[11,12,13,14,15,16]. 
The idea of the paper is to determine the flutter stability of the Great-Belt bridge using measured flutter derivatives from 
the literature and comparing these measurements with CFD simulations of the considered cross section. Often only the 
lowest plunge and pitch mode are used for evaluating the critical flutter velocity. In the present work an approach for 
determining the critical velocity using an arbitrary number of modes is devised. A numerical example where results from 
using the 8 lowest modes is presented. Finally, the numerical evaluated flutter derivatives are used for finding the flutter 
velocity. The results are compared with the case where flutter derivatives from measurements are used. 
 

2. Theory 

A global -coordinate system is introduced as shown in Fig. 1a. Global displacement components  
and rotation components  of a given section of the bridge deck defined by the -coordinate are stored in the 

vector  defined as 
 

    (1) 
 
Displacement and rotational components of the th eigenmode of the bridge deck are stored in the vector 
 

    (2) 

 
Then, the displacement vector may be represented by the modal decomposition 
 

          (3) 
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 represents the th undamped modal coordinate. These are given by the following ordinary differential equation  

 

       (4) 

 
where  is the undamped circular eigenfrequency,  is the damping ration,  is the modal mass, and  is the 

modal load in the th mode. Because the structural damping of the bridge is low, and the important eigenfrequencies are 
well separated, modal decoupling via the structural damping has been assumed. Further, it should be noticed that the 
modal mass includes contributions both from the bridge deck and the pylons, cables and hangers. Only a load per unit 
length  in the -direction and a torsional moment per unit length  in the -direction are acting on 
the bridge deck. Then, the modal load becomes 
 

      (5) 

 
where  is the entire length of the bridge deck. The said loads are assumed to be self-induced by the motion of the 
bridge deck. Further, a linearized 2D description of the basically non-linear flow is assumed. Then, the following 
expressions for the external loads on the bridge deck may be postulated 
 

      (6) 

  

     (7) 

 
where  is the mass density of air,  is the wind velocity, and  is the width of the bridge deck. 

 are non-dimensional real functions, so-called flutter derivatives, 

depending on the reduced frequency  (and Reynold's number) defined as 
 

             (8) 

 
(6) and (7) only make sense for harmonically varying motions of the bridge deck at the circular frequency . Then, the 
flutter derivatives specify the frequency response functions for the indicated loads due to forced harmonically varying 
motions of the bridge deck. Due to the postulated 2D-character of the flow the flutter derivatives may be determined in 
2D-wind tunnel tests. 
The displacement components  and  may be represented by the following modal expansions 
 

         (9) 

 
The modal expansions for  and  as follow from (3) are inserted into (6) and (7), and the results are 
inserted into the modal loads (5), leading to 
 
        (10) 

  

  

      (11) 

  

 

 (12) 
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Because of the symmetry of the bridge around the plane  shown in Fig. 3, the mode shape components  and 

 will either be symmetric or skew-symmetric functions of  around the said plane. Hence, integrals of 

symmetric and a skew-symmetric mode shape components in (11) and (12) will cancel. Further,  in 

symmetric or skew-symmetric bending modes, and  in symmetric or skew-symmetric torsional modes. 

Hence, this cancels an additional number of the components  and . With the ordering of the 

eigenmodes as indicated in Table 1 the modal equations of motion may be recasted into the following matrix form 
 
 
   Table 1 Ordering and symmetry properties of modes 

mode    

1 1st symmetric 0 
2 0 1st symmetric 
3 1st skew-symmetric 0 
4 0 1st skew-symmetric 
5 2nd symmetric 0 
6 0 2nd symmetric 
7 2nd skew-symmetric 0 
8 0 2nd skew-symmetric 

 

      
 
        (13) 
  

        (14) 
  

   (15) 

  

     (16) 

  

    (17) 

 
Fig. 2 Definition of symmetry planes. 
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At application the modal expansion is truncated, and the system matrices , , ,  and  become 

finite quadratic matrices. As seen from (15), (16) and (17) the modal coordinates , , , , , 

 are decoupled from the modal coordinates , , , . It turns out that instability only 
takes place among the former modal coordinates. Hence, the latter can be extracted from the equations of motion, 
reducing the dimension of stability analysis to half the magnitude. At small wind velocities the system is stable in the 
sense that a given perturbation from the equilibrium state  is damped out in harmonic vibrations with 
an exponential decreasing amplitude. On the other hand at a very large wind velocity the harmonic vibrations becomes 
unstable with exponentially increasing amplitudes. Hence, a critical wind velocity  exists, where the structure performs 
harmonic vibrations with constant amplitudes. Then, at the critical wind velocity the solution has the form 
 

            (18) 
 
where  is the so-called circular flutter frequency. Insertion of (18) into (13) provides the following non-linear eigenvalue 

problem for the determination of  and  
 

      (19) 
 
Non-trivial solutions  only exists if the coefficient matrix is singular, leading to the flutter condition 
 

      (20) 
 
(20) must be fulfilled for the real and imaginary part of the determinant, which provides two non-linear equations for the 
determination of  and . 

A numerical evaluation of the flutter derivatives using CFD methods assumes a harmonic variation of  

and , with the circular frequency  and real amplitude  and . Inserting in (6) and (7) and assuming 

the lift and moment to vary harmonic with the same frequency and a phase  relative to the motion, the following is 
obtained 
 

      (21) 

 

where  and  are given in terms of the non-dimensional lift 

and moment coefficients, respectively. A simulation with harmonic translation of the bridge deck and a simulation with 
harmonic rotation of the bridge deck as indicated above is made from which ,  and  can be identified from the 
numerical simulated lift and moment forces. This gives the following 6 conditions for determining the 6 flutter derivatives 
 

       (22) 

 
where the first 2 for  and  are used in combination with the harmonic translation simulation and the remaining 4 are 
used in combination with the harmonic rotation simulation. 
 

3. Numerical example 

In the numerical example the Great Belt Link of Denmark is used with a mid-span of 1624m and outer span of 535m and 
pylons with a height of 250m. The bridge deck is steel and the pylons are made of concrete. A finite element model has 
been developed for extracting the lowest eigenmodes and frequencies for flutter analysis. Numerical two-dimensional 
aerodynamic analyses have been performed on a bridge deck section for identifying the flutter derivatives. 
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The aerodynamic simulations are performed with the incompressible Navier-Stokes solver EllipSys2D [19,20,21]. The 
code is second order accurate in time using the PISO algorithm of [18], and four sub-iterations per time step. The 

dimensionless time step used in the actual simulations is equal to . In space the code is second order 

accurate, using central differences for the diffusive terms and the third order accurate QUICK scheme for the convective 
terms [23]. The turbulence in the boundary layer of the bridge is modelled by the k-  SST model ,[24]. 
The computational grid is generated with the 2D hyperbolic grid generation program [22]. The grid topology is a so called 
O-configuration, and has 256 cells in the chordwise direction and 64 cells in the normal direction. Grid independence test 
was performed with half the number of cells in each direction. The grid around the profile is illustrated in Fig. 3a and the 
velocity vector field result from a steady simulation is visualized in Fig. 3b. 

   

 
Fig. 3 a) Fine mesh around the bridge section. b) Velocity field visualization. 
 

The lift and moment coefficients determined by numerical simulations are shown in Fig. 4 where (     ) indicate results 
from a fine mesh simulation and (     ) indicate results from a coarse mesh simulation. The illustrated results are for a 
pitch case with a periode of 54s. As seen, a significant harmonic component is present with a frequency equal the 
pitching frequency. Also a significant high frequency component is present on the fine mesh due to vortex shedding. In 
the present approach the high frequency component is filtered out from the flutter analysis. On the coarse grid the vortex 
shedding is not capture, but the deformation frequency component in the loads are present with the same frequency and 
phase as for the fine mesh results. However, an increase of the mean value of the lift is observed, but with no influence 
of the evaluated flutter derivatives. Hence, a coarse mesh can be used for evaluating flutter derivatives. Furthermore, 
numerical evaluated flutter derivatives where calculated for Reynold's number equal the one used for measurements 
without changes in the results. 

 
Fig. 4 Lift and moment coefficients determined by numerical simulations. Harmonic pitch with periode T=54s, 2πV/ωB=9. a) cL (t). 

cM (t). (      ) Solution on fine mesh. (      ) Solution on coarse mesh.   

 

By a least-square-error method the amplitude and phase between the motion and forces are extracted from  and 

 and (22) is used to determine the flutter derivatives. In Fig. 5 the numerical evaluated flutter derivatives are 
compared with wind tunnel test data from Reinhold et al. [17]. Third degree polynomiums are fitted to the experimental 
data. As seen, the qualitative and quantitative variations are captured by the numerical analyses. However, at large 

values for  the numerical solution deviates from the extrapolations especially in  and  which are the terms on . 

It should be emphasized that extrapolations far from the measured data might be inaccurate, and also at low frequencies 
these terms might be hard to estimate accurately.  
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Fig. 3 Flutter derivatives. ( ) Wind tunnel test results from Reinhold et al. [17]. ( ) CFD results. (     ) Least square fit to Reinhold 
test data using 3rd degree polynomiums.   
 
Finally, the critical flutter velocity and frequency are determined using the modal approach described in the previous 
section. The determinant condition in (20) is evaluated for the decoupled problem using 2 or 8 modes. The results are 
shown in table 2. 

 

Table 2 Critical values of from the flutter analysis.  

modes  flutter derivatives          

2  wind tunnel   100.9m/s   1.182 rad/s   17.3 

8  wind tunnel   121.9m/s   1.101 rad/s   22.4  

2  CFD   68.8m/s   1.152 rad/s   12.1  

8  CFD   92.5m/s   1.095 rad/s   17.1  

  

    The flutter derivatives entering (20) are taken both as the wind tunnel test data ( ) and as the CFD results () from 
Fig. 5, respectively. By introducing higher modes a significant increase in the flutter velocity is obtained whereas the 
critical frequency is relatively constant. For the determined critical values the flutter derivatives are evaluated at a value 
larger than 15 where measurements are extrapolated and unreliable. When using the numerical evaluated flutter 
derivatives the velocity is significantly reduced but the same tendency as before is observed when introducing 8 modes 
instead of 2. 

4. Conclusion 

 

In the present work a two-dimensional flutter analysis is performed on the Great Belt Link suspension bridge. A method 
for introducing an arbitrary number of modes is devised. It is shown that the critical values of the flutter analysis are 
significantly changed when introducing more modes. The two-dimensional analysis is based on the method devised by 
Scanlan [2,3], where the so-called flutter derivatives enter. These coefficients are obtained from numerical CFD analysis 
and compared with wind tunnel measurements obtained from the litterature. It was shown that both qualitatively and 
quantitatively it is possible to obtain good results using CFD methods. However, the method devised by Scanlan does 
not include effects from vortex shedding, which introduce a significant high frequency component in the aerodynamic 
loads. Critical values for the flutter analysis are found in regions where it is necessary to perform extrapolation of 
measurements making these results uncertain. When the numerical evaluated flutter derivatives are used, a significant 
reduction of the flutter velocity is found. It can be concluded that the flutter analysis is relatively sensitive to the correct 
evaluation of flutter derivatives. A rough extrapolation may result in erroneous results. CFD results are easily obtained in 
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the entire region and may be used for extrapolating measured flutter derivatives. 
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